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Abstract: Cancer has always been one of the most common malignant diseases in the world. There-
fore, there is an urgent need to find potent agents with selective antitumor activity against cancer cells.
It has been reported that antimicrobial peptides (AMPs) can selectively target tumor cells. In this
study, we focused on the anti-tumor activity and mechanism of Brevivin-1RL1, a cationic α-helical
AMP isolated from frog Rana limnocharis skin secretions. We found that Brevivin-1RL1 preferentially
inhibits tumor cells rather than non-tumor cells with slight hemolytic activity. Cell viability assay
demonstrated the intermolecular disulfide bridge contributes to the inhibitory activity of the peptide
as the antitumor activity was abolished when the disulfide bridge reduced. Further mechanism
studies revealed that both necrosis and apoptosis are involved in Brevivin-1RL1 mediated tumor cells
death. Moreover, Brevivin-1RL1 induced extrinsic and mitochondria intrinsic apoptosis is caspases
dependent, as the pan-caspase inhibitor z-VAD-FMK rescued Brevinin-1RL1 induced tumor cell
proliferative inhibition. Immunohistology staining showed Brevivin-1RL1 mainly aggregated on
the surface of the tumor cells. These results together suggested that Brevivin-1RL1 preferentially
converges on the cancer cells to trigger necrosis and caspase-dependent apoptosis and Brevivin-1RL1
could be considered as a pharmacological candidate for further development as anti-cancer agent.

Keywords: antimicrobial peptide; Brevivin-1RL1; apoptosis; necrosis; caspase; anticancer

1. Introduction

Although great progress has been made in the treatment of cancer in recent years [1–3],
traditional therapies still have many defects and problems, such as widespread side effects
due to non-adequate specificity for tumor cells and the tendency to develop multiple drug
resistance, which greatly limit their therapeutic efficacy [4,5]. As a result, it is urgent to
develop potent agents with selective antitumor activity against cancer cells.

Antimicrobial peptides (AMPs), also referred to as host defense peptides, have been
isolated and characterized from a wide variety of organisms, such as microorganisms,
insects, plants, birds, fish, amphibians and mammals, including humans, where they
play an important role in the innate defense against microbial and viral invasions [6,7].
AMPs have a wide spectrum killing activity including Gram-positive and Gram-negative
bacteria, fungi and protozoa without cytotoxicity towards normal mammal cells at the
effective dose [8]. AMPs were initially discovered due to their role in the clearance of
microorganisms [9,10]. As more natural-source peptides have been discovered, other
biological activities of these peptides have been explored, such as anti-fungal, anti-viral
and immune regulation, as well as anti-cancer activities [8,11]. According to the record,
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there are 3180 kinds of AMPs in the current Antimicrobial Peptide Database (APD), among
which 237 peptides with anti-tumor activity are included.

Numerous naturally derived AMPs inhibit cancer cells mainly through plasma mem-
brane disruption or non-membranolytic cytotoxicity [12]. AMPs, such as Defensin-peptides
A, B [13], NK-2 [14] MPI-1 [15], Melittin [16], Pardaxin [17] and magainin 2 (MG2) [18],
target and form pores on the cancer cell membranes to attenuate cancer cells, but Melittin
is also toxic to non-cancer cells and has a powerful hemolytic activity. Non-membranolytic
pathway mainly involves reactive oxygen species, DNA damage response [19], immune
regulation [20], autophagy and apoptosis [21]. For example, FK-16 derived from LL-37
could induce tumor cell death by activating non-caspase-dependent apoptosis and au-
tophagy [22]. LZ1, derived from the snake venom cathelicidin, could inhibit the activity of
mTORC1 by targeting degradation of cell surface-expressed nucleolin to activate AMPK,
thereby inhibiting the production of autophagic flux [23]. Hence, the current research on
AMPs indicated that they might be potential drugs for future cancer treatment.

Brevivin-1RL1 is a member of the amphibian family of cationicAMPs originally iso-
lated from Rana limnocharis composed of 24 amino acids and sharing an intra-molecular
disulfide-bridged domain of 7-membered ring located at the C-terminus. It has been shown
that Brevivin-1RL1 displays broadspectrum antibacterial activity [24]. In the present study,
we disclosed that Brevivin-1RL1 preferential cytotoxicity for tumor cells to induce necrosis
and caspase-dependent apoptosis to suppress tumor growth. Our study not only revealed
the application of Brevivin-1RL1 as a potential candidate antitumor agent, but also further
confirmed the possibility of AMPs as a promising anticancer drug.

2. Results

2.1. Synthesis, Purification and Characterization of Peptides

Brevinin-1RL1 is composed of 24 amino acids and it contains an intermolecular disul-
fide bridge consisting of seven amino acid residues at the C-terminus of the peptide. Table 1
shows the primary sequence and other biophysical parameters. The peptide was synthe-
sized and purified by reverse-phase HPLC with the purity 95% (Figure 1a, b). In addition,
the HPLC chromatogram and MS of FITC labeled Brevinin-1RL1 are shown in Supplemen-
tary Materials Figure S1a,b, respectively. The helical wheel arrangement of Brevinin-1RL1
was produced using the HeliQuest website (http://heliquest.ipmc.cnrs.fr/) (accessed on:
12 July 2020) and the result demonstrated that Brevinin-1RL1 adopted an α-helix structure
with a hydrophobic face consisting of I, A, F, I, L, A, C, F and A (Figure 1c).

Table 1. Amino acid sequence, length, molecular weight and related biological parameters of Brevinin-1RL1.

Peptide Sequence Length (a.a) MW (Da) Net Charge pI Hydropho-
bicity (H) Freq Polar

Brevinin-
1RL1

FFPLIAGLA-
ARFLPKI-
FCSITKRC

24 2711.3 4 10.11 0.805 0.292

Notes: Molecular weight and isoelectric point (pI) of Brevinin-1RL1 were calculated by http://web.expasy (accessed on: 18 December
2019). Org/computer/. The mean Hydrophobicity (H) and Freq Polar of Brevinin-1RL1 were estimated by http://heliquest.ipmc.cnrs.fr/
(accessed on: 12 July 2020).

http://heliquest.ipmc.cnrs.fr/
http://web.expasy
http://heliquest.ipmc.cnrs.fr/
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Figure 1. The purity, mass spectrometry and structure of Brevinin-1RL1. (a) The HPLC 
chromatogram of Brevinin-1RL1. (b) The mass spectrometry (MS) of Brevinin-1RL1. (c) Helical 
wheel projection of Brevinin-1RL1. The helical wheel arrangement of Brevinin-1RL1 was produced 
using the HeliQuest website (http://heliquest.ipmc.cnrs.fr/) (accessed on: 12 July 2020). The red N 
represents the N-terminal of the peptide sequence. The red C represents the C-terminal of the 
peptide sequence. Arrow indicates direction of the hydrophobic moment. 
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lines by 
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazoli
um (MTS) assay. As shown in Figure 2a and Table 2, Brevinin-1RL1 showed a 
dose-dependent inhibitory effect on various tumor cell lines (HCT116, MDA-MB-231, 
SW480, A549, SMMC-7721, B16-F10) with the IC50 values ranging from 5 to 10 μM (Table 
2). Of note, it was less toxic to noncancer cell lines, including human noncancer colonic 
epithelial cell line NCM460, human noncancer bronchus epithelial cell line BEAS-2B and 
human keratinocyte cell line HaCaT, especially in the human keratinocyte cell line 

Figure 1. The purity, mass spectrometry and structure of Brevinin-1RL1. (a) The HPLC chromatogram of Brevinin-1RL1.
(b) The mass spectrometry (MS) of Brevinin-1RL1. (c) Helical wheel projection of Brevinin-1RL1. The helical wheel
arrangement of Brevinin-1RL1 was produced using the HeliQuest website (http://heliquest.ipmc.cnrs.fr/) (accessed on: 12
July 2020). The red N represents the N-terminal of the peptide sequence. The red C represents the C-terminal of the peptide
sequence. Arrow indicates direction of the hydrophobic moment.

2.2. Brevinin-1RL1 Displays Cytotoxicity towards Tumor Cells with Moderate Hemolysis

To explore the antitumor activity and selectivity profile of Brevinin-1RL1, cell vi-
ability assay was conducted in six human cancer cell lines and three noncancer cell
lines by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay. As shown in Figure 2a and Table 2, Brevinin-1RL1 showed
a dose-dependent inhibitory effect on various tumor cell lines (HCT116, MDA-MB-231,
SW480, A549, SMMC-7721, B16-F10) with the IC50 values ranging from 5 to 10 µM (Table 2).
Of note, it was less toxic to noncancer cell lines, including human noncancer colonic ep-
ithelial cell line NCM460, human noncancer bronchus epithelial cell line BEAS-2B and
human keratinocyte cell line HaCaT, especially in the human keratinocyte cell line HaCaT
(28.67 µM) (Figure 2b). The toxicity of Brevinin-1RL1 toward cancer cells was generally
about 3 times higher than toward the noncancer cell lines, indicating Brevinin-1RL1 prefer-
entially suppressed cancer cell lines.

The Rana-box disulfide motif is a unique structure and mainly found in antimicrobial
peptides from frogs, which might contribute to the functional activity of antimicrobial
peptides [25]. Here, we explored the proliferation inhibitory activity of Brevinin-1RL1 with
the disulfide reduced (Brevinin-1RL1red). As shown in Figure 2c, the antitumor activity the
peptide was deprived when the “Rana box” structure was removed. The result indicated
that the structure of “Rana box” might be essential for maintaining the biological potency of
Brevinin-1RL1. Furthermore, no serious hemolysis was detected in the human erythrocytes
treated with Brevinin-1RL1 at the IC50 of cancer cells and only about 30% hemolysis was
observed at 4–6-fold higher concentrations than IC50 (Figure 2d). These results suggested
that Brevinin-1RL1 had a certainly selectivity to tumor cells and its hemolytic activity was
low at the effective concentration.

http://heliquest.ipmc.cnrs.fr/


Molecules 2021, 26, 2059 4 of 15

Molecules 2021, 26, x FOR PEER REVIEW 4 of 16 
 

 

HaCaT (28.67 μM) (Figure 2b). The toxicity of Brevinin-1RL1 toward cancer cells was 
generally about 3 times higher than toward the noncancer cell lines, indicating 
Brevinin-1RL1 preferentially suppressed cancer cell lines.  

The Rana-box disulfide motif is a unique structure and mainly found in 
antimicrobial peptides from frogs, which might contribute to the functional activity of 
antimicrobial peptides [25]. Here, we explored the proliferation inhibitory activity of 
Brevinin-1RL1 with the disulfide reduced (Brevinin-1RL1red). As shown in Figure 2c, the 
antitumor activity the peptide was deprived when the “Rana box” structure was 
removed. The result indicated that the structure of “Rana box” might be essential for 
maintaining the biological potency of Brevinin-1RL1. Furthermore, no serious hemolysis 
was detected in the human erythrocytes treated with Brevinin-1RL1 at the IC50 of cancer 
cells and only about 30% hemolysis was observed at 4–6-fold higher concentrations than 
IC50 (Figure 2d). These results suggested that Brevinin-1RL1 had a certainly selectivity to 
tumor cells and its hemolytic activity was low at the effective concentration.  

 
Figure 2. Brevinin-1RL1 preferentially suppressed cancer cells. The cell viability of Brevinin-1RL1 
on different tumor cell lines (HCT116, MDA-MB-231, SW480, A549, SMMC7721, B16-F10) (a) and 
three non-tumor cell lines (HaCaT, NCM460 and BEAS-2B) (b) were determined by MTS assay. 
Tumor cells seeded in 96-well plates were incubated with various concentrations of Brevinin-1RL1 
for 48 h and the cell viability was measured by MTS. (c) The cell viability of tumor cell lines 
treated with various concentrations of Brevinin-1RL1red was measured. (d) The erythrocyte 
viability of Brevinin-1RL1 on human erythrocytes was detected by hemolytic activity. Equal 
volume of Brevinin-1RL1 and human erythrocytes were incubated for 30 min, the absorbance of 
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Figure 2. Brevinin-1RL1 preferentially suppressed cancer cells. The cell viability of Brevinin-1RL1 on different tumor cell
lines (HCT116, MDA-MB-231, SW480, A549, SMMC7721, B16-F10) (a) and three non-tumor cell lines (HaCaT, NCM460
and BEAS-2B) (b) were determined by MTS assay. Tumor cells seeded in 96-well plates were incubated with various
concentrations of Brevinin-1RL1 for 48 h and the cell viability was measured by MTS. (c) The cell viability of tumor cell
lines treated with various concentrations of Brevinin-1RL1red was measured. (d) The erythrocyte viability of Brevinin-1RL1
on human erythrocytes was detected by hemolytic activity. Equal volume of Brevinin-1RL1 and human erythrocytes
were incubated for 30 min, the absorbance of the supernatant was measured at 540 nm. Each experimental data is three
independent experiments.

Table 2. The IC50 of Brevinin-1RL1 against different cells.

Cell Type Caption Cell Lines Tumor Type IC50 (Mean ± SD, µM)

Tumor cells

HCT116 colorectal adenocarcinoma 5.87 ± 0.15
MDA-MB-231 breast adenocarcinoma 5.44 ± 0.33

SW480 colorectal adenocarcinoma 10.37 ± 0.40
A549 lung adenocarcinoma 5.81 ± 0.23

SMMC-7721 hepatocellular carcinoma 6.87 ± 0.51
B16-F10 melanomas 6.65 ± 0.33

Immortalized noncancer cells
NCM460 colon mucosal epithelial 16.84 ± 0.56
BEAS-2B bronchial epithelial 16.57 ± 0.29
HaCaT keratinocyte cell 28.67 ± 0.36

2.3. Brevinin-1RL1 Induces Cell Apoptosis and Necrosis

Brevinin-1RL1 preferential inhibited the proliferation of cancer cells, while the mecha-
nism stayed unclear. Thus, the mechanism Brevinin-1RL1 induced proliferation was further
explored. To begin with, the cell morphology changes of cells exposed to Brevinin-1RL1
or equivalent solvent (as control) were observed using optical microscope. As shown in
Figure 3a, Brevinin-1RL1 treatment not only reduced the density of HCT116 and A549 in
a dose-dependent manner, but also changed the tumor cells’ shape. After treated with
Brevinin-1RL1 at 6 µM, some cells displayed cell shrinkage, the sign of apoptosis. In
addition, when the cells were incubated with 12 µM Brevinin-1RL1 within 24 h, a large
amount of vacuolation occurred and cell debris appeared in the cell supernatant, indicating
the occurrence of necrosis. Therefore, we hypothesized that Brevinin-1RL1 inhibition of
tumor cells growth may be involved in both apoptosis and necrosis.
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Figure 3. Brevinin-1RL1 induced cell apoptosis and necrosis in A549 and HCT116 cells. (a) The effect of Brevinin-1RL1 on
morphological alteration of the tumor cell lines HCT116 and A549 cells was observed with Olympus microscope (Olympus
Optical Co., Melville, NY). (b) Brevinin-1RL1 dose-dependently induced apoptosis of tumor cells. HCT116 and A549 cells
were seeded in 6-well plates and co-incubated with different concentrations of Brevinin-1RL1 for 48 h. Apoptosis was then
detected by flow cytometry using Annexin-V and PI double staining. (c) The apoptotic percentage of cells was statistically
analyzed. (d) The distribution of cell cycle was detected by flow cytometry in Brevinin-1RL1 treated cells. HCT116 and
A549 cells inoculated in 6-well plates were treated with indicated concentrations of Brevinin-1RL1 or control for 24 h.
The cells were collected for propidium iodide (PI) staining and the cell cycle distribution was detected by flow cytometry.
(e) Brevinin-1RL1 induced morphological hallmarks of cell necrosis. HCT116 cells were incubated for 12 h with and without
Brevinin-1RL1 and the specific morphology of the cells was observed by TEM. (f) Brevinin-1RL1 induced the release of
LDH in tumor cells. A549 and HCT116 cells were seeded in 96-well plates with 5 × 103 cells/well/100 µL and incubated
with different concentrations of Brevinin-1RL1 for 24 h. Cytoplasmic LDH release of cells was determined by the microplate
reader. Each experimental data is three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 in comparison to
negative controls, and indicated the significant difference between the two groups. Data expressed as the mean± SD (n = 3).

Cell apoptosis is the predominant cell death type, then an Annexin V-fluorescein
isothiocyanate (FITC) and Propidium Iodide (PI) double staining assay was undertaken
to explore whether Brevinin-1RL1 induced cell apoptosis contributed to the proliferation
inhibition. As shown in Figure 3b, an increased percentage of late apoptotic cells (Annexin
V+/PI+) were observed in a dose-dependent manner and cell necrosis (PI+) was also de-
tected in cells treated with Brevinin-1RL1. The apoptotic percentages of A549 and HCT116
cells were statistically analyzed as Figure 3c. Moreover, Brevinin-1RL1 resulted in accumu-
lation of HCT116 and A549 cells in the sub-G1 phase representative of apoptotic cells in
the PI single staining assay, which further confirmed Brevinin-1RL1 induced apoptosis to
inhibit tumor growth. In addition, slight G0/G1-phase arrest was also detected.

Cell necrosis triggers swelling of cell mitochondria, followed by rupture of the plasma
membrane and release of the cytoplasmic contents [26,27]. As shown in Figure 3e, com-
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pared with the control group, there were no typical autophagosome structures and acidic
vesicles detected in Brevinin-1RL1 treated HCT116 cells, indicating Brevinin-1RL1 induced
cell death was autophagy independent, while a large number of vacuoles, cell rupture
and release of cytoplasmic contents were all observed in Brevinin-1RL1 treated HCT116
cells with transmission electron microscopy (TEM), which are typical characteristics of
cell necrosis. In addition, Brevinin-1RL1 induced cell necrosis was further confirmed by
detecting the release of lactate dehydrogenase (LDH) (Figure 3f), a stable cytosolic enzyme
released into the cellular environment upon the cell membrane damaged, indicating that
Brevinin-1RL1 induced necrosis at high concentrations.

2.4. Brevinin-1RL1-Induced Cancer Cells Apoptosis Is Caspase-Dependent

Caspases are crucial mediators of apoptosis and regulate extrinsic and intrinsic apop-
totic pathways according to the caspases involved. The extrinsic induces the cleavage
of caspase 8, while the intrinsic pathway activates caspase 9, leading to the subsequent
activation of caspase 3 and poly (ADP-ribose) polymerase (PARP) to induce apoptosis. To
verify whether both of the pathways are involved in Brevinin-1RL1 induced apoptosis, the
cleavages of caspases were detected. As shown in Figure 4a,b, both the extrinsic apoptosis
indicator caspase 8 and the intrinsic caspase 9 were cleaved to activate caspase 3 and PARP.
The activation of caspases leads to loss of mitochondrial membrane potential (MMP) [28,29];
thus, the MMP was assessed by the dual-emission potential-sensitive probe JC-1 dye. In
intact cells, the JC-1 dye aggregates in the mitochondria and emits red fluorescence, while
the dye remains monomers in the cytoplasm and exhibits green fluoresces in apoptotic cells.
As shown in Figure 4c,d, Brevinin-1RL1 treatment induced aggregation of monomers, indi-
cating the loss of MMP. These results suggested both the caspases mediating extrinsic and
mitochondria intrinsic pathways were activated in Brevinin-1RL1 induced apoptosis. To
confirm that Brevinin-1RL1 induced proliferation inhibitory activity is caspase dependent,
the cell viabilities of HCT116 and A549 cells treated with Brevinin-1RL1 were measured in
the absence or presence of the pan-caspase inhibitor z-VAD-FMK with cell viability assay.
Figure 4e showed that z-VAD-FMK effectively rescued Brevinin-1RL1 induced prolifer-
ation inhibitory activity, indicating Brevinin-1RL1 induced apoptosis is, at least in part,
dependent on caspases mediated extrinsic and mitochondria intrinsic pathways.

2.5. Brevinin-1RL1 Aggregates on the Surface of Tumor Cells

In order to investigate the preliminary antitumor mechanism of Brevinin-1RL1, the
intracellular localization and binding specificity of Brevinin-1RL1 were conducted with
FITC-labeled Brevinin-1RL1. As shown in Figure 5a,b, compared with non-tumor cells
NCM460 and BEAS-2B, FITC-labeled Brevinin-1RL1 (FITC-B-1RL1) preferential aggregated
on the surface of HCT116 and A549 cells. Meanwhile, to further confirm the affinity
of Brevinin-1RL1 to tumor cells, the distribution of FITC-labeled Brevinin-1RL1 on cell
surface was also evaluated with flow cytometry and cell surficial accumulation of FITC
fluorescence was observed in HCT116 and A549 cells. Moreover, the parallel experimental
results demonstrated less surficial FITC-labeled Brevinin-1RL1 was observed in Brevinin-
1RL1 insensitive noncancer cell lines NCM460 and Beas-2B, indicating Brevinin-1RL1
preferential targeted cancer cells rather than noncancer cells (Figure 5c–f). Aforementioned
data suggested that Brevinin-1RL1 might interact with the lipids or particular proteins on
the plasma membrane, further inducing apoptosis and necrosis to suppress tumor cells.
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Figure 5. Brevinin-1RL1 localization and binding affinity in tumor cells. Location of Brevinin-1RL1 in NCM460 and HCT116
cells (a), BEAS-2B and A549 cells (b). Cells were seeded on glass-bottom 6-well plates and treated with FITC-labeled
Brevinin-1RL1 for 12 h. Then, the FITC-B-1RL1 was traced and recorded using laser scanning confocal microscopy. (c) The
binding affinity of Brevinin-1RL1 in NCM460 and HCT116 cells (c), BEAS-2B and A549 cells (e). 1 × 106/mL HCT116,
NCM460, A549 and BEAS-2B cells were collected and incubated with FITC-B-1RL1 or an equal dose of FITC Isotype as
controlin the dark for 1 h. Fluorescence alteration was detected by flow cytometry. (d) The MFI (Median Fluorescence
Intensity) value was statistics from (c). (f) The MFI value was statistics from (e). * p < 0.05, ** p < 0.01 and *** p < 0.001 in
comparison to negative controls (Isotype), and indicated the significant difference between the two groups. Data expressed
as the mean ± SD (n = 3).

3. Discussion

The host defense peptides derived from frog skin secretions are bioactive products
with potential antitumor therapeutic activity [8,25,30,31]. In the present study, we described
the discovery of an AMP Brevinin-1RL1, which exhibited growth inhibitory effect towards
different human tumor cells, detected with the IC50 ranging from 5 to 10 µM (Figure 2a).
The “Rana box” is a unique structure of peptides and contains an intermolecular disulphide
bridge at the C-terminal consisting of seven to nine amino acid residues [32]. Many of
these peptides originate from frogs in the Rana genus and examples include Brevinins [33],
Esculentins [34], Ranatuerins [35], Ranalexins [36], Gaegurins [37], Nigrocins [38] and
Ranacyclins [39]. According to previous studies, the roles of the ‘Rana box’ to the bioactivi-
ties of these peptides are controversial [40]. Some studies emphasized the importance of
this structure since removing the “Rana box” structure from the peptide greatly reduces
the antimicrobial and anti-proliferative activity [41–43]. One of the most typical examples
for this family of peptides was Brevinin. Neither truncating the C-terminal cyclic nor
removin g the “Rana box” structure of Brevinin-1GHa showed lower antimicrobial activity,
which may explained by the shorter alpha-helix length of peptide after the removal of the
C-terminal cyclic [42]. However, other studies dismissed its role as deletion of disulfide
bond or truncating the “Rana box” structure showed no effect on antimicrobial activity,
even reducing hemolysis [44–46]. Brevivin-1RL1 is an AMP originally isolated from Rana
limnocharis composed of 24 amino acids with an intra-molecular disulfide-bridged domain
of 7-membered ring located at the C-terminus and the antitumor activity was lost while the
disulfide bridge was reduced, indicating the “Rana box” contributed to the bioactivity of
Brevivin-1RL1 (Figure 2c). However, whether the “Rana box” of Brevinin-1RL1 involved
in the formation α helix structure needs further investigation.
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The mechanism of AMPs inhibiting tumor cells is similar to the antimicrobial mech-
anism but more complicated [12,23]. Membrane lysis is recognized as the consistent
mechanism of action between the two [13,14,18,26]. AMPs obtained by natural selection
are cationic [47], while the tumor cells have a higher content of anionic phosphatidylserine
(PS) and phosphatidylinositol (PI) on their outer leaflets distinguished from noncancer
cells [48–50]. Thus, AMPs preferentially bind and insert into negatively charged cell mem-
branes specifically by electrostatic attraction to suppress cancers selectively [49]. The
typical one is the insect-derived cecropin AMPs, which combine the positive charge on
the amphiphilic α-helix with the negative charge on the cell membrane phospholipid
molecule and then insert into the cell membrane to cause the loss of cell osmotic pressure
and death [13]. In the cell viability assay, Brevinin-1RL1 specifically attenuated the growth
of cancer cells, while less cytotoxicity against the immortalized noncancer human cells was
observed (Figure 2b). Further cellular localization and binding affinity conducted with
FITC-labeled Brevinin-1RL1 confirmed Brevinin-1RL1 preferred aggregated on the surface
of cancer cells and exerted anticancer activity (Figure 5a–f).

Apoptosis is generally regulated by caspases and involves intrinsic mitochondrial path-
ways and extrinsic death receptor transduction pathways [51]. We showed that Brevinin-
1RL1 effectively induced apoptosis in Annexin V+/PI+ double staining (Figure 3a–c) and
PI single staining assays (Figure 3d). In addition, both the death receptor pathway and
the mitochondrial pathway are involved in Brevinin-1RL1 induced apoptosis, because
Brevinin-1RL1 induced the activation of initiator caspase 8 and 9 (Figure 4a,b). The involve-
ment of mitochondrial pathway was further confirmed by loss of mitochondrial membrane
potential (Figure 4c,d). Moreover, the involvement of caspases in Brevinin-1RL1-induced
cell death was verified by using the pan-caspase inhibitor z-VAD-FMK (Figure 3e). In
addition, the release of cell contents and LDH (Figure 3e,f) indicated necrosis was also
involved in the cytotoxicity of Brevinin-1RL1 to tumor cells. These results demonstrate
that Brevinin-1RL1 induced necrosis and caspase-dependent apoptosis.

In conclusion, our study indicated that the natural derived AMP Brevinin-1RL1 is a
potential candidate anticancer agent preferential acted on tumor cells to trigger necrosis
and caspase-dependent apoptosis, while the specific target and the therapeutic efficacy on
preclinical cancer models still need to be further investigated. Taken together, these findings
provided strong evidence to demonstrate that AMP database is an effective resource to
develop new cancer therapeutics.

4. Materials and Methods

4.1. Peptide Synthesis

Brevinin-1RL1 (FFPLIAGLAARFLPKIFCSITKRC, M = 2711.3 g/mol) and a fluorescent
dye fluorescein isothiocyanate (FITC) labeled Brevinin-1RL1 (FITC-FFPLIAGLAARFLPKI-
FCSITKRC, M = 3213.9 g/mol) with an intramolecular disulfide bridge was synthesized
by GL Biochem Ltd (Shanghai, China). Purification of the peptides was performed by
reversed-phase HPLC (RP-HPLC) on a Vydac 218TP 510 C18 column with a linear gradient
of acetonitrile in 0.1% TFA in water at a flow rate of 2 mL/min. Identity of the peptides
was confirmed by MALDI-TOF mass spectrometry and protein sequencing. The purity of
the synthetic peptides was higher than 95%. The peptide concentrations of the non-labeled
peptides were determined via measurement of UV-absorbance of tryptophan at 280 nm
(using NanoDrop ND 1000 (Peqlab, VWR International, Inc. Erlangen, Germany)). The
peptide and FITC-labeled peptide were dissolved in DMSO to prepare a stock solution
(1 mM), stored at −20 ◦C.

4.2. Cell Culture

Human non-small cell lung adenocarcinoma cell line A549, human breast adenocar-
cinoma cell line MDA-MB-231, human hepatocellular carcinoma cell line SMMC-7721,
melanomas cell line B16-F10 and human colorectal adenocarcinoma cell lines HCT116 and
SW480 were purchased from Cell Bank of Type Culture Collection of Chinese Academy of
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Sciences (Shanghai, China). The human normal colon mucosal epithelial cell line NCM460,
human bronchial epithelial cell line BEAS-2B and immortalized human keratinocyte cell
line HaCaT were purchased from the Shanghai Institute of Biochemistry and Cell Biology,
Chinese Academy of Sciences (Shanghai, China). B16-F10, MDA-MB-231,BEAS-2B, SW480
and HaCaT cells were cultured in Dulbecco’s modified Eagle medium (DMEM; Mediatech,
Herndon, VA, USA) and A549, SMMC-7721, HCT116 and NCM460 cells were sustained
in RPMI-1640 medium (Mediatech, Herndon, VA, USA), supplemented with 10% fetal
bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA, USA), 100 µg/mL streptomycin
(HyClone, Logan, UT, USA) and 100 U/mL penicillin (HyClone, Logan, UT, USA) in a
humidified atmosphere with 5% CO2 according to suppliers’ instructions. All the cells
were maintained in a humidified 5% CO2 incubator at 37 ◦C as previously described [52].

4.3. Cell Proliferation and Viability Assay

Anticancer activity of Brevinin-1RL1 was determined by MTS (3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay, ac-
cording to the protocol of CellTiter 96® AQueous One Solution Cell Proliferation Assay kit
(Promega, Madison, WI, USA). Briefly, 100 µL of cell suspensions were seeded at 5 × 103

cells/well into each well of 96-well plates and incubate overnight before drug treatment.
Then, the cells were either treated with various concentrations of peptides or without
peptides for 48 h, followed by 20 µL of MTS per well. After further incubation at 37 ◦C for
1–3 h, the absorbance was determined using a Wallac 1420 Multilabel Counter (PerkinElmer
Life Sciences, Wellesley, MA, USA) by measuring the optical density (OD) at 490 nm. The
half inhibitory concentration (IC50) was determined by the relative survival curve.

4.4. Hemolytic Activity

To determine the toxicity of the peptides to normal mammalian cells, human erythro-
cytes were used to test the hemolytic activity of the peptides according to the method
reported [53]. Blood was collected from the median cubital vein of healthy volunteers. The
normal human erythrocytes were washed three times with Dulbecco’s phosphate-buffered
saline (PBS; Biological Industries, Israel), with the resulting pellet was suspended in PBS
and diluted to 5% (w/v). The sample peptide was diluted with physiological saline into
various gradient concentrations, 200 µL of various gradient concentrations of samples
and 200 µL diluted red blood cells were gentle mixed and incubated at 37 ◦C for 30 min.
Parallel incubations of erythrocytes in the presence of normal saline or 1% Triton X-100
served as the negative and positive controls, respectively. After incubation, centrifugation
was conducted at 2500 rpm/min for 5 min at room temperature. A total of 100 µL of the
supernatant was taken to measure the absorbance at 540 nm (GeneQuant, Fairfield, CT,
USA). The relative optical density was compared with the absorbance of 1% Triton X-100,
which induce 100% hemolysis. The study was proved by the Research Ethics Committee
of Kunming Institute of Botany, Chinese Academy of Sciences and the ethics approval
number was Kib202103028. Informed consent was provided for blood donation.

4.5. Cell Morphological Analysis

A549 and HCT116 cells were seeded (1 × 105 cells/well) in complete culture medium.
The next day, the cells were treated with Brevinin-1RL1 (0, 6 and 12 µM) for 24 h, images
were taken with an Olympus inverted phasecontrast microscope (Olympus Optical Co.,
Melville, NY, USA) (200×) equipped with the Quick Imaging system.

4.6. Lactate Dehydrogenase (LDH)-Release Assay

The LDH release assay was performed by the CytoTox 96 non-radioactive cyto-
toxicity assay kit (Promega; Charbonnie’res-les-Bains, France) according to the manu-
facturer’s protocol as previously described [54]. Briefly, cells seeded in 96-well plates
(5 × 103 cells/well/100 µL) were incubated with various concentrations of Brevinin-1RL1
or equivalent DMSO for 24 h. Then, cells were lysed for 45 min served as the sponta-
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neous and maximum LDH activity controls for 45 min before running the assay. After
centrifugation of the microtiter plates, 50 µL of supernatant was transferred into new tube
from each well and mixed with equal volume of supplied reaction mixture and incubated
at 37 ◦C for 30 min. A total of 50 µL of supplied stop solution was added to each well
and the absorbance of the colored formazan was determined using the microplate reader
(Perkin-Elmer Life Sciences, Waltham, MA, USA) at 450 nm wavelength. Cell membrane
integrity was evaluated by measuring the LDH activity released and the assay was repeated
in triplicate.

4.7. Analysis of Cell Cycle

Cells were seeded in 6-well plates at a density of 2 × 105 cells/well and treated
with various concentrations of the peptide for 24 h. Cells were collected and fixed with
pre-cold 70% ethanol overnight at −20 ◦C. After the fixation, the cells were collected and
washed twice with precooled PBS, then 50 mg/mL RNase A (Sigma-Aldrich) was added for
digestion at 37 ◦C for 30 min. Then, 50 mg/mL Propidium iodide (PI) was added to each
sample for 15 min at room temperature in dark. The fluorescent intensity was evaluated by
flow cytometric analysis with FACS Calibur flow cytometer (Becton Dickinson, San Jose,
CA, USA).

4.8. Analysis of Cell Apoptosis

Cell apoptosis was analyzed by the Annexin V-FITC/PI Apoptosis kit (BD Biosciences,
New Jersey, USA) according to the manufacturer’s protocol. Cells were seeded in 6-well
plates at a density of 1 × 105 cells/well and kept for 24 h, then treated with Brevinin-1RL1
for 48 h. Cells were collected and washed twice with cold PBS and then resuspended in
100 µL of Annexin-V binding buffer, followed by incubation with Annexin V-FITC and
Propidium iodide (PI) for 15 min at room temperature in dark. The fluorescent intensity
was evaluated by flow cytometric analysis with FACS Calibur flow cytometer (Becton
Dickinson, San Jose, CA, USA). Cells treated with vehicle alone (DMSO) were used as
a control.

4.9. Mitochondrial Membrane Potential

The mitochondrial membrane potential was performed by the JC-1 Mitochondrial
Membrane Potential Assay Kit (Cayman Chemical; Michigan, MI, USA) according to the
manufacturer’s protocol. JC-1 is an ideal fluorescent probe widely used to detect the4Ψm
position of mitochondrial membrane electricity. Cells seeded in 6-well plates (2 × 105 cells)
were exposed to Brevinin-1RL1 or equivalent DMSO for 24 h. Then, 200 µL JC-1 staining
working solution were added to each sample in the cultured cells and incubated at 37 ◦C for
30 min in the dark. Then, collected the cells into a flow tube and analyze the fluorescence
intensity with a flow cytometer.

4.10. Immunoblotting Analysis

Immunoblotting analysis was performed as described previously [55]. Cells were
seeded in 6-well plates with a density of 3 × 105 cells/well and treated with or without
various concentrations of Brevinin-1RL1 for 24 h. Then, the cells were harvested and lysed
in RIPA buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% sodium deoxycholate, 0.1%
sodium dodecyl sulfate, 1% NP-40, 1 mM EDTA and 1 mM PMSF) that supplemented
with protease inhibitors and phosphatase inhibitors (Roche). The lysate was shaken and
centrifuged, the supernatant was extracted and quantified with the BCA kit (Thermo
Scientific, Waltham, MA, USA) and then the loading buffer was added and boiled for 5 min.
Protein extracts were separated by denaturing SDS-PAGE and transferred to polyvinylidene
fluoride (PVDF) membranes (Millipore). Membranes were blocked with 5% non-fat milk in
TBST and incubated overnight at 4 ◦C with the following primary antibodies: anti-Caspase-
9, anti-Cleaved Caspase-3 and anti-Cleaved PARP (Cell Signaling Technology, Beverly, MA,
USA); anti-Caspase-3, anti-Caspase-8, anti-Cleaved Caspase-8 and anti-Actin (Santa Cruz
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Technology, Dallas, TX, USA). The membrane was washed three times with PBST and then
incubated with corresponding secondary antibody conjugated to horseradish peroxidase
for 2 h at room temperature. Target protein band were incubated with Pierce ECL substrate
and visualized by chemiluminescent detection on an ImageQuant LAS 4000 mini (GE
Healthcare, Pittsburgh, Pittsburgh, PA, USA).

4.11. Confocal Fluorescence Microscopy

HCT116, NCM460, BEAS-2B and A549 cells were seeded and cultured in glass-bottom
6-well plates with a density of 1 × 105 cells/well overnight and then incubated with
FITC-labeled Brevinin-1RL1 or buffer alone for 12 h. After treatment, cells were fixed
with 4% paraformaldehyde for 20 min and were permeabilized with 0.1% Triton X-100
for 10 min. Then, 4′, 6-diamidino-2-phenylindole (DAPI) was employed to stain the
nuclei. Microscopic analysis was traced the FITC-labeled peptides with laser confocal
scanning microscope.

4.12. TEM Assay

Briefly, A549 and HCT116 cells were seeded at a density of 5 × 104 cells/dish in
60 mm dishes. The next day, the cells were incubated with or without Brevinin-1RL1 for
24 h. After treatment, the cells were washed twice with PBS and followed by an overnight
fixation with 2% glutaraldehyde in 0.1 M Sorensen phosphate buffer (pH 7.4) at 4 ◦C
overnight. Then, the samples were washed and fixed in 1% osmium tetroxide for 1 h at
room temperature. Samples were then dehydrated in a series of graded ethanol solutions
followed by propylene oxide and cells were embedded in Epon 812 resin, which was then
cut into 1 mm3 blocks. The subsequent samples were cut with ninety nanometer-thick
sections and doubly contrasted with uranyl acetate and lead citrate for TEM analysis (JEOL)
at an accelerating voltage of 80 kV.

4.13. Statistical Analysis

All statistical analyses were performed using the GraphPad PrismTM version 6.02
software from GraphPad Software Inc. (San Diego, CA, USA). In addition, the data are
presented as the mean values standard deviation (SD) and statistical differences were
analyzed by one-way and two-way ANOVA followed by Tuckey’s post hoc test using the
software package SPSS 11. The results were conducted at least three determinations for
each test from three independent experiments. The statistical significance of the differences
is given as * p < 0.05; ** p < 0.01; *** p < 0.001.

Supplementary Materials: The following are available online. Figure S1: The purity and mass
spectrometry and structure of FITC-labeled Brevinin-1RL1. (a) The HPLC chromatogram of FITC-
labeled Brevinin-1RL1. (b) The MS of FITC-labeled Brevinin-1RL1.
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