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Malaria is an infectious disease that affects close to half amillion individuals every year and Plasmodium falciparum is amajor cause
of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted.
Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility.
In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier,
and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of
the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with
biological evidence and one (1) has been with computational evidence.The results from our study were compared with an extensive
list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31)
potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug
targets.

1. Introduction

Plasmodium falciparum, a leading cause of malaria, has a
complex life cycle [1, 2].The femalemosquito of theAnopheles
genre is responsible for all the transference of malaria from
one patient to another [1, 2]. Despite the colossal efforts put
in to fight malaria, the disease still affects up to over 200
million people every yearwith close to half amillion dying [1–
5]. The Plasmodium falciparum lifecycle comprises three (3)
important developmental stages: themosquito stage, the liver
stage, and the blood stage [6]. Sporozoites injected into a host
by a mosquito that is infected travel to the liver and begin the
hepatic stage of the life cycle of the Plasmodium by invading
hepatocytes. Here, they get to increase and segregate into
schizonts, then comprising numerous hepatic merozoites.
All of these merozoites are successively set loose into the
blood where the erythrocytic stage is initiated and begins by

invading and duplicating inside the red blood cells (RBCs)
[1, 7].

Evidences abound to the fact that the parasite is already
developing resistance to many front-line antimalaria ther-
apies. Therefore, novel antimalaria cures are in immediate
need to combat the drug-resistant malaria parasite [5, 8].
The metabolism of Plasmodium falciparum (P. f.) in cells that
are infected would be quite a potential source of targets for
novel drugs but it is complex and difficult to understand
intuitively. In silico methods can handle and take care of this
complexity. They also give room for integrative analyses of
the cell metabolism [9]. In silico methods play an important
role in the identification and prediction of new drugs [10]
and facilitate the prospects for the discovery of imminent
drug leads [11]. They have been successfully used to predict
potential drug targets, alter already existing proteins so as to
have an improved stability and functionality, and reduce the
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search space for drug prediction [5, 8, 12]. The challenge of P.
f.’s resistance to most identified antimalarial drugs has given
rise to the increase of antimalarial drug discovery research
[4, 13, 14]. Hence, research on the development of novel drug
targets which would serve as an effective solution for malaria
treatment is urgently needed [3, 13–15]. Due to upgrades of
P. f. genome, the reconstruction of the metabolic network is
required for a comprehensive understanding of themolecular
mechanisms of the organism [8, 16, 17].Though experimental
validation of novel drug target by reaction knockoutmethods
could be accurate, they are time consuming and are a major
impediment towards discovery of drug targets [5]. Thus, this
study provides a novel computational model that predicts
essential reactions and makes the validation of predicted
antimalarial drug target cheaper, easier, and faster. It also
gives a deeper understanding of the metabolic activities of P.
f. This study identifies new reactions as potential targets for
drugs in the metabolic network of P. f. that contributes to its
survival in the host and validates predicted drug targets. The
computational model used in this paper is an enhancement
of the computational model used in our preceding paper
[18].The computational model used enhances the results and
enables computational analysis of large dataset.

The malaria parasite metabolic pathways are quite dif-
ferent from those of its human host. This uniqueness can
be exploited in the design of therapeutic strategies [19–
21]. Metabolic pathways are chains of connected enzymatic
reactions that take place inside a cell [22, 23]. They form
a different chemical compound by modifying a principal
compound which is then passed on to start an alternative
pathway, used up or kept by the cell [24]. The representation
of a metabolic pathway is generally a graphical network of
chemical reactions [24]. The stoichiometry represents the
quantifiable relations amid reactants and products in a bal-
anced chemical reaction. Combinations of information from
different sources such as genomics, network analysis and
simulation, and biochemistry are necessary in the study of a
metabolic pathway [25]. More than one metabolic pathway
which consists of a chain of reactions that contribute to the
synthesis or degradation of the same metabolite makes up a
metabolic network. Diverse data sources guide the genome-
scale reconstruction of metabolic networks [5]. Marwan et
al. [26] regarded metabolic networks as a flow of substance
from side to side of biochemical intermediates that are
converted into each other. A metabolic network is simply a
graphical representation ofmetabolism [27], characterized by
a flow of substance through biochemical intermediates that
are interconverted into each other [26]. Metabolic networks
are useful tools for deepening our understanding of the
metabolism and the role of genes through the evaluation
of gene essentiality [28]. Therefore, a metabolic network is
simply a diagrammatic illustration of the chemical processes
that occur in maintaining the living state of the cells and
the organism [27]. KEGG (Kyoto Encyclopaedia of Genes
and Genomes) is an integrated primary database resource
that consists of 16 main databases for biological interpre-
tation of high-throughput data which are characterized as
chemical, systems, genomic, and health information and
genome sequences [29]. KEGG is a database resource for

comprehending higher order functions and utilities that
are comprised in the biological system [30–32]. MetaCyc
is a general database consisting of enzymes and metabolic
pathways.MetaCyc acts in the capacity of a reference database
of small-molecule metabolism which is not redundant and
is comprised of metabolic pathways that are experimentally
verified and enzyme information selected from the different
scientific literature. It makes a unique resource of high quality
available for metabolic pathways and enzymes because it
comprises only experimentally explained knowledge [33–
35]. MetaCyc is one of the major collections of metabolic
pathways with over 1700 pathways [34].

1.1. Essentiality of a Reaction in a Metabolic Network. Iden-
tifying essential reactions in a metabolic network allows the
identification of potential drug targets in the network [36, 37].
Essential reactions are widely recognized as ideal drug target
candidates since deleting them could lead to a compromise of
integrity of the network [37, 38]. Essential reactions are those
reactions of an organism that are thought to be critical for its
survival because without them the network cannot function
[39]. The predictions of essential reactions experimentally
even though largely accurate have a need for substantial
time and resources, even for organisms that are well-studied,
and they are not at all times practical [5, 37, 40], while
the predictions of essential reactions computationally are
faster and quite less expensive and they have the capability
to decrease the search space for new targets for drugs in a
metabolic network which can then be validated experimen-
tally [5, 37]. Deleting just one essential reaction is enough to
cause lethality or infertility in the network. In comparison
to nonessential reactions, essential reactions are expected
to be more preserved in biological evolution [36, 37]. The
essentiality of a node in a network is explained in Figure 1
which depicts a network with three different essentiality
levels, the red node being the most essential node followed
by the blue node in the network and the yellow nodes are the
least essential nodes in the network. For example, if the hub
node (the red node) is knocked out, it will affect the entire
network in the system.

1.2. Methods of Detecting Essentiality of Reactions. Flux bal-
ance analysis (FBA) is an in silico method used in gaining
deepened understanding into the abilities and the metabolic
behaviour of a cell [5, 42, 43]. It is an extensively used
and deep-rooted method to assess the essential genes of a
particular organism. FBA is used extensively in the study
of reconstructing the metabolic network of a genome based
on mass conservation. Flux balance analysis envisages the
complete growth rate of a particular organism or rate of
utilization of any particular metabolite by simply calculating
how the metabolites flow through the metabolic network
[43]. The stoichiometry information of the metabolic net-
work along with the metabolic target functions essential
to the cell of interest is also necessitated by FBA [5, 43].
However, there are quite a number of baffling failures of
FBA techniques in predicting the essentiality of a gene in a
particular organism [44–46]. FBA suffers from incomplete
annotation of the proteins in a genome [46]; FBA suffers
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Figure 1: A network tree which paints the essentiality of each node to the survival of the tree [41].

greatly in defining biologically relevant objective function
[46].The information about the stoichiometry of the reaction
pathway is required when using FBA [43]; FBA technique
fails to moderately correlate between evolutionary rate and
predicted gene dispensability [44, 45]; FBA approach is in
need of perfect specification that defines the production of
biomass and the nutrition that is available under explicitly
given environmental conditions [47]. Minimal Metabolic
Behaviours [48] can be seen as mathematical method to
approach metabolic pathway analysis; it makes use of the
outer description of the steady-state flux cone, which is
determined by the sets or number of nonnegativity con-
straints [48]. When compared to already existing methods,
its description is more compacted. It proposes an integrated
method to the studying of the metabolic networks [48].
Elementary mode analysis (EMA) is a veritable metabolic
pathway tool that considers stoichiometric and thermody-
namics when evaluating whether a particularmetabolic route
or network is feasible and likely for a set of proteins/enzymes
[49]. This method is valuable for the purpose of decom-
posing the intricate metabolic network made up of highly
interconnected reactions into uniquely organized pathways.
Elementary mode analysis is a tool used to identify the
structure of a metabolic network that connects the cellu-
lar phenotype to the corresponding genotype. Elementary
modes increase rapidly with regard to the network size and
because of this the time to compute the network increases
largely with respect to the size of the network thereby limiting
analysis to pathways and not the entire metabolic network
of a genome [50, 51]. EMA is based mainly on the reaction
equations stoichiometry and the steady-state conditions of
the particular organism [52]. When using metabolic flux
analysis (MFA) [53, 54], any change made in the metabolic
pathway fluxes is measured. Information like this gives more
insights into how the metabolic pathways are being regulated
and could likely suggest novel targets for added metabolic
engineering of the strains [55]. Metabolic flux analysis (MFA)
denotes an influential tool for systems biology research [56].
A major setback of metabolic flux analysis for a lot of
biological systems is however that the amount of constraint
is often not sufficient to observe all essential intracellular

metabolic pathways [55, 57]. In load point and choke point
analysis, the number of 𝑘-shortest paths passing through
metabolites and its closest neighbour links is defined as the
load point of a particular metabolite in a metabolic network.
The usefulness or the importance of a particular metabolite
in the metabolic network of an organism is determined by
load points and choke points [58–60]. The choke points are
ordered by the amount of 𝑘-shortest paths passing through
them. When a choke point in an organism is absent, the
organism can rarely survive [59, 60].Thermodynamics-based
Flux Analysis (TFA) is a variant of metabolic flux analysis
presented with the capacity of producing thermodynamically
feasible flux and metabolite movement profiles on a genome
scale [61, 62]. TMFA includes the utilization of an arrange-
ment of straight thermodynamic constraints notwithstanding
the mass balance limitations ordinarily utilized as a part of
MFA [9, 62]. TMFA produces flux circulations not encom-
passing any form of thermodynamically infeasible responses
or pathways, and in addition to reaction fluxes it makes lots
of information about the range of a substance formed or nec-
essary for metabolism activities and the free energy change
of reactions available [9, 61, 62]. Metabolic Control Analysis
helps in determining quantitatively the level or amount of
influence that different enzymes have in the intracellular
network on very important flux (or function) [63]. MCA is
categorized as a postgenomic device used in comprehending
the principles that govern a metabolic network which is
disseminated among numerous enzymatic steps [64]. MCA
studies provide rational and quantitative criteria to select
enzymes for drug target development [65]. The application
of Metabolic Control Analysis makes it possible to recognize
the group of proteins that necessarily have to be altered to
achieve an effective modulation of the intracellular networks
of biotechnological or clinical relevance [63].

1.3. Reaction Deletion/Perturbation Studies. Perturbation is
an approach generally applied to study the conduct and
atomic components underlying cellular systems [66]. A
perturbation can likewise be focused on the interruption of
a specific cell segment, for instance, by deleting reactions or
by RNA-intervened knockdown. These two universal types
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of perturbation are frequently used [66]. Perturbation in a
particular pathway happens by interfering with the flow of
the signal of a given network which gives knowledge into
both their arrangement and their downstream targets. To
begin with, with the interference at a specific node in the
pathway, the signal cannot be conveyed further. Secondly,
every node in the pathway may have its own (immediate
or aberrant) commitment to the perturbation impacts, for
example, reaction expression changes [67].

In this study, the essentiality of the different reactions
was determined. Therefore, a list of indispensable reactions
in the Plasmodium falciparum metabolic network was iden-
tified and proposed as potential drug target for Plasmodium
falciparum.

2. Materials and Methods

2.1. Reconstruction of the Metabolic Network. In this study
two different resources were considered for the reconstruc-
tion of the metabolic network, which is the genome-scale
metabolic dataset of the 3D7 strain of Plasmodium falciparum
which was extracted from the BIOCYC flat file database ver-
sion 19.5 [68] because of its comprehensiveness and robust-
ness where the dataset contained 894 metabolic reactions
and these reactions were catalyzed by a total number of 710
enzymes; also the metabolic dataset of the genome-scale 3D7
strain of Plasmodium falciparum from [9] was extracted to
fill the gaps in the BIOCYC genome-scale metabolic dataset
of which the dataset contained 670 metabolic reactions and
these reactions were catalyzed by a total number of 325
enzymes. The raw data used by Chiappino-Pepe includes the
protein FASTA files version 11.1 with protein sequences for
P. falciparum 3D7 from PlasmoDB and the version of KEGG
as of July 2014. The BIOCYC identifiers were chosen for this
study as the generally accepted means of identification. Plas-
modium falciparum reactions gotten from Chiappino-Pepe
were mapped to BIOCYC reactions via enzymes commission
numbers and common name. The reconstructed metabolic
network ofPlasmodium falciparum ismade available as SBML
file with some reactions considered to be reversible and some
considered to be irreversible. In this study, currency metabo-
lites of the 24 currency metabolites outlined by [69] were
removed from the reconstructed genome-scale metabolic
dataset.

2.2. In Silico Knockout Analysis. Once the metabolic network
was reconstructed, a Plasmodium falciparum metabolic net-
work was created leading us to perform an in silico knockout
experiment and analysis on the metabolic network enabling
us to analyse the network for the essentiality and perturbation
of the knocked-out reactions and we also moved further to
determine the perturbations and essentiality of all reactions
in the network. When a transition (reaction) is knocked out,
all reactions that have a corresponding reactant or product
of the knocked-out reaction are equally knocked out, helping
to ascertain the effect of that reaction to the network. Single
knockout analyses were performed and our results were
outputted in .txt formats to list the reactions that were
affected after knocking out a specific reaction.

2.3. The Algorithm. In the network a reaction is knocked
out to determine the dependent reaction on the knocked-out
reaction. The procedure for determining which reaction is
connected to the knockout is outlined in the following steps.

Step 1. Start.

Step 2. Get the SBML file.

Step 3. Extract all reactions in the file.

Step 4. Extract all products and reactants related to the
various reactions.

Step 5. Identify reaction to knockout initially.

Step 6. Get other reactions that are linked to the identified
reaction which can be knocked out.

Step 7. Determine if the other reactions are linked to other
reactions.

Step 8. If true, do not knock out the reaction; else knock out
the reaction.

Step 9. Repeat Steps 6–8 for the resulting reactions.

Step 10. If there are no other reactions to be knocked out,
attach the resulting reactions to the initial reaction.

Step 11. Assign “knocked-out reactions” as the list of resulting
reactions attached to the initial knocked-out reaction.

Step 12. Repeat Steps 5–11 to get all results for every reaction
in the network.

Step 13. Determine the essentiality of each reaction by com-
paring the knocked-out items to the total network.

Step 14. Determine themost essential reactions by comparing
the results of Step 13.

Step 15. Determine the least essential reactions by comparing
the results of Step 13.

Step 16. Extract result to a spreadsheet file.

Step 17. Make visualisation of the result in the spreadsheet file.

Step 18. Stop.

All above steps are performed for all reactions in the
network enabling this study to predict the essentiality of all
reactions in the network and exporting them in hierarchical
order.

If 𝑅1 = SR

Kc∀𝑅

If 𝑅 (Re) = 𝑅1 (Pr)

End
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IF 𝑅1 = SR

Kc∀𝑅

If 𝑅 (Pr) = 𝑅1 (Re)

End

IF 𝑅1 (Re) = 𝑅 (Pr)

DKc 𝑅

End

IF 𝑅1 (Pr) = 𝑅 (Re)

DKc 𝑅

End
(1)

R represents reaction, SR represents selected reaction, Re rep-
resents reactant, Pr represents product, Kc means knockout,
and DKc means no knockout.

In this study reconstructed network, we determined the
essentiality of every reaction in the network and proposed
some essential reactions and validated the essentiality of
previous proposed reactions in literature. The essentiality
of all reactions is saved in a .txt file for easy access. The
formula for determining the essentiality of every reaction in
the network is outlined in the following steps:

𝑟𝑖 = 𝑟1 + 𝑟2 + 𝑟3 + ⋅ ⋅ ⋅ + 𝑟𝑛 (2)

𝐸 (𝑟) =
∑𝑘 (𝑟𝑖)

∑𝑁 (𝑟𝑖)
%. (3)

𝑟𝑖 represents the list of reactions,𝐸(𝑟) represents the essential-
ity of a reaction in the reconstructedmetabolic network, 𝑘(𝑟𝑖)
represents the knocked-out reactions in the reconstructed
metabolic network, 𝑁(𝑟𝑖) represents a reaction in the net-
work, ∑𝑘(𝑟𝑖) represents the summation of the knocked-
out reactions in the reconstructed metabolic network, and
∑𝑁(𝑟𝑖) represents the summation of all reactions in the
network.

2.4.The Gold Standard. An extensive list of 77 essential reac-
tions in Plasmodium falciparumwhichmostly have been pre-
dicted in several literatures to be druggable was considered
when testing and validating our model and these 77 essential
reactions are given in the supplement (supplementary Table
S1). A large percentage of this gold standard was considered
in our network and validated by our model as essential. Our
network was constructed as a directed-bipartite graph with
two different types of nodes.

3. Results and Discussion

3.1. Results. Computationally predicted essential reactions
from six different literatures were compared with our
method. Ten reactions that were common to over 80% of
all literature considered in this study were identified and

validated to be essential by our method, thereby confirm-
ing our method as valuable computational technique for
validation of predicted drug target as given in Table 1,
respectively. The network of Plasmodium falciparum used in
our study was analysed and each reaction in the network
was knocked out and the essentiality of each reaction in the
network was determined. The top seven (7) predicted most
essential reactions based on our method in the network are
represented in Table 2, four (4) of which were identified to
be found in the gold standards including superoxide dis-
mutase, 3-phosphoshikimate 1-carboxyvinyltransferase, 5-O-
(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase, and
adenosylhomocysteinase and one (1) was already predicted
as essential computationally which is methionine adeno-
syltransferase. The reactions are well represented by BIO-
CYC database reaction unique identification number. The
reactions that are represented boldly are reactions that are
represented in gold standards.

3.1.1. Knocked-Out Reactions for the Most Essential Reactions.
The reactions that were knocked out from the network
when the top seven (7) most essential reactions from our
network were knocked out are given in the Supplementary
Table S2(a–g). Table S2(a) represents the reactions that
were knocked out by reaction SUPEROX-DISMUT-RXN
which is responsible for knocking out 94 other reactions in
the metabolic network. Table S2(b) represents the reactions
that were knocked out by reaction CATAL-RXN of which
is responsible for knocking out another 74 reactions in the
network. In Table S2(c–g), reactions S-ADENMETSYN-
RXN, 2.5.1.19-RXN, CHORISMATE-SYNTHASE-RXN,
SHIKIMATE-KINASE-RXN, and ADENOSYLHOMO-
CYSTEINASE-RXN, respectively, were responsible for
knocking out another 49, 48, 48, 48, and 39 reactions in
the metabolic network. Table S2(d) represents the reactions
that were knocked out by reaction 2.5.1.19-RXN which is
responsible for knocking out another 48 reactions in the
metabolic network used.

The predicted essential reactions based on the analysis
of our network are given in the Supplementary Table S3
and Figures S1 and S2. Table S3 lists all reactions that are
seemingly essential to the network used in this study and their
essentiality level where these reactions were compared with
gold standards and computationally predicted reactions.This
study finally presents a polished list of 31 potential candidates
for drug targets in Plasmodium falciparum which includes
24 new potential candidates for drug targets of which 9 are
orphans and 7 potential candidates for drug target which has
been predicted computationally in literature of which 1 is an
orphan. The reactions are presented in Table 3.

3.2. Discussion. This study established a novel method that
performed an analysis on the genome-scale metabolic net-
work of Plasmodium falciparum and identifies reactions in
the network that are essential to the survival of the network
according to its essentiality. These essential reactions are
predicted as potential drug targets for Plasmodium falci-
parum; the essentiality of the reaction in the network is listed
according to its effect on the network when knocked out (the
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amount of reactions knocked out when the parent reaction
is knocked out). This study identifies that there are over
200 essential reactions in the network of which, among the
top 7 predicted most essential reactions, 4 were identified
to be found in the gold standard which includes superoxide
dismutase, 3-phosphoshikimate 1-carboxyvinyltransferase,
5-O-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase,
and adenosylhomocysteinase and 1 was already predicted
as essential computationally which is methionine adeno-
syltransferase. The result of our study was compared with
an extensive list of 77 essential reactions with biological
evidence. We finally present a polished list of 31 including
24 new potential candidates for drug targets of which 9 are
orphans and 7 potential candidates for drug target which has
been predicted computationally in literature of which 1 is an
orphan. This model also helps to improve the understanding
of the biological processes within this network and any other
metabolic network. It would be quite exciting to further our
research by confirming our in silico predictions experimen-
tally and also test if our essential reactions can be successfully
targeted without collateral partial or complete targeting of
the corresponding human reactions. Potential candidates for
drug targets for Plasmodium falciparum already biologically
proven were disregarded from our list as our method vali-
dated a number of them.Themethod developed could handle
multiple knockouts but we plan to do this whenwe have some
amount of drug combination to validate our method. The
method used in this study is capable of predicting essential
reaction in any other organisms of a robust genome-scale
metabolic network.

4. Conclusion

The dominance of malaria in resistance to identified anti-
malarial drugs in current circulation has given rise to the
increase of antimalarial drug discovery research. Hence,
researches on the development of novel drug targets which
would serve as effective solutions for malaria treatment are
urgently needed.

In this study, a novel computational model was con-
structedwhichmakes the validation of predicted antimalarial
drug target cheaper, easier, and faster as well as the vali-
dation of P. f. metabolic reactions under different growth
conditions and perturbations. We have been able to identify
new essential reactions as possible targets for drugs in the
metabolic network ofP. f. that contributes to its survival in the
host and validate predicted drug targets. The computational
model used in this study enhances and enables computational
analysis of large dataset.

Generally, the results from this study make a deep
understanding of themetabolism of P. f. available and provide
guidance to experimental studies helping to develop a better
description of P. falciparum metabolism and to identify
antimalarial drug targets.
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