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Abstract: Advanced oxidation processes constitute a promising alternative for the treatment of
wastewater containing organic pollutants. Still, the lack of cost-effective processes has hampered
the widespread use of these methodologies. Iron oxide magnetic nanoparticles stand as a great
alternative since they can be engineered by different reproducible and scalable methods. The present
study consists of the synthesis of single-core and multicore magnetic iron oxide nanoparticles by
the microwave-assisted polyol method and their use as self-heating catalysts for the degradation of
an anionic (acid orange 8) and a cationic dye (methylene blue). Decolorization of these dyes was
successfully improved by subjecting the catalyst to an alternating magnetic field (AMF, 16 kA/m,
200 kHz). The sudden temperature increase at the surface of the catalyst led to an intensification
of 10% in the decolorization yields using 1 g/L of catalyst, 0.3 M H2O2 and 500 ppm of dye. Full
decolorization was achieved at 90 ◦C, but iron leaching (40 ppm) was detected at this temperature
leading to a homogeneous Fenton process. Multicore nanoparticles showed higher degradation rates
and 100% efficiencies in four reusability cycles under the AMF. The improvement of this process with
AMF is a step forward into more sustainable remediation techniques.

Keywords: iron oxide nanoparticles; microwave synthesis; magnetic induction heating; organic dyes;
acid orange 8; methylene blue; adsorption; advanced oxidation process; wastewater

1. Introduction

Nanotechnology can be considered a “small” solution for many big problems, bring-
ing novel benefits in terms of products and processes. Nowadays, there are already a wide
range of studies on new nanomaterials that are transforming the available technology in
areas as important as medicine (nanomedicine, theragnosis, etc.) and sustainable develop-
ment (clean energy, environmental remediation, etc.) [1]. Among possible nanomaterials,
magnetic iron oxide nanoparticles (MIONPs) stand out with their unique magnetic proper-
ties, low environmental impact, high biocompatibility, and wide versatility in technological
fields such as wastewater treatment, catalysis, biomedicine, etc. [2,3]. This class of mag-
netic nanoparticles presents specific features like their large surface-to-volume ratio and
high colloidal stability, a good magnetic response, and a powerful heating capacity under
alternating magnetic fields [4].

During recent decades, MIONPs have been used for the removal and degradation
of different contaminants in either waste or drinking water with outstanding results [5].
The increase of unmonitored pollutants with suspected human and ecological adverse
effects has redirected the use of these nanoparticles towards the removal of hazardous
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organic compounds in the environmental area [6]. These contaminants can be derived
from different sources like tanning, printing, paper production, food processing and
pharmaceutical, being the textile industry the most important one. During the processing
of fabrics and textiles, the dyeing process can generate large volumes of colored wastewater
and different type of post-production wastes [7]. Within all these dyes, azo dyes can be
linked to serious human health deterioration and comprise about two thirds of all synthetic
dyes. These azo compounds are characterized by the presence of –N=N– groups in a
typical R-N=N–R’ structure. Some examples of these azo dyes are methyl orange, alizarine
yellow R, acid orange 5, and acid orange 8, among others [8]. Other common compounds
are the synthetic basic dyes, such as methylene blue, that can also be used for medical
purposes, creating a different source of pollution [9]. As these kinds of compounds are very
stable to light and reluctant to conventional microbial treatment methods, it is important to
find alternatives for their removal and degradation from water [7]. In this endeavor, it is
important to develop engineered materials by rapid, scalable, and efficient methods to face
this environmental hazard.

The most common processes for removal of organic dyes in the current state of the art
are biological processes with microalgae, activated carbons, membrane bioreactors [10],
enzymatic degradation [11], and physical chemical processes like adsorption [12] and ad-
vanced oxidation (ozonation, photocatalysis, electrochemically assisted) [13,14]. MIONPs
have been used as highly efficient adsorbents of different dyes that can also degrade these
organic molecules [15]. In addition, Fe2+ and/or Fe3+ surface ions can react with hydrogen
peroxide to produce highly oxidative species for the degradation of organic molecules
(Fenton-like reactions). Moreover, MIONPs under the action of an alternating magnetic
field (AMF) can become “self-heating” catalysts for the degradation processes enhance-
ment. This radio-wave magnetic heating process provides a more efficient and sustainable
way to increase temperatures for the improvement of reaction yields [16].

Previous research already examined the ability of different shaped and structured
MIONPs in the removal of organic pollutants as well as the adsorption of heavy metals
present in drinking and wastewater [17–19]. However, there are few references that
exploit the radio-wave magnetic heating-assisted degradation of this kind of pollutant.
For example, it was successfully proven that the degradation of methylene blue can
be enhanced by subjecting the MIONPs to an AMF [20], and analogous studies have
showed the degradation of antibiotics in a much faster way under an AMF [21]. Self-
heating magnetic materials have also been tested as an enabling technology in catalytic
processes like hydrodeoxygenation of acetophenone derivates [22], water electrolysis [23],
and CO2 methanation by the Sabatier reaction [24]. This pioneering work has proved
that self-heating catalysts can be used in complex reactions performed at relatively high
temperatures (>300 ◦C), but there are still a limited number of examples in which this
technology is applied to water remediation.

Several synthesis methods have been studied to obtain MIONPs in a reproducible
and scalable manner. Even though there is not a standard method, each technique has
its own advantages and drawbacks. One interesting method, firstly described by Fievet
et al. [25], is the polyol process in which ethylene glycol (or some derivate) acts as both
solvent and surfactant, providing control over the nanoparticle growth and aggregation [26].
Polyols are low-molecular-weight molecules with high boiling points that increase the
reflux temperature of the reaction just like the well-known organic thermal decomposition
procedure with the advantage of obtaining particles that can be suspended in water without
further processing [27]. A fundamental benefit of polyol solvents when compared to
common organic solvents used in high-temperature decomposition is that polyol molecules
are highly polar. Thus, it is possible to combine this polyol procedure with a more efficient
heating technology such as the microwave-assisted (MW) technology, leading to higher
production yields in shorter reaction times [28]. The MW heating offers an effective energy
transference through the reaction solution with minimum temperature gradient in the
reactor. The combination of small thermal gradient and vigorous stirring results in being
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crucial to establish homogeneous reaction conditions in the whole reactor and obtain a
monodispersed sample. Therefore, the MW-assisted polyol procedure seems to be a great
alternative for engineering efficiently well-dispersed and uniform MIONPs. In fact, the
results in the MW synthesis of ferrite nanoparticles (MFe2O4, M: Fe, Co, Zn) confirmed
such expectations [29]. MW heating is also quite convenient to reduce reaction times from
days to hours or even a few minutes [30].

The main objective of this article is to engineer different MIONPs systems by the
MW-assisted polyol method and test their magnetic heating efficiencies on the degradation
of organic dyes under an alternating magnetic field. First, the key parameters for the
preparation of single-core and multicore flower-like MIONPs were studied by optimizing
this MW-assisted procedure in terms of solvent, water content, reaction time, and heating
ramp. By adjusting the size and the aggregation state of the samples, it was possible to
alter the magnetic response, and therefore also the efficiency as wastewater treatment
agents. Secondly, the suitability of two selected nanostructures (single-core and flower-like
MIONPs) in the adsorption and degradation of organic dyes was analyzed for conventional
and radiowave-mediated heating. For this purpose, acid orange 8 (AO8) and methylene
blue (MB) were used as model anionic and cationic dyes of interest in the textile industry.
It should be considered that MIONPs under an alternating magnetic field can reach high
surface temperatures in just seconds and heat up solutions from the inside, ensuring a
better heat transfer and improving surface reactions. For this reason, the heating power of
the samples prepared was also characterized in detail.

2. Materials and Methods
2.1. Chemical Reagents and Analysis

Raw materials were purchased form Sigma Aldrich (San Luis, MO, USA): Iron(II)
acetate (Fe(OAc)2, ≥99%), ethylene glycol (EG, ≥99.5%), diethylene glycol (DEG, 99%), tri-
ethylene glycol (TREG, 99%), tetraethylene glycol (TEG, ≥97%), hydrogen peroxide (H2O2,
35%), ethanol (99.8%), acid orange (AO8, 65%), methylene blue (MB), dimethyl sulfoxide
(DMSO, for molecular biology), and benzoquinone (BQ, ≥99%). Colorimetric analyses
were carried out to quantify the degradation yields of the organic dyes. UV/Visible spec-
trum for AO8 and MB, before and after treatments, was obtained using a Perkin-Elmer
LAMBDA 35 UV–visible spectrophotometer (Waltham, MA, USA). Calibration curves as
a function of the concentration at the maximum absorbance (489 and 663 nm for AO8
and MB, respectively, Figure 1a) were performed using a Biochrom WPA Biowave DNA
UV-visible spectrophotometer (Cambridge, UK). and are presented in Figure 1b,c. The
molecular structure of dyes is shown in Figure 1d,e.
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Figure 1. (a) UV/Visible spectra of acid orange 8 (AO8, 30 ppm) and methylene blue (MB, 3 ppm); (b,c) calibration curve,
concentration (mg/L) vs. absorbance (a.u.) of AO8 and MB; (d,e) molecular structures of AO8 and MB.
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2.2. Synthesis of Iron Oxide Nanoparticles

Single-core and multicore MIONPs were prepared by optimizing a previously de-
scribed microwave-assisted polyol method for the synthesis of single-core ferrite nanopar-
ticles [29]. The synthesis was carried out in a microwave oven Monowave 300® (Anton
Paar GmbH, Graz, Austria) working at 2.45 GHz. The reaction was monitored by a tem-
perature controller and shaken by a built-in magnetic stirrer. Our initial conditions were
based on parameters already optimized in a previous paper (water content 3.7%, heating
ramp 3.75 ◦C/min, time 2 h and temperature 170 ◦C) [29]. Here, the influence of different
polyol solvents (EG, DEG, TREG, and TEG), the water content (0 and 3.7%), the reaction
temperature (170 and 220 ◦C), and the heating ramp (3.75, 7.4, 14.6 ◦C/min) are studied.

Two of the obtained samples, one a single core and the other multicore, were selected
for the organic dyes removal and magnetic induction heating-assisted degradation. Fol-
lowing the standard procedure, samples are prepared as follows: 300 mg of Fe(OAc)2 were
dissolved in 19 mL of a mixture polyol/water (96.3:3.7 v/v). For multicore flower-like
particles (NF60), EG was used as a solvent, while DEG was used for single-core particles
(NP15). A glass vial with the mixture was then placed in the microwave reactor with
600 rpm stirring and heated at 3.75 ◦C/min until 170 ◦C. The reaction was maintained at
this temperature for 2 h and rapidly cooled down afterwards. The product was washed sev-
eral times with ethanol and finally dispersed in distillate water using sonication (Elmasonic
S30 ® from Elma Schmidbauer GmbH, Singen, Germany).

2.3. Characterization of Iron Oxide Nanoparticles

Structural characterization of the samples was carried out by transmission electron
microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and
elemental analysis. A transmission electron microscopy with JEOL JEM 1010 at 100 keV
was used to determine the mean particle size and distribution. Sample preparation consists
of the deposition of a drop of diluted particles in a carbon-coated copper grid, which
will eventually evaporate at room temperature. Around 200 particles were measured on
different micrographs and the particle size data were fitted to a lognormal distribution.
The colloidal properties of the MIONPs were analyzed by dynamic light scattering (photo
correlation spectroscopy) with a Malvern Instrument Zetasizer Nano SZ (Malvern, UK)
equipped with a solid-state He-Ne laser (λ = 633 nm). In order to determine iron oxide
phase and crystal size, X-Ray diffraction (XRD) was recorded between 20◦ and 70◦ (2θ) in a
diffractometer with a graphite monochromator (Bruker D8 Advance, Billerica, MA, USA)
and CuKα radiation (k = 1.5406 Å). Mean crystal size was estimated from (311) reflection
using Scherrer’s equation. To quantify the organic content, thermal analysis (TGA) of the
MIONPS was performed using a TA Instrument Q2000 calorimeter (New Castle, DE, USA),
heating up to 800 ◦C at 10 ◦C/min in air and measuring the weight loss. To detect the rest
of solvent on the MIONPs surface, Fourier-transformed infrared spectra between 400 and
4000 cm−1 were recorded using a Bruker IFS 66VS. The powdered samples were mixed and
pressed into pellets in KBr at 2% w/w. Finally, inductively coupled plasma optical emission
spectroscopy (ICP-OES) with a Perkin Elmer apparatus (OPTIME 2100DV, Waltham, MA,
USA) was used to measure the iron concentration in the final colloids and the iron leaching
after the Fenton process.

Static and dynamic magnetic characterization was carried out in a vibrating sample
magnetometer (MagLabVSM, 9T, Oxford Instrument, Abingdon, UK) and in a Fives Celes
AC field generator (model N◦ 12118 M01, Lautenbach, France), respectively. Magneti-
zation curves were measured at room temperature under a maximum magnetic field of
±2400 kA/m. Powdered samples were pressed into sample holders and hysteretic parame-
ters such as saturation magnetization (Ms), remanent magnetization (Mr), and coercivity
(Hc) were obtained. Specific Absorption Rate (SAR) was measured in a hyperthermia appa-
ratus equipped with a water-cooled, 6-turns, copper coil of 50 mm diameter, an insulation
chamber at 21 ◦C, and a fiber optic temperature sensor OSENSA’s FTX. At least 500 µL
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of suspension at 1 g/L was placed in the center of the heating coil, and field frequencies
(100–200 kHz) and amplitudes (8–40 kA/m) were varied.

Finally, the N2 adsorption-desorption isotherms were recorded using TriStar II 320
(Micromeritics, Norcross, Georgia) equipment at 77 K with different partial pressures on
previously degasified (393 K, 0.1 mbar, 12 h) samples of MIONPs. The specific surface area
and average pore diameter were calculated using BET equation and BJH method.

2.4. Adsorption Experimentation

The adsorption process was analyzed for single-core and multicore particles. Samples
consisting of 10 mg MIONPs dispersed in 10 mL organic dye solution (500 ppm) were
mechanically shaken, and aliquots were taken at different times. Once equilibrium was
reached, magnetic nanoparticles were quickly separated from the media (<1 min) using an
external NdFeB magnet (320 kA/m field gradient). The final concentration of the organic
dye solution after the adsorption process was determined by colorimetric analyses and the
adsorption capacity was evaluated. Parameters like effect of pH and adsorption time (5, 15,
30, 60, 120 min) were considered in the study.

2.5. Thermal and Magnetic Induction Heating-Assisted Degradation

The degradation of the organic compounds was analyzed for single-core and multi-
core nanoparticles by following the decolorization of the dye’s samples. The kinetic of the
process was measured in the dark at 25 ◦C and 90 ◦C in a thermal reactor (Eppendorf ther-
momixer comfort, Hamburg, Germany) and under magnetic induction heating (200 kHz,
16 kA/m) using the same equipment as for SAR measurement.

The thermal heating-assisted degradation experimentation consisted of mixing the
MIONPs (1 gMIONPs/L in the final mixture) with 50 mL of the AO8 or MB aqueous solution
(500 mg/L) at pH 3.5. These high pollutant concentrations were selected as industrial
wastewaters usually present values of 500 mg/L of chemical oxygen demand [31]. Prior
to starting the Fenton process, the MIONPs were exposed to the dyes adsorption until
equilibrium was reached, at 25 ◦C and 90 ◦C. Then, to start the organic compounds
degradation, the optimum H2O2 (0.3 M) was added. The decolorization kinetic was
followed by taking sample aliquots of 2.5 mL at different times. The MIONPs were
recovered by magnetic harvesting and the AO8 and MB concentration in the supernatant
was colorimetrically determined.

The magnetic induction heating was carried out considering optimum AMF parame-
ters (200kHz, 16 kA/m). Two experiments were performed: 1) Starting at room temperature
and applying the AMF together with the addition of hydrogen peroxide, and 2) letting
the solution reach 90 ºC before adding hydrogen peroxide. In the second experiment, the
concentration of particles was settled to 2 and 3 gMIONPs/L for NP15 and NF60, respectively,
to reach such temperature. In all cases, the adsorption equilibrium was reached at 25 ºC
and 90 ºC respectively prior the addition of H2O2.

Decolorization yield (DY) was calculated by using DY = 100 − 100C2h/C0 where C0
and C2h are the initial dye concentration and the concentration after 2 h, respectively. The
obtained data were fitted to a pseudo-first-order model to determine the degradation rate.
Reusability tests were performed using NF60 (3 g/L) to degrade AO8 (500 ppm) under
an AMF of 16 kA/m and 200 kHz frequency at 90 ◦C. Degradation cycles were performed
by measuring the decolorization yield after 1 h of the H2O2 (0.6 M) addition in excess.
In each cycle, an aliquot of the sample was extracted for analysis and an aliquot of the
same volume of a AO8 mother solution of 5000 ppm was added to maintain the same
proportions of NF60:AO8. This procedure was performed 4 times, and the efficiency of the
process was estimated.

Finally, to elucidate the role of reactive oxygen species (ROS) on the oxidative degra-
dation of AO8 and MB, the process was carried out in the presence of BQ and DMSO, used
as ROS scavengers. The effect of these two scavengers on the degradation of AO8 and
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MB using NP15 and NF60 was performed under the following experimental conditions:
500 ppm of MB or AO8, 1 g/L of MIONPs, pH 3.5, H2O2 0.3 M, 2 h, room temperature.

3. Results
3.1. Microwave-Assisted Synthesis

The microwave-assisted synthesis of MIONPs in polyol media has been explored for
the preparation of single-core and multicore iron oxide nanoparticles. Some experimental
parameters (iron concentration and reaction time) were kept constant as they were already
optimized in previous works [28,29]. First, the effect of the heating rate and the water
content using DEG as standard polyol solvent was explored. The data presented in Table 1
show that increasing the heating ramp from 3.75 up to 14.6 ◦C/min leads to a slight
increase in particle size from 5.8 (± 1.0) to 7 (± 1) nm (Samples Ramp1, Ramp2, Ramp3, see
Figure S1 for TEM images). To study the effect of water addition, the heating rate settled on
3.75 ◦C/min. It was observed that by adding 3.7% of water to the initial solvent mixture, it
was possible to obtain well-dispersed 15 nm particles (NP15). Increasing the water content
is a simple but straightforward way to reduce the boiling points of the polyols. In the
case of EG, for example, it was found that by adding just 3.7% of water, the boiling point
decreases from 197 ◦C to 170 ◦C without interfering with its reducing power. With the
optimum heating ramp (3.75 ◦C/min), boiling point (170 ◦C), and water content (3.7%)
fixed, the polyol length was varied to evaluate the effect on the particle size or aggregation.

Table 1. Experimental conditions explored to produce single-core and multicore flower-like magnetic
iron oxide nanoparticles (MIONPs). Samples selected for further experimentation are highlighted.

Sample Solvent
Water Heating Rate Temp.

Structure
TEM Size

(%) (◦C/min) (◦C) (nm)

Ramp1 DEG 0 3.75 220 Single core 5.8 ± 1.0
Ramp2 DEG 0 7.30 220 Single core 6.4 ± 1.0
Ramp3 DEG 0 14.6 220 Single core 7 ± 1
NP15 DEG 3.7 3.75 170 Single core 15 ± 3
Solv1 TREG 3.7 3.75 170 Single core <5
Solv2 TEG 3.7 3.75 170 Single core <5
NF60 EG 3.7 3.75 170 Multicore 60 ± 8

Four different solvents were chosen with decreasing dielectric constants from EG to
DEG, TEG, and TREG [32]. The dielectric constant is a good indicator of the sensitivity
of the material to an external electric field at a certain frequency. As it can be seen in
Table 1, the length of the polyol is critical for the size and geometry of the MIONPs
synthesized. The final particle size obtained with polyols of longer chains than DEG was
in all cases smaller than 5 nm under the same reaction conditions. These solvents with
highly reducing power and lower dielectric constants, TEG and TREG, led to a rapid
nucleation, consuming the Fe precursors for the subsequent growth (Samples solv1 and
solv2). Whereas the particles obtained in EG, the solvent with the shortest polyol molecule,
consist of multicore nanoparticles of 60 nm (± 8) mean diameter. These kinds of structures
have been previously obtained in solvothermal synthesis using the same solvent but with
different iron precursors [33]. The formation of nanoparticles can take place by nucleation
and growth of initial nuclei or by assembly of primary nuclei forming the final single or
multicore particle, respectively. The forces and the mechanism involved in these pathways
are still poorly understood [34]. In general, it is the balance between electrostatic and steric
forces that determines the formation of a single-core or a multicore structure. EG and DEG
present different boiling temperatures, different dielectric constant (εr(EG): 37; εr(DEG): 32;
at 20 ◦C, different viscosity, and chelating properties. These features will strongly affect the
nuclei growth rate and they will determine the final colloidal assembly process [35]. With
DEG having a longer chain, a better steric repulsion is expected between the initial nuclei,
favoring the formation of single-core particles in the conditions used in this work (NP15).
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On the contrary, EG with a higher polarity led to a massive nucleation, forming small cores
(7 nm) with weaker steric repulsion that aggregate to form the final multicore structure
(NF60).

To sum up, the growth of the nanocrystals mediated by MW irradiation heating is
heavily dependent on the solvents and may lead to a variety of sizes and morphologies.
Water is considered as a first option due to its very high dipole moment and eco-friendliness,
but in most cases, its use results in particle sizes below 10 nm and a poor heating power
under AMF [36]. On the other hand, polyols solvents also present a high dipole moment
and thus high absorption efficiency. However, in contrast to water, they can act as a
particle’s surfactant, conferring a good colloidal stability to the products with minimal
adverse effects to the environment [26].

Samples NP15 and NF60 were selected as interesting candidates for their further
application in water remediation because of their specific microstructure and magnetic
response. In the next section, the efficiency of 60 nm flower-like particles will be compared
with 15 nm single-core particles in the adsorption and degradation of hazardous organic
molecules such as AO8 and MB.

3.2. Iron Oxide Nanoparticles Characterization

Figure 2 shows the characterization of some selected samples prepared by the MW-
assisted polyol method. The crystalline character of the powder samples was confirmed
by X-Ray diffraction. Cubic spinel iron oxide (Figure 2a) was identified as the only phase
present in both cases. The (311) reflection was used to determine the crystal size of the
samples using the Scherrer’s equation. A mean crystal size of 13 nm was obtained for NP15
and 7 nm for NF60. However, TEM mean size and distribution (Figure 2c) were 15 ± 3 and
60 ± 8 nm for NP15 and NF60, respectively. The discrepancies between TEM and X-ray
size for NF60 confirm that these multicore structures are polycrystalline. Their morphology
is presented in the TEM micrographs and the single-core (NP15) and multicore (NF60)
nature of the samples can be confirmed (Figure 2d). Hydrodynamic sizes estimated by
DLS photo correlation spectroscopy (Figure 2b) indicate a certain aggregation degree of the
particles in colloidal form (169 nm (PDI = 0.23) to 509 nm (PDI = 0.46) for NP15 and NF60,
respectively).

Samples were further characterized by FTIR and TGA (Figure 2e,f). The FTIR spec-
tra showed similar vibration bands for both samples. The Fe-O bonds vibration of the
MIONPs generate a wide band between 480–650 cm−1, characteristic of magnetite and/or
maghemite. Between 1000–1100 cm−1, a small broad band attributed to the C–O–C vibra-
tions of EG and DEG chains can be seen. Furthermore, the band at ≈1600 cm−1 can be
seen and corresponds to the C=O stretching vibrations corresponding to iron-coordinated
carboxylates [37]. The band at 3430 cm-1 can be attributed to the coordinated –OH groups
at the surface of the particles or the water molecules, specifically the stretching vibration of
O–H [18].

Quantification of the remaining polyol molecules attached to the surface of the
MIONPs was analyzed by TGA measurements. Both samples (NP15 and NF60) pre-
sented a similar behavior with two substantial and defined weight losses. As it can be seen
in Figure 2f, NP15 and NF60 presented a first loss below 200 ◦C of 5% and 6%, respectively,
attributed to the evaporation of the residual water molecules on the samples. At higher
temperatures, there is a second loss step at 200–600 ◦C, 12% for EG and 10% for DEG, likely
corresponding to the polyols’ decomposition. At around 600 ◦C, there is a slight weight
loss that can attributed to the sintering of the particles.
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Figure 2. Iron oxide nanoparticles (NP15 and NF60) characterization. (a) X-ray diffractogram, (b) hydrodynamic size, (c) par-
ticle size distribution and log-normal fitting, (d) TEM images, (e) FTIR transmittance spectra, and (f) thermogravimetric
analysis.

The textural characteristics of NP15 and NF60 are shown in Table 2 and Figure S2
(Supplementary Information). The complex multicore structure of NF60 is reflected in a
larger surface area (120 m2/g for NF60 vs. 60 m2/g for NP15). The pore size distribution
in Figure S2 only shows porosity associated with particle–particle aggregation (around
7 nm for NP15 and 20 nm for NF60). This result anticipates a better adsorption capacity for
NF60.

Table 2. MIONPs textural parameters.

Parameter NP15 NF60

BET area (m2/g) 60.1 ± 0.2 118.3 ± 2.1
Pore volume (cm3/g) 0.14 0.19

3.3. Magnetic Properties

The different microstructures confer different magnetic properties to the two selected
samples. Figure 3a shows the magnetization loops obtained under quasistatic magnetic
fields. It can be observed that although both samples reach magnetization values similar
to magnetite [38], sample NF60 presents higher susceptibility at room temperature with
a larger coercive field (HC

NF60 = 2.4 kA/m (30 Oe) vs. HC
NP15 = 2.0 kA/m (25 Oe)).

Surprisingly, despite their differences in size and nanocrystalline structure, both samples
present similar coercivity. Very low coercivity values suggest a superparamagnetic-like
behavior at room temperature. Thus, below a critical diameter, which has been previously
measured for magnetite particles at around 20 nm [39–41], thermal effects are strong enough
to spontaneously demagnetize a previously saturated sample. This critical diameter is well
above the particle size measured for NP15 and also for NF60, taking into account the core
size (7 nm). This result indicates that the cores within NF60 are not working cooperatively,
probably due to the fact that they are coming from a disordered aggregation, although



Nanomaterials 2021, 11, 1052 9 of 17

certain dipolar interactions are not discarded, leading to a coercivity similar to that for
NP15 [42].
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Figure 3. Magnetic properties of NP15 and NF60. (a) Magnetic hysteresis loop at room temperature of the particles (inset:
low field range magnification) and SAR (W/gFe) values of the samples exposed to alternating magnetic field (AMF) vs.
field intensity at two frequencies: (b) 100 kHz and (c) 200 kHz.

The potential of the samples as self-heating catalysts was evaluated by determining
their Specific Absorption Rate (SAR) at different AMF conditions. This parameter quantifies
the amount of energy that is absorbed from radio-wave radiation and transformed into
heat by the MIONPs. The heating curves indicated that sample NP15 is a better nanoheater,
reaching SAR values up to 326 W/gFe for AMF conditions of 200 kHz and 24 kA/m. At
similar conditions, the SAR of NF60 sample was limited to 144 W/gFe. Figure 3b,c display
the SAR dependence with the maximum applied field for AMF of 100 kHz and 200 kHz,
respectively. At 100 kHz, both samples present an almost linear growth of SAR with
the intensity of the applied field, while at a higher frequency, the SAR displays a drastic
increment at 16 kA/m.

The weaker heating performance of NF60 with respect to NP15 might be explained
by the small size of its cores. The crystal size of this sample is 7 nm. Thus, despite the
size of the aggregate being 60 nm, the magnetic response of the nanostructure is generated
by the individual cores. In contrast to exchange-coupled magnetic nanoflowers [43],
when magnetic cores are randomly aggregated and there is not an interfacial coupling
between neighboring nanocrystals, the intra-aggregate dipolar interactions may frustrate
the magnetization of the system and the amount of heat dissipated in the presence of AMF
results reduced [42,44].

It is interesting to observe that when both systems are well-blocked (200 kHz), it is
necessary to apply a maximum applied field larger than 8 kA/m to obtain a significant
amount of heat. Over 16 kA/m, little increments of the SAR values were observed in both
cases. Thus, 200 kHz and 16 kA/m were selected as ideal AMF conditions to balance the
heat dissipation and energy efficiency for the degradation process. The thermal curves
obtained at these AMF conditions (Figure S3) indicated that to heat the reactor up to 90 ◦C,
it was necessary to increase the MIONPs concentration up to 2 gMIONPs/L and 3 gMIONPs/L
for NP15 and NF60, respectively. With the magnetic conditions selected, NP15 and NF60
(1 gMIONPs/L) can heat solutions up to just 50 and 35 ◦C, respectively.

3.4. Thermal Degradation and Magnetic Induction Heating-Assisted Degradation

The adsorption kinetics of the AO8 and MB using NP15 and NF60 were studied
first. The adsorption capacity at equilibrium was obtained for different pH values, see
Figure S4. For AO8, the pH where the adsorption process was most efficient was 3.5,
agreeing with other reported results, while MB increased with pH but not in a significant
manner. Therefore, and for comparison purposes, a pH value of 3.5 was selected to analyze
the effect of adsorption time and to determine the time required to saturate the samples.
Figure 4 shows the kinetics obtained for both samples in AO8 and MB solutions. A pseudo-
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first-order kinetic model was fitted to the experimental data showing good agreement with
all of them (R2 > 0.98). This kinetic model usually fits well to this kind of environmental
processes and indicates that chemisorption is the most likely mechanism of adsorption with
the surface adsorption as a rate-limiting step [18]. Moreover, as it can be seen at 60 min of
adsorption, all the samples reached the equilibrium. NF60 is a more efficient adsorbent for
AO8 and MB, which can be attributed to the better textural characteristics of this sample, as
mentioned before (Table 2 and Figure S2). In light of these results, degradation studies were
performed after 2 h of agitation to ensure that the system had reached the equilibrium.
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Figure 4. Effect of time on the acid orange 8 (orange labels) and methylene blue (blue labels)
adsorption capacity using NP15 (squares) and NF60 (spheres) at room temperature and pH 3.5. Lines
correspond to pseudo-first-order fitting.

Once the adsorption capacity of the samples and the time to reach the adsorption
equilibrium were determined, degradation studies as a function of time were carried out
at pH = 3.5 after the addition of a specific amount of H2O2 (0.3 M). This amount of H2O2
and a pH of 3.5 are the typically reported values favorable for dye degradation [20,45].
Additionally, the selected parameters ensure that at ambient conditions, the organic dyes
will not be 100% degraded, and in this way, it is possible to compare the effect of the
temperature. Once the H2O2 was added, small aliquots of the mixture were withdrawn at
5, 15, 30, 60, and 120 min. Figure 5 compares the decolorization yields vs. reaction time at
different experimental temperatures with the effect of the AMF.

Both MIONPs showed low efficiencies at ambient temperature (25 ◦C), but the aqueous
solutions were fully decolorized when performing the degradation at 90 ◦C in the thermal
reactor. Analyzing the leaching of the MIONPs at this temperature by ICP-OES, a loss
of approximately 4% w/w of MIONPs into the solutions was observed (~40 ppm of total
Fe in the supernatant). Therefore, the full decolorization of the samples at 90 ◦C may be
credited to the contribution of the degradation of the pollutants at the catalysts surface
(heterogeneous) and in the media, thanks to the Fe2+ ions in solution (homogeneous).

To just analyze the effect of the AMF on the surface catalyst, a time-dependent degra-
dation experiment (AMF-25 ◦C) was conducted under an AMF of 16 kA/m and 200 kHz
starting from the sample at room temperature and at 1 gMIONPs/L. After only 2 h, the
temperature of the media increased up to 50 ◦C and 35 ◦C for NP15 and NF60, respectively.
However, the nanoparticle surface temperature is expected to increase immediately after
the AMF is applied [46]. As it can be observed in Figure 5, the samples showed an increase
of the decolorization yield, which may be attributed to the reaction at the surface of the
particles. Even though the whole mixture was slightly heated up, the particle surface
was already at their maximum temperature, accelerating and stimulating the formation
of the free radicals that degrade the organic pollutants, doubling the discoloration yields
at 30 min compared to those obtained at 25 ◦C for NF60 sample and both dyes. In other
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words, magnetic induction heating significantly improves the decolorization of AO8 and
MB with small changes of media temperature (10 ◦C).
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Figure 5. Comparison of the advanced oxidation of organic dyes. Decolorization at 25 ◦C, 90 ◦C performed in a thermal
reactor, and in the presence of an alternating magnetic field of (a) AO8 with NP15, (b) AO8 with NF60, (c) MB with NP15,
and (d) MB with NF60. The star symbol represents the blank sample: 500 ppm of MB or AO8, pH 3.5, H2O2 0.3 M, 90 ◦C,
2 h. Lines are included as guides to the eye.

To prove that it is possible to fully decolorize the samples using magnetic induction
heating-assisted processes, the same AMF was applied to the particles to reach 90 ◦C before
adding the H2O2 (the same experimental temperature as in thermal reactor). For this
purpose, the MIONPs concentration was settled at 2 gMIONPs/L for NP15 and 3 gMIONPs/L
for NF60 as these are the minimum values to obtain such temperatures in the medium. As
it can be observed in Figure 5, magnetic induction heating reached the 100% decolorization
yields observed for thermal reactor heating. However, at this temperature (90 ◦C), a certain
iron leaching was detected in the form of Fe2+. Thus, by using MIONPs under an AMF,
it was possible to improve the decolorization of the samples (AMF-25 ◦C), and to reach



Nanomaterials 2021, 11, 1052 12 of 17

complete decolorization, but the maximum local temperature still needs to be optimized to
avoid iron leaching. Further work is in progress to differentiate homogeneous catalysis
due to dissolved Fe2+ and heterogeneous catalysis at the MIONPs surface.

The data obtained from the decolorization of AO8 and MB as a function of time were
analyzed and found to fit well to the pseudo-first-order kinetics. These results are in
good agreement with previous studies on the degradation of organic pollutants [47–49].
In Table 3, a summary of the obtained decolorization yields plus the kinetic constants is
presented with their respective correlation coefficients. Assuming that the hydroxyl radical
concentration is constant during the whole process, the organic dyes (OD) removal rate (r)
can be obtained from Equation (1) using kapp as the constant global apparent rate constant
for OD decolorization:

r = −1
a

(d[OD]/dt) = −k1[OH•]α.[OD] = kapp[OD] (1)

The half-life times (t1/2, Table 3) were obtained from the experimental data (Figure 5)
and compared with the theoretical value for the full decolorization experiment at 90 ◦C
under AMF conditions. The theoretical t1/2 closely approximated the measured experi-
mentally.

Table 3. Decolorization yields (DY) and pseudo-first-order kinetic results for AO8 and MB degradation by NP15 and NF60
(N/C: Not calculated due to non-isothermal conditions).

MIONPs Dye Ti
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The decolorization yields of AO8 were much higher than for MB when using NP15 and
NF60. This may be attributed to either the different chemical nature of the dye molecules
and/or the fact that AO8 is an anionic dye while MB is a cationic dye, or both. In the
latter case, a strong interaction of the anionic dye (AO8) with the iron oxide at pH = 3.5
can be expected, in which the surface of MIONPs is positively charged. Interestingly,
NF60 showed similar yields to the obtained with NP15 in the experiments at ambient
temperature, which agrees with the better adsorptive capabilities of the former vs. the
latter due to its multicore structure. Furthermore, in the experiments performed under
the AMF with no previous heating (AMF-25 ◦C), both NP15 and NF60 showed similar
decolorization yields. It should be considered that NF60 heats up the solution to a lower
temperature (35 ◦C) than NP15 (50 ◦C). Therefore, NF60 is apparently a more efficient
system for the heterogeneous catalytic degradation of AO8 and MB. In general, the heat
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from the particles’ surface and the dissipated heat in the media are both considerable
parameters for the improvement of either heterogeneous or homogeneous reaction.

To date, the full potential of MIONPs as catalysts in different processes has not
been completely evidenced. By taking advantage of this material’s heating capacities,
it is possible to provide more efficient heating, leading to the improvement of different
temperature dependent reactions. As shown in the presented results, by subjecting these
particles to an AMF, it is possible to increase the surface temperatures while quickly raising
the degradation efficiencies without having to wait for the medium to be fully heated.
Therefore, it was possible to endorse the significance of these results by comparing them
with the latest related research focused on degradation of AO8 and MB with magnetic
nanomaterials. Among these works, and to the best of the authors’ knowledge, there is
not a single one improving the efficiency of the AO8 degradation with magnetic induction
heating of MIONPs while for MB, there is a single study where the improvement of the
degradation with MIONPs obtained by electrochemistry is reported [20]. Another single
study shows that the efficiency of degradation can be enhanced for emerging pollutants
too, reaching 100% yields in shorter times (15 min) in solutions of 5 ppm of persistent
antibiotic sulfamethoxazole, 25 mg/L of H2O2, and 1 g/L of magnetite catalyst. [21]. As
this is an emerging subject, there are already some studies considering other approaches
of magnetically induced remediation processes using different pollutants and materials.
Phenrat C et al. showed that the degradation rate constants of the chlorinated dense
non-aqueous phase liquid can be increased up to ≈60 times with magnetic induction
heating of a nanoscale zerovalent iron catalyst (87 ◦C). In addition, Chen et al., using an
induction reactor with a carbon-coated Fes magnetic catalyst, showed that the heating
coming from this material can rise temperatures in a much efficient manner (up to 60 ◦C)
allowing higher yields in the catalytic wet peroxide oxidation of direct blue, direct violet,
and direct scarlet [50]. All of the mentioned studies, like the present one, were able to
achieve a 100% degradation of a specific pollutant, but the most remarkable outcome is
that the transference of energy occurs directly from the catalyst interface rather than the
aqueous phase. This kind of process can be catalogued as more efficient speaking from
a thermal point of view [16]. Moreover, the degradation of AO8 using the most efficient
catalyst (NF60) showed a 100% efficiency for up to four cycles of reuse (Figure 6).
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Figure 6. Reuse cycles of NF60 in the magnetic induced degradation of AO8 (3 g/L of NF60, 500 ppm
of AO8, 0.6 M H2O2, 1 h, 16 kA/m, 200 kHz).

3.5. Proposed Reaction Mechanism

In advanced oxidation processes for the degradation of organic pollutants, one im-
portant parameter to consider is the reactive oxygen species (ROS) that should be formed
in order to transform the organic matter into harmless products. Among these, ROS are
the hydroxyl radical (OH•), hydroxyl ion (OH−), and superoxide anion radical (O2

−•),
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among others. These ROS can be generated as necessary intermediates of metal catalyzed
oxidation reactions. Here, the ROS were formed by the reaction between MNIOPs and the
added H2O2. To elucidate whether the degradation is occurring by one or another ROS, the
reaction at 90 ºC was performed in the presence of two different scavengers: DMSO and BQ.
As showed in Figure 7, the decolorization efficiencies of both AO8 and MB were greatly
suppressed in the presence of DMSO (30 mM), which is a common and effective OH•
scavenger. On the other hand, BQ did not suppressed the degradation process, indicating
that O2

−• is not a degradation intermediate [51]. With this result in consideration, it is
possible to assume that a Fenton mechanism is taking place in the degradation of AO8 and
MB with NP15 and NF60 confirming the presence of interfacial Fe2+ in the MIONPs surface
given by its magnetite-maghemite nature (as showed by IR and X-ray diffraction, Figure 2).
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Figure 7. Effect of two different scavengers (DMSO: Dimethyl sulfoxide, BQ: Benzoquinone) on the
degradation of AO8 and MB using NP15 and NF60. (Experimental conditions: 500 ppm of MB or
AO8, 1 g/L of MIONPs, pH 3.5, H2O2 0.3 M, 2 h, room temperature.

4. Conclusions

We show here the advantage of using in-situ heating for the formation of iron oxide
nanoparticles (microwave radiation) and for the catalytic degradation of organic dyes (mag-
netic radiowave) in comparison to conventional thermal heating, with larger temperature
gradients and slower heating rates.

First, optimizing the experimental conditions and in particular the polyol media,
we manage to control particle size and aggregation, leading to uniform single-core and
multicore iron oxide nanostructures that can work as efficient self-heating catalysts in the
degradation of acid orange 8 and methylene blue. Secondly, advanced oxidation processes
using magnetic induction heating provided a more sustainable way of reaching high
degradation yields with an efficient heating coming directly from the catalyst. By subjecting
the particles to an alternating magnetic field, it was possible to rise the decolorization yield
by 10% considering that it was not necessary to heat up the entire solution. When the
AMF is ON, the temperature at the particles’ surface immediately increases to maximum
possible enhancing surface reactions. Even though the 100% decolorization was achieved
at 90 ºC, a 40 ppm of Fe leaching was observed, indicating that this yield might be due to
the contribution of homogeneous catalysis. Therefore, another remarkable result obtained
here lays on the differentiation of the surface reaction with the Fe2+ in solutions. Moreover,
it was possible to determine that multicore nanoparticles work better than single-core
nanoparticles, as the first ones can adsorb more organic molecules. NF60 show 100%
efficiencies in four reusability cycles. The preliminary mechanistic analyses indicate a
production of highly active OH• species generated in a Fenton mechanism by the reaction
of hydrogen peroxide with the Fe2+ present in the iron oxide nature of the particles.
Nevertheless, further analyses are needed to better understand this mechanism as the iron
leaching may be interfering with the experimentation. The presented process stands as an
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alternative for wastewater treatment and can successfully satisfy the need of new inventive
and novel materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11041052/s1, Figure S1: TEM micrographs with their respective particle size distribution
for Ramp1, Ramp2 and Ramp3, Figure S2 N2 adsorption-desorption isotherms of NP15 and NF60
with the pore size distributions, Figure S3 Temperature curves obtained at 16 kA/m, 200 kHz and
1 g/L of NP15 and NF60. Figure S4 Adsorption capacities of AO8 and MB over NP15 at different pH
values (10 mg of NP15, 10 mL of AO8 500 ppm, 2 h).
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