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The literature surrounding KLRG1 has primarily focused on NK and CD8+ T cells.
However, there is evidence that the most suppressive Tregs express KLRG1. Until
now, the role of KLRG1 on Tregs has been mostly overlooked and remains to be
elucidated. Here we review the current literature on KLRG1 with an emphasis on the
KLRG1+ Treg subset role during cancer development and autoimmunity. KLRG1 has
been recently proposed as a new checkpoint inhibitor target, but these studies focused
on the effects of KLRG1 blockade on effector cells. We propose that when designing anti-
tumor therapies targeting KLRG1, the effects on both effector cells and Tregs will have to
be considered.
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INTRODUCTION

Killer cell lectin-like receptor G1 (KLRG1), originally termed mast cell function-associated antigen
(MAFA) (1, 2), is expressed on subsets of NK and T cells in both mouse and human (3–6). KLRG1
binds E-, N-, and R- cadherin (7–9). Cadherins are widely expressed and involved in cell-to-cell
adhesion, while cadherin loss is part of the epithelial mesenchymal transition (EMT) (10–14).
Importantly, E-cadherin is also a ligand for the integrin aE(CD103)b7 (CD103) (15–17). However,
the KLRG1 binding site to E-cadherin is distinct from the CD103 binding site (18). KLRG1 is a
transmembrane glycoprotein with an extracellular C-type lectin-like domain and a cytoplasmic
immunoreceptor tyrosine-based inhibitory motif (ITIM) (19). Phosphorylation of the ITIM
tyrosine residue leads to recruitment of phosphatases SH2-containing inositol polyphosphate 5-
phosphate (SHIP-1) and SH2-containing protein-tyrosine phosphatase 2 (SHP-2) (9, 20). The role
of KLRG1 on effector NK and T cells has been well studied. However, KLRG1 is also expressed on a
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subset of CD4+Foxp3+ regulatory T cells (Treg) (21–23) and the
role of KLRG1 on these cells is mostly unknown. Also unknown
is the impact of targeting KLRG1 on the Treg response. Here we
review the literature on the KLRG1+ Treg cell subset, its function,
and the potential consequences of targeting this subset of cells.
INHIBITORY ROLE OF KLRG1 IN
EFFECTOR CELLS

It has been well established that KLRG1 is upregulated on highly
differentiated NK and T cells, and KLRG1 signaling restrains
their effector functions. High KLRG1 expression is associated
with differentiation in both NK (4, 24) and T cells (25, 26)
although it is not necessary for differentiation (27).
KLRG1+CD8+ T cells were traditionally considered senescent
(5, 28, 29). However, KLRG1+ effector CD8+ T cells display
developmental plasticity and are able to down regulate KLRG1
(30). Additionally, KLRG1 engagement has been reported to
inhibit AKT phosphorylation leading to proliferative dysfunction
in T (31) and NK cells (32). In several studies KLRG1
upregulation has been observed on short-lived effector CD8+ T
cells during viral and bacterial infection models, suggesting a role
for KLRG1 in this context (5, 26, 33, 34).

A role for KLRG1 on CD4+ T cells during infection has also
been documented. For instance, short lived, highly apoptotic,
terminally differentiated and effector cytokine secreting
KLRG1+CD4+ T cell populations are significantly upregulated
in tuberculosis patients (35–39). Importantly, it has been shown
that treatment with anti-KLRG1 blocking antibody enhances
effector cytokine secretion and resolves disease severity (35). In
addition, it was also shown that KLRG1-/- mice display increased
survivability after M. tuberculosis infection, largely due to an
enhanced CD4+ T cell response (40). In support of these findings,
it has been demonstrated that mucosal BCG vaccination, as well
as the CAF01-adjuvanted fusion protein Ag85B-ESAT6, induces
an antigen specific KLRG1- CD4+ T cell population, which
confers better protection against tuberculosis (41, 42). Another
example is hepatitis B virus (HBV) vaccination, which was
shown to be attenuated in patients infected with Hepatitis C
virus (HCV). Interestingly, treatment with a-KLRG1 blocking
antibody reverses the phenomena and improves the effectiveness
of HBV vaccination in the setting of chronic HCV infection.
Additionally, this study found that KLRG1 overexpression in
CD4+ T cells impairs proliferation and secretion of IL-2
following TCR stimulation due to upregulation of cell cycle
inhibitors p16ink4a and p27kip1 and down regulation of AKT
phosphorylation (43).

In addition to effector T and NK cells, KLRG1 has also been
studied in the context of group 2 innate lymphoid cells (ILC2)
(44). KLRG1 expression has been found on ILC2 of the lamina
propria (45), lung (46, 47), and skin (48). KLRG1 interaction
with E-cadherin has been shown to inhibit ILC2 proliferation
and cytokine production (48), and when E-cadherin is
downregulated, ILC2 cytokine production is unrestrained,
leading to disease pathogenesis. Therefore, KLRG1 mediated
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inhibition of ILC2 via E-cadherin in certain tissues may limit
the inflammatory response. However, KLRG1 is dispensable for
ILC2 development and functions (47).

Regarding cancer, recent studies have demonstrated a role for
KLRG1 on effector cells in anti-tumor immunity. Relevantly, a
large number of studies have documented that downregulation
of the KLRG1 ligand, E-cadherin, is associated with metastasis
initiation (49–51). Some, but not all, of this association can be
attributed to the role of cadherin in metastasis. EMT promotes
metastasis and corresponds with loss of pro-adhesive E-cadherin
and gain of expression of promigratory N-cadherin (14, 52, 53).
However, this has been recently revisited as re-upregulation of E-
cadherin appears to be required to seed in distant organs (54). E-
cadherin transcripts have been reported in single cell RNA-seq
datasets of melanoma, prostate, breast, HNSCC, and colorectal
cancer cells (55, 56). Importantly, in several mouse tumor
models, it was found that KLRG1 checkpoint blockade resulted
in heightened anti-tumor immunity and better outcomes, while
KLRG1/PD-1 combination therapy resulted in reduced primary
tumor growth as well as metastasis development (55, 57).
Notably, double blockade increased intratumoral T and NK
cells, heightened T cell activation, and greater NK cell
maturation (57). Altogether, these results suggest that targeting
KLRG1 on effector cells might be beneficial to accelerate
clearance of infection or cancer. However, the influence of
KLRG1 on Tregs must be recognized and addressed for utmost
therapeutic efficiency.
ROLE OF KLRG1 IN TREG CELL
DEVELOPMENT AND HOMEOSTASIS

The expression of KLRG1 is now well documented in NK cells,
ILC2 and various T cell subsets including regulatory T cells
(Treg) in mice (3, 6, 23, 28, 44, 58). Importantly, expression of
KLRG1 on human Tregs has not been definitively substantiated.
For instance, using single-cell ATAC-sequencing, a recent report
showed that Tregs in blood, skin and fat tissues displayed
accessibility at Treg signature genes including CTLA4 and
CD39, but did not show accessibility in the KLRG1 locus,
suggesting that KLRG1 in human Tregs may be silenced (59).
Another group reported the absence of KLRG1 upregulation in
effector Tregs in arthritis patients (60). In contrast, two papers
reported the presence of a subset of Foxp3+ cells within
KLRG1+CD4+ cells isolated from tuberculosis patient PBMC
and ovarian cancer tumor microenvironment (35, 61). It is
tempting to speculate that KLRG1 expression is tightly
controlled in human Tregs, and its upregulation may depend
on yet undefined molecular switches. Overall, additional studies
exploring human Treg KLRG1 expression, especially in cancer
settings, will need further examination. KLRG1 deficient animals
develop without any evidence of abnormality in major organs or
signs of autoimmunity/inflammatory disorders (27, 40, 62).
Therefore, KLRG1 appears to be dispensable for natural Treg
development and maintenance. The absence of KLRG1
expression in mature thymic CD4+ cells or in immature
April 2022 | Volume 13 | Article 894508
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double-positive or double-negative thymocytes of young adult
mice and humans indicates that the emergence of this marker on
Tregs is a post thymic event (21, 22, 63). However, Tauro et al.
have shown that a very small fraction of KLRG1+ Tregs are
present in the thymocytes of young and adult mice (64). While
not specifically addressed, it remains a possibility that these cells
trafficked from peripheral tissues and re-entered the thymus, a
retrograde movement pattern that can occur in peripheral T cells
(65). In support of a post-thymic origin, KLRG1+ Tregs were
found in peripheral lymphoid tissues of MHC class I and II
deficient mice (21). In addition, it has been shown that KLRG1+

Tregs arise from a KLRG1- subset during homeostasis and
following antigenic experience (66, 67), which has been
substantiated via fate mapping and RNA velocity analysis (58).
Altogether, the data suggest that the majority of KLRG1
induction on Tregs is a post thymic phenomenon, and is likely
due to exposure to antigen, inflammatory cues, or tissue specific
reprogramming events.
POSSIBLE REGULATORS OF KLRG1
EXPRESSION ON TREGS

Post thymic KLRG1 expression on Tregs can be controlled
through various regulators under different conditions and
likely plays an important role in tissue homeostasis. Several
studies have indicated that KLRG1+ Tregs aggregate at sites of
inflammation such as virally infected lungs, Peyer’s patches, and
Lamina propria in the murine model of colitis or injured skeletal
muscles (67–70). These findings suggest that inflammatory
cytokines can induce KLRG1 expression on tissue resident
Tregs. Recent studies about the role of specialized Tregs in
tissue homeostasis revealed that the non-lymphoid tissue Tregs
abundantly express a-chain of the cytokine receptor IL-33R
(ST2) and GATA3. Additionally, these studies found that a
large percentage of Tregs in ST2+ tissue express KLRG1,
suggesting a possible regulatory role of IL-33 in ST2+KLRG1+

Tregs found in non-lymphoid tissue (69, 71, 72). However, using
IL-33-/- mice, it was demonstrated that IL-33 signaling through
ST2 is not important for the development or maintenance of
ST2+KLRG1+ Tregs (73). Instead, it appears that IL-33 acts as a
cofactor of TGF-b-induced ST2+ Treg cells, which develop from
naïve conventional T (Tconv) cells (69). Interestingly, IL-33 can
induce IL-2 secretion by dendritic cells which specifically expand
ST2+ Tregs (74). Although in-vitro TCR activation using anti-
CD3/CD28 and IL-2 does not induce KLRG1 expression on Treg
or Tconv (23, 25), it has been shown that extensive IL-2R
signaling facilitated by IL-2, but not IL-15, is essential for the
development of KLRG1+ Tregs in vivo (67). Additionally, Liu
et al. has shown that protein O-GlcNAcylation dependent
activation of IL-2/STAT5 signaling is requisite for the
development of effector KLRG1+ Tregs during homeostasis
(75). Similarly, Chinen et al. established the importance of
activated STAT5 signaling in maintaining higher surface
expression of KLRG1 in STAT5-CA+ (the constitutively active
form of STAT5b) Tregs (76). In nonobese diabetic (NOD) mice
and in Experimental Autoimmune Encephalomyelitis (EAE),
Frontiers in Immunology | www.frontiersin.org 3
chemical inhibition of CDK8/19 can induce the development
of peripheral Tregs (pTreg) from antigen-stimulated effector,
memory, or naïve CD4+ T cells, which express elevated KLRG1
and efficiently resolve disease severity. This suggests the possible
connection of a CDK8/19 mediated STAT5 pathway in the
emergence of KLRG1+ pTregs (77).

In addition to cytokine induced expression of KLRG1, multiple
transcription regulators play a role in regulating KLRG1
expression. Lack of KLRG1 expression in Irf4-/- Tregs has been
reported, signifying that Irf4 may play an intrinsic role in KLRG1
expression and consequent differentiation of this Treg
subpopulation (78). Another transcription factor, Bach2, which
acts as a repressor of TCR-signaling induced IRF4-dependent
differentiation of Treg cells, negatively regulates KLRG1
expression (79). Interestingly, E-protein (E2A/HEB) can directly
bind to the promoter region of KLRG1 and negatively regulate its
expression (80). Importantly, the KLRG1+ Treg subpopulation
expresses very low levels of inhibitory DNA-binding/
differentiation proteins (Id-3) and maintains a highly activated
and suppressive state compared to the KLRG1- population. In
accordance with being a major regulator of T cell development and
differentiation, Id-3 can also regulate KLRG1+ Treg development
and functional properties (81). Similarly, the transcription factor
Helios also acts as a negative regulator of KLRG1 expression on
Tregs in chronic inflammatory settings (82). Notably, the
transcription factor Myb also regulates the expression of KLRG1
on Tregs and maintains their differentiation during immune
homeostasis (83). Finally, Cheng et al. determined that both
KLRG1- thymus derived and peripherally-induced Tregs can be
converted into KLRG1+ Treg subsets (67). Collectively, these data
suggest that microenvironmental cues contribute to the
development of KLRG1 Treg subsets in-vivo.
ASSOCIATION OF KLRG1 EXPRESSION
WITH TREG CELL FATE AND FUNCTIONS

KLRG1 expression on Tregs is associated with an activated and
memory phenotype, and KLRG1+ Tregs express higher levels of
CD69, CD103, CD25, Blimp-1, Foxp3 and CD62L than KLRG1-

counterparts. Lack of developmental heterogeneity, plasticity, and
poor proliferative capability suggest that KLRG1+ Tregs are a
terminally differentiated subpopulation (66, 67). This is supported
by their decreased capability to expand and poor survivability
following adoptive transfer into TCRa or IL-2Rb deficient mice
(21, 64, 66, 67). Interestingly, KLRG1+ Tregs also express higher
levels of the suppressive molecules CTLA4 and CD39. Importantly,
KLRG1+ Tregs have greater inhibition potential in-vitro than
KLRG1- counterparts, suggesting that KLRG1+ Tregs are a
superior suppressive sub population (67, 84).

KLRG1+ Treg and Autoimmunity
KLRG1+ Treg cells also feature prominently in numerous
autoimmune diseases. For instance, the number of KLRG1+

Treg cells increases and positively correlates with disease
severity of EAE while maintaining an activated and terminally
differentiated short lived phenotype. These cells secrete high
April 2022 | Volume 13 | Article 894508
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levels of IL-10 and IFN-g and maintain their higher number
through in-situ proliferation or conversion from a KLRG1- Treg
population (64). Similarly, KLRG1+ Treg populations presenting
an effector memory-activated phenotype increase in the pancreas
of NODmice that model type 1 diabetes (T1D) (85, 86). Notably,
non-classical CD4+CD49b+KLRG1+ Tregs have been shown to
dampen arthritis severity in an IL-10-dependent but Foxp3-
independent manner (87). Regarding graft versus host disease
(GVHD), ST2+ Tregs ameliorate the intestinal damage through
an IL-33 dependent increase of a KLRG1+ subpopulation (88).
Finally, in a T-cell induced colitis model, it was revealed that Treg
cells convert to KLRG1+ effector Tregs that express heightened
avb8 integrin. In this context, the avb8 integrin mediated TGF-b
pathway was shown to be essential, leading to high suppressive
activity and inflammation control (89). Altogether, these reports
highlight the therapeutic potential of KLRG1+ Tregs to prevent a
variety of autoimmune diseases and GVHD.

KLRG1+ Tregs and Cancer
Down regulation of E-cadherin or cadherin switching during EMT
hasbeen showntopromote specificaccumulationand local expansion
of KLRG1+GATA3+ Tregs. This is in part mediated through IL-33
secretion, which plays an important role in intestinal tumor
Frontiers in Immunology | www.frontiersin.org 4
progression (90). KLRG1+CD103+ Tregs may also play an
important role in lung tumor progression. These cells accumulate in
the tumor bearing lung tissue of mice and acquire the activation
markers CD44, CD69, and the ectonucleotidase CD39 (91).
Interestingly, Li et al. demonstrated that Treg specific ablation of the
IL-33 receptor ST2 diminished the KLRG1+CD103+ Tregs, induced
CD8+ T cell infiltration, and reduced the tumor burden, highlighting
the dominant immunosuppressive and tumor promoting
characteristics of this Treg subpopulation in lung cancer (92). In
support of these findings, our lab also reported that infiltration of
KLRG1+Tregsdirectly correlateswith tumorsize.Specificdepletionof
KLRG1+ Tregs using JQ1/anti–PD-1 treatment increases the
survivability of Kras+/LSL-G12D; Trp53L/L(KP) Non–Small Cell Lung
Cancer bearing mice (84). Likewise, Kunisada et al. has shown that
KLRG1+CD103+Tregsalsogather in subcutaneousmodelsofMethA,
MCA (fibrosarcoma), RLmale1 (radiation leukemia), and B16
melanoma (93). KLRG1+ Tregs have also been reported to amass in
oncogene HPV16 E7-induced hyperproliferative premalignant skin
lesions, indicating that KLRG1+ Tregs may regulate HPV-induced
epithelial carcinoma (94). Similarly, an abundance of
KLRG1+Foxp3+CD4+ T cells appear to accrue in the tumor
microenvironment of ovarian and colon cancer, suggesting their
role in impaired antitumor immunity (95). Altogether, the data
FIGURE 1 | Targeting KLRG1 differentially on effector cells and Treg cells may benefit the host during cancer immunotherapy. Functions of KLRG1 signaling on
various effector cells as well as Tregs are summarized. Figure was created on BioRender.
April 2022 | Volume 13 | Article 894508
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support strategies aiming at targeting KLRG1+ Treg quantity and
activity to improve anti-tumor immunity.
ASSOCIATION OF KLRG1 EXPRESSION
WITH CD8+ REGULATORY T CELLS

In addition to CD4+Foxp3+ Treg cells, various types of CD8+

regulatory subpopulations (CD8+ Tregs) have been reported in
different experimental systems (96). Among them, a
CD44+CD122+Ly49+Helios+ subset has been shown to prevent
autoimmunity by targeting CD4+ follicular T-helper cells via the
non-classical molecule Qa-1 (96–100). Importantly, CD8+ Treg
populations express only low levels of KLRG1 at the cell surface,
suggesting that KLRG1 expression is likely to be differentially
regulated on CD8+ Tregs and their CD4+ Treg counterparts
(101–103). Mishra et al. has shown that TGF-b signal and Eomes
are critical factors which maintain the regulatory phenotype and
homeostasis of CD8+ Tregs expression leading to immune
tolerance and autoimmunity prevention (104). Interestingly,
Eomes expression in CD8+ Tregs inversely correlates with
KLRG1 expression (104).
CONCLUDING REMARKS

As discussed in this review, targeting KLRG1+ Treg cells to
control tumor development, to prevent autoimmunity, or to
control infectious diseases might benefit the host. However, as
discussed above, Tregs are not the only cells expressing KLRG1;
NK, ILC2 and T cells also express KLRG1. Regarding tumor
development, enrichment of KLRG1+ T cells and NK cells in the
tumor microenvironment has been observed in human tumors
(55, 95). The role of cadherins on tumor immunosurveillance by
KLRG1+ tumor infiltrating lymphocytes is just beginning to be
investigated. Several labs have explored KLRG1 blockade as a
possible immunotherapy (55, 57, 105). Although the focus of
these studies was to unleash effector cells (i.e. NK cells and CD8+

T cells), it is possible that KLRG1+ Tregs were also targeted in
these murine studies, potentially decreasing or increasing the
benefit of this therapy (See Figure 1). Therefore, additional
studies uncoupling the roles of KLRG1 on Tregs and NK cells
Frontiers in Immunology | www.frontiersin.org 5
are required. It has been clearly demonstrated that KLRG1
inhibits NK cell, CD8+ T cell and CD4+ T cell functions (4, 29,
31, 106, 107). However, it remains uncertain whether KLRG1
expression in mouse Tregs confers a distinctive module to their
suppressive program. To specifically define the role of KLRG1 on
NK cells or Tregs in a variety of murine tumor models, we have
begun to cross KLRG1 floxed mice to Ncr-Cre and Foxp3-Cre
respectively. Experiments with these mouse strains should help
us to dissect the functional role of KLRG1 on these cells. Given
the insufficient knowledge on KLRG1 expression in human
Tregs, further studies will be necessary to validate the presence
and role of these cells in various human pathological conditions
including cancer. It is however tempting to speculate, as
previously reported for CTLA-4 (108), that anti-tumor
therapies aimed at unleashing KLRG1+ effector cells may target
KLRG1+ Treg cells with an overall outcome dictated by the net
effect on these two T cell populations. If KLRG1 expression on
Tregs is validated in human cancers, it is reasonable to presume
that KLRG1+ Tregs will be armed with a similar highly
suppressive functional profile as in murine studies. In this
regard, targeting KLRG1 signaling to differentially modulate
KLRG1-expressing Tregs and effector cells for therapeutic
outcomes will likely be a delicate balance (Figure 1).
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