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Abstract
Centriole number is normally under tight control and is directly linked to
ciliogenesis. In cells that use centrosomes as mitotic spindle poles, one
pre-existing mother centriole is allowed to duplicate only one daughter centriole
per cell cycle. In multiciliated cells, however, many centrioles are generated to
serve as basal bodies of the cilia. Although deuterosomes were observed more
than 40 years ago using electron microscopy and are believed to produce most
of the basal bodies in a mother centriole-independent manner, the underlying
molecular mechanisms have remained unknown until recently. From these
findings arise more questions and a call for clarifications that will require
multidisciplinary efforts.
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Introduction
The centriole is a cylinder-shaped organelle that serves as the 
core of the centrosome or the basal body of the cilium1–5. Nascent 
centriole formation usually depends on pre-existing mother 
centrioles. Normally in one cell cycle each mother centriole 
produces only one daughter centriole, that is directly adjacent 
(Figure 1). Such tight control ensures proper mitosis, since only 
two centrosomes are required to function as the spindle poles. It 
also guarantees that the centriole number remains constant after 
cell division (Figure 1).

Ciliogenesis occurs at the G0 or G1 stage of the cell cycle 
(Figure 1)1,3,6. In vertebrates, most cells can possess a primary 
cilium, which functions as a sensory organ for diverse environ-
mental signals. Mammalian epithelial tissues such as those lining 
the inner surface of the trachea, the oviduct, and the brain 
ventricles, however, have abundant multiciliated cells (MCCs) 
with hundreds of cilia (Figure 1). These multicilia are motile and 
their beating is critical for mucus clearance, ovum transport, or 
cerebrospinal fluid circulation7. How then do such cells generate 
sufficient numbers of basal bodies?

The mystery was initially uncovered by electron microscopy (EM) 
on a variety of MCC-containing tissues in the 1960’s and 1970’s. 
The mother centriole was observed to be surrounded by multiple 
daughter centrioles in MCCs. Moreover, many granular or ring-
shaped EM structures termed deuterosomes (this name will be 
used in this review), procentriole precursor bodies, dense granules, 
and generative complexes were also able to initiate procentriole 
assembly8–12. Importantly, the deuterosomes were estimated to 
produce most of the basal bodies required. Nevertheless, it is 

only recently that we have begun to understand the molecular 
mechanisms involved, which will be the major focus of this 
review.

Mother centriole-dependent centriole assembly
Tremendous progress has been made toward understanding how 
a daughter centriole is born in cycling cells. A group of proteins, 
including Cep152 and Cep63, are specifically located around the 
proximal side of the mother centriole. In the G1 phase, the polo-
like kinase PLK4 binds to Cep152 to form the site of centriole 
assembly13–17. In the S phase, a cartwheel structure is formed at the 
PLK4 site, followed by the assembly of the nine sets of microtubule 
triplets and other components of the daughter centriole. Centriole 
assembly is completed by the G2 phase and, following mitosis, 
each daughter cell inherits a mother-daughter pair of centrioles 
(Figure 1)1–5.

Interestingly, mother centrioles in cycling cells are capable of 
generating more than one daughter centriole. For instance, 
overexpression of PLK4 results in multiple PLK4 foci around the 
mother centriole and overproduction of daughter centrioles18,19. 
Overexpression of Cep152 or the cartwheel proteins SAS-6 or 
STIL also has a similar effect20–23. These observations not only 
indicate that cycling cells execute the one-daughter-centriole- 
per-mother rule by restricting the levels of several critical proteins 
but also suggest that MCCs may break this rule by simply upregu-
lating the protein levels. Indeed, when mouse tracheal epithelial 
cells (MTECs) are induced to form multicilia, they express high 
levels of these proteins19,24,25. The importance of PLK4 and Cep152 
in mother centriole-dependent (MCD) centriole overduplication 
of MTECs is also verified19.

Figure 1. Centriole biogenesis and cilia formation. The centrosome in a G1 cell contains a pair of mother-daughter centrioles. Upon entering 
the S phase, each centriole starts to duplicate one daughter centriole so that the centriole number remains constant after mitosis (a). When the 
cell enters G0, the mother centriole can be transformed into the basal body to support monocilium formation (b). Alternatively, both the mother 
centriole-dependent (MCD) and deuterosome-dependent (DD) pathways can be activated to generate an abundance of centrioles for dense 
multicilia formation (c). The scanning electron microscopy images show a primary cilium in the collecting duct of mouse kidney and multicilia 
of a multiciliated cell in mouse tracheal epithelium, respectively. Centrioles are drawn in blue and their cartwheels in orange.

2 µm

2 µm
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Deuterosome-dependent centriole assembly
The discovery of an essential deuterosome component, Deup1 (also 
called Ccdc67), has promoted the understanding of deuterosome- 
dependent (DD) centriole biogenesis. Strikingly, Deup1 is a 
paralog of Cep6319. Cep152 binds to both Cep63 and Deup1 
to stabilize them and be recruited, respectively, to the mother 
centriole and the deuterosome19,26. Therefore, if we consider the 
Cep63-Cep152-containing proximal ring of the mother centriole 
as a platform, or ‘cradle’, that supports nascent centriole assem-
bly, deuterosomes are analogous cradles, independent of mother 

centrioles (Figure 2A). In MTECs, deuterosomes appear initially 
as foci with zero to two associated procentrioles (Figure 2A-B, 
stage II). Their sizes then enlarge, accompanied by an increase in 
procentriole numbers (Figure 2A-B, stage III). They are disas-
sembled upon completion of centriole assembly (Figure 2A)19,27. 
Usually 50–100 deuterosomes can be found in a MTEC, sufficient 
for the production of hundreds of centrioles (Figure 2B)19. Mouse 
ependymal cells (MEPCs) displayed a similar centriole amplifi-
cation process, but their deuterosomes are usually much larger in 
size and smaller in number (Figure 2C).

Figure 2. Centriole amplifications in mouse tracheal epithelial cells (MTECs) and mouse ependymal cells (MEPCs). (A) Illustration 
for centriole amplification stages in MTECs19. Centrioles are drawn in blue and their cartwheels in orange. (B) Three-dimensional structured 
illumination microscopy (3D-SIM) images for MTECs at early stages (II and III) of centriole amplification. MTECs cultured as described 
previously19 were immunostained for Deup1, Cep63, and Centrin and imaged using a DeltaVision OMX V3 microscopic system (GE 
Healthcare). The mother centrioles (arrows) and representative deuterosomes (arrowheads) are magnified 2× to show details. (C) 3D-SIM 
images showing centriole amplification in MEPCs. MEPCs were isolated from neonatal C57BL/6J mice and cultured as described32. The 
cells were fixed at day three after serum starvation and immunostained for Deup1, Cep152, and Centrin. The stages (II and IV) are defined 
as in the MTECs. Note that MEPC deuterosomes (C) are usually much larger than those in MTECs (B). (D) SIM images of two large MEPC 
deuterosomes immunostained for Deup1 and Centrin (top row) or Cep152 and Centrin (bottom row). Their 3D profiles are also shown. 
Abbreviations: DD, deuterosome dependent; MCD, mother centriole dependent.
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The beauty of such a DD pathway is obvious: cycling cells only 
need to turn off the DD pathway by shutting down Deup1 expres-
sion to avoid the production of extra centrioles. On the other 
hand, as MCCs are terminally differentiated and no longer able to 
enter the cell cycle, turning on the DD pathway and upregulating 
other genes critical for basal body assembly can safely fulfill 
their demand on large numbers of basal bodies. For instance, the 
Multicilin-E2F4/5 complex is known to activate the transcription 
of Deup1, Plk4, Cep152, and many other centriolar protein genes 
in MCCs28–30. Other proteins such as cyclin O appear to fine-tune 
the transcription program31.

Deuterosome structures and components
Deuterosome size varies remarkably in different tissues and 
species: for instance, from 100–200 nm (diameter) in rat or mouse 
MTECs8,19 to more than 500 nm in the mouse oviduct10. Larger 
deuterosomes are capable of supporting more procentrioles. As 
deuterosomes look mostly ring shaped in transmission EM, they 
were proposed to be roughly sphere shaped, capable of assembling 
centrioles in all directions8,10. Serial ultra-thin sections of MEPCs 
support this notion32.

Three-dimensional profiling of subdiffraction images from both 
MTECs and MEPCs, however, suggests that Deup1 and Cep152 
are arranged in a ring-shaped configuration in the deuterosome, 
with the Cep152 signals enwrapping those of Deup1 from outside  
(Figure 2C)19. Such a configuration is topologically analogous 
to the mother centriole cradle. Only the ends of the deuterosome 
appear relatively amorphous. For instance, in large deuterosomes 
such as those of MEPCs, the Cep152 signals may exhibit several 
‘holes’ at each end (Figure 2D). Procentrioles tend to be assembled 
on the outer wall of the deuterosome but can be found at both ends 
as well (Figure 2D)19.

Whether there are additional proteins to construct the outer wall, 
fill the center, or cap the ends of the deuterosome is presently 
unknown. Ccdc78, a coiled coil domain-containing protein, is 
reported as a deuterosome-specific protein required for centriole 
amplification in the Xenopus embryonic epidermis33. Nonetheless, 
mouse Ccdc78, expressed either endogenously or exogenously, was 
not detected on Deup1-positive deuterosomes in our hands, rais-
ing the possibility that Ccdc78 may be either an amphibian-specific 
deuterosome component or even not a bona fide one.

Deuterosome assembly
How deuterosome components are packed together to form the 
supramolecular structure is also an important issue. Fibrous 
granules (also called fibrogranular material or proliferative 
elements), clouds of material abundant in 40 to 80 nm gran-
ules that coincide with deuterosome formation in MCCs, were 
proposed to be precursors of the deuterosome8–10. PCM-1, a 
component of fibrous granules, however, failed to show deu-
terosome localization34. Its depletion by RNA interference also 
didn’t impair centriole amplification25. Likewise, neither Deup1 
nor Cep152 exhibited obvious fibrous granule-like distributions 
(Figure 2B-C)19. Since small deuterosomes tend to emerge in bulk 
and then grow in synchrony and ectopic expression of Deup1 in 
cycling cells is sufficient to induce the formation of functional 
deuterosomes (Figure 2B)19, we propose that deuterosomes can be 
assembled spontaneously (Figure 2A).

Interestingly, a recent publication argues for a totally differ-
ent mechanism32. Based mainly on studies in MEPCs, a model is 
proposed in which an unknown mechanism recruits Deup1, Ccdc78, 
and other cradle proteins to a site in the cradle of the young mother 
centriole to initiate the assembly of both the deuterosome and the 
daughter centrioles. The deuterosome-procentriole halo is then 
released so that the site can begin the next assembly cycle. After 
the release of the last halo, procentrioles on all the deuterosomes 
start to elongate and mature. Thus, both the deuterosome formation 
and the massive centriole biogenesis are MCD processes. Deutero-
somes function merely as shuttles to carry the daughter centrioles 
away from their mother centriole into the cytoplasm32,35.

This model, despite its uniqueness, still needs further verifi-
cation. Firstly, it remains to be shown whether this is the sole 
and universal way of deuterosome generation. Deup1 is capa-
ble of mother centriole localization (Figure 2B-C)19. It is thus 
understandable that some of the protein there may serve as seeds 
to initiate deuterosome assembly. Since live imaging in the MEPCs 
suggests that the generation of one halo requires about two hours32, 
such an efficiency would demand several days to generate the 
50–100 deuterosomes in MTECs, while the entire centriole ampli-
fication process takes roughly only one day19,32. Thus, both the 
spontaneous and MCD pathways may contribute. Furthermore, 
there might be multiple deuterosome nucleation sites on both the 
young and the old mother centrioles (Figure 2B-C). Secondly, 
the model is apparently incompatible with the observation that 
the numbers of deuterosome-associated procentrioles increase 
over time (Figure 2B-C)19. Even if one or two daughter centrioles 
could be carried away from the mother centriole by each nascent 
deuterosome, their subsequent increase in numbers still argues for 
the existence of de novo DD centriole biogenesis. Finally, what 
defines the deuterosome nucleation site on the mother centriole and 
how the cytoplasmic halos can wait until the last one is released 
are also issues for future clarification.

Conservation of the deuterosome-dependent pathway
Phylogenetic analysis suggests that Deup1 is originated from a 
common fish ancestor of the lobe-finned fish and tetrapods in the 
vertebrate evolution to boost cilia density in MCCs19,36. Accord-
ingly, in contrast to the lobe-finned fish (such as lungfish), MCCs 
of the ray-finned fish (such as zebrafish), which have no Deup1, 
contain only sparse cilia37,38. Many invertebrates, however, possess 
MCCs with dense multicilia39–42. Deuterosome-like ultrastruc-
tures have also been reported in some invertebrate species43,44. A 
comprehensive knowledge of strategies for centriole amplification 
throughout metazoan evolution will thus require an understanding 
of the mechanisms for multiciliogenesis in the invertebrate.

Conclusions and perspectives
The mechanism of centriole amplification is both exciting and 
challenging. Because the sizes of centrioles and deuterosomes 
are below or close to the optical diffraction limit, technical limita-
tions of imaging are a current major bottleneck restraining stud-
ies of centriole amplification in MCCs. Although 3D structured 
illumination microscopy (SIM)45 has proven its power in the 
past19,32, the development and introduction of super-resolution 
techniques with higher spatial (especially the z-axis) and temporal 
resolutions46–49 are expected to greatly facilitate studies in the field. 
Furthermore, other cutting-edge techniques such as cryo-electron 

Page 4 of 7

F1000Research 2016, 5(F1000 Faculty Rev):1533 Last updated: 28 JUN 2016



tomography, omics analysis, and computational biology may help 
to solve issues on the structure, formation, growth, disassembly, 
and function of the deuterosome as well as the entire mechanism 
that controls appropriate on-and-off switching of the centriole 
amplification program.

Abbreviations
DD, deuterosome dependent; EM, electron microscopy; MCC, 
multiciliated cell; MCD, mother centriole dependent; MEPC, 
mouse ependymal cell; MTEC, mouse tracheal epithelial cell; SIM, 
structured illumination microscopy.
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