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Abstract: Systemic lupus erythematosus (SLE) is a complex
autoimmune disease. Current SLE therapies include
immunosuppressants, antimalarial drugs, non-steroidal
anti-inflammatory drugs (NSAIDs), and corticosteroids,
but these treatments can cause substantial toxicities to
organs and may not be effective for all patients. In recent
years, significant progress has been made in the treatment
of SLE using immunotherapy, including Benlysta and
Saphnelo. These advances in immunotherapy hold promise
for SLE patients, providing new therapeutic options that
may offer better clinical benefit and effectiveness. Simul-
taneously, several new biological therapies focusing on
cytokines, peptides, targeted antibodies, and cell-based
approaches are under clinical evaluation and have shown
immense potential for the treatment of SLE. However, the
complexity of SLE immunopathogenesis and disease het-
erogeneity present significant challenges in the develop-
ment of effective immunological therapies. This review
aims to discuss past experiences and understanding of
diverse immunological targeting therapies for SLE and
highlight future perspectives for the development of novel
immunological therapies.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic, intricate
autoimmune disorder marked by auto-antibody production

and excessive inflammation, resulting in tissue damage. Its
clinical severity varies, from mild to life-threatening, with
diagnosis relying on detecting serum auto-antibodies
against nucleus components and related proteins [1].
Despite advances in SLE treatment, including immuno-
suppressive agents, early diagnosis, and management over
the last five decades, complications like inflammation,
osteoporosis, cardiovascular issues, acute renal failure,
and lupus nephritis persist and are on the rise. This
underscores the demand for more potent therapies [2–4].
To attain full clinical effectiveness and address conven-
tional therapy limitations, utilizing biological therapies
through recombinant proteins and advanced molecular
engineering holds promise for treating SLE and its com-
plications. For example, Benlysta depletes B cells by
impacting their survival factors, reducing the production of
autoantibodies, either alone or in conjunction with tradi-
tional treatments [5]. Saphnelo blocks type I interferon
(IFN-I) receptor to mitigate inflammatory responses [6].
Furthermore, recent extensive research into SLE’s intricate
pathogenesis, including experimental models, gene screening,
and data analysis, has pinpointed various crucial biological
molecules involved in SLE development. These molecules
are promising candidates for therapeutic targeting. In this
review, wewill not only discuss the benefits and limitations of
immunological therapeutics used to treat SLE in the past, but
also summarize the emerging and potential new biological
medicines that are likely to offer improved therapeutic options
for SLE.

SLE immunopathogenesis

Innate immunity in SLE

The innate immune system, involving cells such as neutro-
phils, macrophages/monocytes, and dendritic cells (DCs),
serves as the primary defense against pathogens and plays a
crucial role in SLE’s development and pathogenesis (Figure 1).
In SLE patients, impaired neutrophil/macrophage-driven
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clearance leads to lingering cell debris and an inability to
remove fragments from necrotic and apoptotic cells. These
fragmentsmay potentially stimulate immune cells to produce
auto-antibodies [7]. Abnormalmacrophage activation triggers
the release ofmultiple pro-inflammatory cytokines, activating
adaptive immune cells to produce antibodies and a high level
of cytokines. Additionally, an imbalance in M1/M2 macro-
phage polarization is observed in SLE. M1-polarized macro-
phages, with a pro-inflammatory response, become more
dominant, characterized by increased CD86, signal trans-
ducer and activator of transcription (STAT) 1, and sup-
pressor of cytokine signaling (SOCS) 3 expression.
Conversely, the CD163-positiveM2macrophages, known for
their anti-inflammatory function and tissue healing, are
notably reduced. This M1/M2 macrophage imbalance dis-
rupts immune homeostasis and tolerance in SLE [8].

The role of DCs in SLE

DCs participate in both innate and adaptive immunity. Blood
DCs encompass plasmacytoid DCs (pDCs) and myeloid DCs
(mDCs). pDCs, primarily expressing TLR 7 and 9, are signif-
icant sources of increased interferon-α (IFN-α) during
the early phase of SLE. Their activation is triggered by

engagement of toll-like receptors (TLRs) with self-RNA/DNA
fragments and proteins, leading to a myeloid differentiation
primary response 88 (MyD88) dependent signaling pathway.
This pathway involves recruitment of tumor necrosis factor
(TNF) receptor-associated factor (TRAF) 6, interleukin-1
receptor-associated kinase (IRAK) 4, and Bruton’s tyrosine
kinase (BTK) to induce interferon regulatory factor (IRF) 7
phosphorylation and IFN-α response [9]. In SLE patients,
peripheral pDCs are reduced and have an increased capacity
to induce T cell activation and proliferation, whereas most
pDCs are highly identified and accumulated in skin lesions
and renal glomerulus of SLE patients through pDCs migra-
tion from circulating to the injured site [10]. Eliminating
pDCs in lupus-prone mice markedly reduces spleen and
lymph node pathology, leading to suppressed T and B cell
activation, lowered levels of various autoantibodies, and
disrupted transcription of IFN-I-associated genes [11]. A
recent study shows elevated CD40+ CD86+ mDCs in SLE pa-
tients’ peripheral blood, along with increased high mobility
group box 1 (HMGB-1) and mammalian target of rapamycin
(mTOR) levels, indicating disease activity [12]. HMGB-1 trig-
gers inflammation and is associated with autoantibody
production, immune complex formation, and tissue damage
in SLE through the HMGB-1/receptor for advanced glycation
end-products (RAGE) signaling pathway [13].

Figure 1: The role of innate and adaptive immunity in systemic lupus erythematosus (SLE) immunopathogenesis. BAFF, B cell-activation factor; ICOS,
inducible T cell costimulator; ICOSL, inducible T cell costimulator ligand; IFN, interferon; IL, interleukin; IRF, interferon regulatory factor; MyD, myeloid
differentiation primary response; TLR, toll-like receptor; TNF, tumor necrosis factor; C, complement.
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Adaptive immunity in SLE

The role of T cells in SLE

Various aberrant signaling and metabolism in T cells
contribute to the immunological pathogenesis of SLE. Mito-
chondria dysfunction-driven oxidative stress might be a
cause for T cell-mediated pathogenesis of SLE.Mitochondrial
hyperpolarization caused by chronic autoreactive T cells in
SLE patients promotes reactive oxygen species (ROS) and
high consumption of glutathione and cysteine deemed as
antioxidant molecules [14]. Elevated ROS levels suppress
DNA methyltransferase 1 (DNMT1) activity, resulting in
gene hypomethylation and heightened expression of
SLE-associated genes, such as CD70 and CD11b [15]. Oxidative
stress is known to facilitate mTOR signaling, which plays a
crucial role in mediating T cell activation, differentiation,
and homeostasis. Activated mTOR drives the differentiation
of naïve CD4+ T cells towards type 1 T helper (Th1) and Th17
cell subpopulations, while also suppressing the differentia-
tion of regulatory T cells (Tregs), essential for immune
tolerance maintenance [16]. As previously mentioned,
heightened ROS-induced DNMT1 inhibition hampers fork-
head box P3 (FOXP3) transcription, thus impeding the dif-
ferentiation of CD4+CD25+ Treg cells. Furthermore, serum
interleukin-6 (IL-6) levels are significantly elevated in both
lupus-pronemice and patients compared to healthy controls
and have a positive correlation with disease activity
scores [17].

The role of B cells in SLE

SLE is marked by heightened B cell activity and the break-
down of B cell tolerance, leading to autoantibody production
and intensified inflammation. B-cell activating factor (BAFF)
plays a crucial role in B cell survival, the maturation of bone
marrow-derived transitional B cells, and the development of
autoreactive B cells. In SLE patients, elevated circulating
BAFF levels are confirmed and strongly associated with anti-
dsDNA antibody levels and disease activity [18]. Research
has identified abnormal B cell subtypes in SLE patients,
including higher levels of CD38+CD27+CD138+ plasma cells,
CD27+IgD−memory B cells, and CD86+CD95+ activated B cells.
Conversely, SLE patients exhibit reduced CD19+/CD20+ naïve
B cells, marginal zone B cells, follicular B cells, and
IL-10-producing Breg cells [19–21].

CD40, a receptor presented on B cells, plays a crucial role
in immune response by facilitating the interaction with
T cells. Upon T cell activation, CD40L can bind to B cells via
CD40, leading to isotype switching of IgG and contributing to

the development of SLE. Studies have shown that CD40L is
upregulated in SLE patients and is involved in the patho-
genesis of the disease [22, 23]. In NZB/W lupus mice, treat-
ment with anti-CD40L monoclonal antibody effectively
delays disease onset, reduces urinary protein levels, and
enhances the survival rate of mice. Therefore, targeting
CD40 may offer a promising therapeutic approach for
SLE [24].

Dysregulated CD38 expression profiles in peripheral
immune cell subsets may potentially serve as detective bio-
markers for SLE diagnosis. In patients with SLE, there is a
notable increase in CD38 expression inmultiple immune cell
types, including pDCs, monocytes, marginal zone-like B cells,
and memory T cells [25]. Moreover, an initial study has
shown that elevated anti-CD38 IgG autoantibodies are often
detected in clinically-defined quiescent patients and might
offer some protective effects for individuals with specific
clinical symptoms [26]. Hence, inhibiting the CD38 molecule
to target plasma cells could be a promising therapeutic
approach for SLE.

The role of cytokines in SLE

The IL-6/IL-10 signaling pathways have been shown to pro-
mote the differentiation of B cells into antibody-secreting
plasma cells [27, 28]. Accumulating data have indicated that a
reduction in IL-2 production is related to the imbalance
in Treg/Th17 differentiation. Furthermore, abnormally
increased expression of protein phosphatase 2A (PP2A) has
been implicated in the reduction of IL-2 and promotes the
production of IL-17 that is thought to be embroiled in path-
ogenesis of SLE [29]. IL-12, a pro-inflammatory cytokine,
initiates and sustains Th1 responses via interferon‐γ (IFN-γ)
induction. It also promotes T-follicular helper (Tfh) cell
development, contributing to SLE progression through STAT
1 and 4 activation [30]. Elevated serum IL-23 in SLE patients
can stimulate IL-17 production. Research has shown that
T cells from mice lacking IL-23 expression produce higher
levels of IL-2 and lower levels of IL-17 [31].

Approved immunotherapy

Belimumab is a fully humanized monoclonal antibody
(mAb) that specifically targets the soluble B lymphocyte
stimulator (BLyS), also known as BAFF [32, 33]. FDA approval
encompasses SLE and lupus nephritis (LN) treatment in
adults and children as shown in Table 1 [34]. BLISS-52 phase
III trial demonstrated notable SLE responder index (SRI)
response rate improvement in active, autoantibody-positive
SLE patients given 1 mg belimumab vs. placebo at week
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52 (43.2 % vs. 33.5 %; p=0.017) [35]. PLUTO phase II trial
enrolled 93 childhood-onset SLE (cSLE) subjects receiving
monthly intravenous 10 mg belimumab (n=53) or placebo
(n=40). Belimumab-treated patients achieved numerically
higher SRI-4 response at Week 52 compared to placebo
(52.8 % vs. 43.6 %). Serious adverse events were less frequent
in belimumab-treated patients (17.0 % vs. 35.0 %) [36]. A
phase III multinational and multicenter trial highlighted a
significant improvement in clinically complete renal
response with belimumab-treated adult LN patients atWeek
104 (30.0 % vs. 20.0 %, p=0.02) relative to placebo [37].
Overall, belimumab’s approval signifies a major advance-
ment in targeted SLE therapies after 50 years, fostering po-
tential for similar medication development, and expanding
therapeutic options for lupus patients.

Saphnelo is a fully humanized mAb approved in 2021
for adult SLE treatment. It targets IFN-I receptor subunit 1,
inhibiting STAT 1 and STAT 2 phosphorylation. Positive data
from MUSE phase II and TULIP 1/2 phase III trials support
this approval. In MUSE phase IIb, anifrolumab (300 mg
or 1,000 mg) enhanced SRI-4 achievement at Week 24
compared to placebo [34.3 % (300 mg, p=0.014); 28.8 %
(1,000 mg, p=0.063); 17.6 % placebo]. Sustained anifrolumab
therapy further improved patients at Week 52 [38]. TULIP-1
showed reduced oral corticosteroid use, improved cuta-
neous lupus erythematosus disease, and British Isles Lupus
Assessment Group-based composite lupus assessment in
anifrolumab-treated patients [39]. TULIP 2 enrolled 362
subjects, with 47.8 % anifrolumab-treated patients exhib-
iting British Isles lupus assessment group-based composite
lupus assessment (BICLA) responses compared to 31.5 %
placebo. Highly interferon gene expressed patients showed
47.8 % BICLA response with anifrolumab and 30.7 % pla-
cebo. Low-interferon gene patients had 46.7 % (anifrolumab)
and 35.5 % (placebo) BICLA responses. Anifrolumab reduced
oral glucocorticoid dose, skin disease severity, and adverse
events frequency [40]. Saphnelo’s approval emphasizes tar-
geting highly-expressed IFN-I levels in SLE, reflecting
increased understanding of its complex pathogenesis.

Telitacicept is a recombinant fusion protein that com-
bines the ligand-binding domain of transmembrane acti-
vator and calcium modulator and cyclophilin ligand
interactor (TACI) receptor with the Fc component of human
IgG. Its pharmacological effect involves blocking the activity
of two critical molecules: BLyS and a proliferation-inducing
ligand (APRIL), which impact the development and survival
of plasma cells and mature B cells. Telitacicept receives
conditional marketing approval for adult SLE treatment in
China in early 2021 and is anticipated to address various
autoimmune disorders, including neuromyelitis optica,
rheumatoid arthritis (RA), IgA nephropathy, and multiple

sclerosis (MS) [41]. In a phase III confirmatory study, the data
demonstrate that SRI-4 response was significantly higher in
telitacicept-treated patients compared with placebo group
(82.6 % vs. 38.1 %, p < 0.001). After re-analysis of data using
multiple imputation for missing data, the clinical improve-
ment in SRI-4 response in telitacicept-treated patients was
still notably higher than those placebo patients (67.1 % vs.
32.7 %) [42]. A similarly-designed phase III trial to evaluate
telitacicept efficacy against placebo in SLE patients is
underway in US (NCT05306574). In addition, RemeGen is
currently launching multiple clinical trial plans for the
treatment of myasthenia gravis (MG), LN, IgA nephropathy,
children SLE, and Sjogren’s syndrome (SS) [43]. The approval
of telitacicept in China marks another significant milestone
advancement in the development of innovative therapies
for SLE patients who have not responded well to other
treatments.

Antibody-based immunotherapy

B cell-targeted therapy

Obexelimab is a humanized Fc-engineered monoclonal
antibody (mAb) targeting CD19. It also binds to the inhibitory
Fcγ receptor IIb (FcγRIIb) present on B cells, resulting in
decreased B cell activity [44]. Currently, obexelimab has
been evaluated inmultiple clinical trials such as IgG4-related
disease, rheumatoid arthritis, and SLE. In a phase II clinical
trial with 104 patients, the results demonstrated that
maintenance of improvement evaluated at Day 225
accounted for 42.0 % of obexelimab-treated patient and
28.6 % of placebo group, respectively (p=0.18). Of note, the
patients treated with obexelimab had a significant longer
time to loss-of-improvement than patients in the placebo
group (p=0.025) [45]. Despite unmet primary endpoint, time
to flare endpoint, well-tolerated property, and low infec-
tion rate have supported obexelimab further evaluation for
SLE treatment. To identify the responders to obexelimab
therapy, gene expression sequencing in immune-related
pathways was performed using patient blood samples.
Sensitivity to obexelimab was linked to heightened B cell
and plasma cell pathway modules, indicating robust
pharmacodynamic effects. Conversely, non-sensitive in-
dividuals exhibited increased expression of complement-
mediated inflammationmodules [46]. These hints imply the
possibilities to establish precise therapy according genetic
susceptibility profiles of different patients.

Rituximab (RTX) is a chimeric mAb that selectively
targets CD20+ B cells for treatment of specific hematologic
malignancies through cell-mediated and antibody-mediated
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cytotoxicity to deplete CD20+ B cells. Since 2002, a series of
early clinical trials to evaluate the outcome of RTX used in a
small size of SLE patients had been conducted, showing
promising potential for SLE treatment [47]. However, the
results from an EXPLORER phase II/III trial to evaluate effi-
cacy and safety of RTX in moderately-to-severely active SLE
have shown that no significant difference is observed at
Week 52 in major or partial clinical responses between the
RTX group and placebo group. Some of patients have expe-
rienced incomplete B cell depletion that might influence
the ultimate clinical outcomes. Oddly, the effectiveness
measured by the primary and secondary end points was
unchanged after exclusion of those patients [48]. The LUNAR
trial demonstrated the overall renal responses had been
demonstrated similarly in both RTX group and placebo
group, although RTX caused significant reduction in anti-
dsDNA and complement levels. Moreover, RTX combined
with mycophenolate mofetil (MMF) and corticosteroids
therapy failed to bring any significant clinical benefits [49].
Likewise, RTX plus cyclophosphamide therapy did not pro-
vide additional clinical improvement and effectiveness after
48 weeks of treatment relative to RTX monotherapy [50].
Notably, recent data from a phase II clinical trial have
unveiled that belimumab therapy significantly promotes the
reduction of serum IgG anti-dsDNA antibody levels and
severe flare risk in SLE participants who are prior to RTX
treatment and refractory to conventional treatment [51].
Given that optimistic data obtained from combinational
therapy, a multicenter phase III clinical trial is ongoing to
further investigate clinical efficacy of this novel approach in
severe SLE [52].

Obinutuzumab is a humanized and glycoengineered
type II anti-CD20 mAb indicated for chronic lymphocytic
leukemia (CLL) combined with chlorambucil therapy and
for follicular lymphoma (FL) in combination with bend-
amustine [53]. Obinituzumab is designed to break limita-
tion and resistance induced by RTX based on clinical data
and analyses [54]. Clinical study intended to evaluate obi-
nutuzumab response in RTX secondary non-responding
SLE patients had shown obinutuzumab treatment signifi-
cantly led to reduction in disease activity score, with
numerical or significant change in complement 3 (C3) and
anti-dsDNA antibody levels post 6-month therapy. Notably,
6 out of 9 patients had complete peripheral B cell depletion.
At 6 months, 5 of 8 patients reduced their dosage [55].
The ALLEGORY phase III study to evaluate the efficacy
and safety of obinutuzumab in SLE patients is ongoing
(NCT04963296). These results have proposed a novel ther-
apeutic approach to treat SLE patients who failed to have
clinical efficacy after secondary RTX therapy by obinutu-
zumab infusion.

Ofatumumab is a fully humanized CD20-directed
cytolytic mAb. It was approved for the treatment of CLL
in early 2009 and relapsing forms of MS in 2020. In a clinical
trial, 16 patients with severe RTX-associated infusion
reactions received ofatumumab infusion, 14 of whom were
well tolerated and were achieved in B cell depletion and
improvement in serological markers of disease activity [56].
Additionally, the clinical beneficial effects including reduced
albuminuria level were observed in refractory LN patients
who had RTX infusion reaction after treatment with ofatu-
mumab at a dose of 700 mg two weeks apart [57]. More
importantly, successful use of ofatumumab in juvenile SLE
patients had been reported, suggesting that ofatumumab
might be a treatment approach for SLE as an alternative to
RTX [58, 59].

CD40-CD40L interaction-targeted therapy

Dapirolizumab pegol (DZP) is a potential SLE treatment,
consisting of an anti-CD40 ligand Fab’antibody fragment
linked to polyethylene glycol (PEG). It works by binding to
and inhibiting CD40, a pivotal player in immune cell acti-
vation, ultimately reducing inflammation and ameliorating
SLE symptoms [60]. In a phase IIb clinical trial, the results
demonstrated that DZP treatmentwas effective in improving
clinical measures of disease activity, reducing levels of anti-
dsDNA, and normalizing C3 and C4 levels compared to the
placebo group at Week 24. However, the highest dosage
group of DZP (45 mg/kg) exhibited a slightly higher incidence
of severe treatment emergent adverse events (TEAEs) than
the other groups [61]. It is crucial to take into account the
possible risk of thromboembolic events related to the
administration of CD40L-targeting drugs [62]. Considering
this fact, DZP showed a favorable safety profile, being
generally well-tolerated, and having a lower risk of throm-
boembolic events than other anti-CD40L mAb [63]. DZP is
currently in phase III clinical trials for SLE (NCT04976322).

CD38-targeted therapy

Daratumumab, a humanized anti-CD38 mAb initially
approved for multiple myeloma, is under exploration for
SLE and other indications. It functions by binding to CD38,
triggering cytotoxic effects via complement-dependent
cytotoxicity (CDC), antibody-dependent phagocytosis (ADP),
antibody-dependent cellular cytotoxicity (ADCC), apoptosis,
and immune regulation. In a clinical trial, two severe SLE
patients treated weekly with daratumumab exhibited persis-
tent clinical improvement, reduced systemic inflammation,
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and a significant decrease in autoantibodies within four
weeks, lasting for several months. Single-cell sequencing
techniques verified daratumumab’s beneficial impact on
activated T lymphocytes [64]. These results are encouraging
for larger clinical trials in the future.

Cytokines-targeted therapy

Ustekinumab is a fully humanized mAb that is used to treat
autoimmune diseases such as psoriasis, psoriatic arthritis,
and Crohn’s disease through blocking the activity of IL-12
and IL-23 [65]. A phase III LOTUS trial, whichwas designed to
investigate the efficacy and safety of ustekinumab in treating
516 patients with active SLE, was terminated due to insuffi-
cient clinical effectiveness, without any safety concerns [66].

Rezpegaldesleukin is a polyethylene glycol (PEG) con-
jugated fusion protein that is designed to target IL-2 receptor
for treatment of autoimmune and inflammatory disorders
including SLE and ulcerative colitis through increased level
of Tregs to restore immune system balance. Recent study has
reported that rezpegaldesleukin displays a reduced affinity
to interleukin 2 receptor alpha (IL-2Rα), interleukin 2 re-
ceptor beta (IL-2Rβ), and interleukin 2 receptor alpha and
beta (IL-2Rαβ) in vitro. In SLE-prone mice (MRL/MpJ-Faslpr),
treatment with rezpegaldesleukin for 12 weeks improved
disease development and progression through reduction of
SLE serological biomarkers, declined urine protein concen-
tration, and mitigation of kidney damage [67]. In a phase I
study, treatment with rezpegaldesleukin twice a week was
shown to induce a durable and significant increase in
number of Tregs without notable alteration of peripheral
T cells in participants [68]. These encouraging findings
warrant further investigation into clinical efficacy of
rezpegaldesleukin in adult patients with SLE (NCT04433585).

Traditional Chinese medicine in SLE

Rehmannia six formula

This treatment comprises six medicinal herbs: Prepared
Rehmannia Root, Chinese Yam Rhizome, Asiatic Cornelian
Cherry Fruit, Tree Peony Bark, HoelenMushroom, andWater
Plantain Rhizome. Clinical trials combining Rehmannia Six
Formula therapy with prednisone and cyclophosphamide
showed significant improvements in 24-h proteinuria, eryth-
rocyte sedimentation rate, C3 levels, and plasma albumin in
lupus nephritis patients. Furthermore, it led to lower disease
recurrence rates and fewer adverse effects compared to the
control group [69, 70].

Artemisinins

Artemisinin, derived from Artemisia annua, is known for its
strong antimalarial effects. Its promising attributes, including
anti-inflammatory, immunomodulatory, and antioxidant
properties, have sparked interest in its potential application
for treating SLE. A clinical trial showed that combining
Artesunate tablet, Lingdan tablet, and prednisone effectively
reduced disease activity and improved symptoms like fever,
joint pain, erythema, rashes, and hair loss.

Additionally, Artesunate combination therapy resulted
in significant reductions in 24-h urinary protein and balance
immune function [71].

Zhuang and Yao medicine

Zhuang and Yao medicine, as the essential branch of tradi-
tional Chinese medicine, have substantiated its efficacy in
both preclinical investigations and clinical trials. The com-
bination of Zhuang medicine cupping and pricking blood
therapy has shown a significant improvement in the clinical
symptoms of patients with arthralgia diseases. Moreover,
Zhuang medicine thread Moxibustion has been observed to
notably decrease the serum levels of tumor necrosis factor-α
(TNF-α) and IL-1β [72–75].

Zhuang and Yao Medicine, rooted in China’s Guangxi
region, employs specific natural ingredients and techniques
to restore bodily balance and promote healing. This involves
customized treatments like herbal preparations, massages,
and cupping, aimed at harmonizing qi and blood. The
research patent demonstrates that the Yao herbal formula-
tion notably diminishes the levels of IL-1β and TNF-α, along
with reducing the severity of joint lesions in the rat model of
RA (CN110638913A). Given this approach and philosophy,
combining Zhuang and Yao Medicine with other therapies
could hold promise as a clinical approach for treating SLE.

Emerging biological therapy

KP-104, as depicted in Table 2, is complement-based therapy
targeted for immune-mediated disorders. As a first-in-class
bifunctional biologic, KP-104 is designed to selectively and
synergistically block upstream alternative pathway (Factor
H) and downstream terminal pathway (C5), providing a
powerful therapeutic tool in complement-mediated dis-
ease [76]. Preclinical study supported KP-104 beneficial
pharmacological profiles for both intravenous and subcu-
taneous route. According to news provided by Kira Phar-
maceuticals, KP-104 therapy is recently granted orphan drug
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designation by FDA for treatment of paroxysmal nocturnal
hemoglobinuria (PNH). A completed phase I first-in-human
(FIH) study had shown the prominent clinical proof-of-
mechanism (POM). Beside PNH indication, a non-
randomized phase II study is recruiting participants with
SLE associated with thrombotic microangiopathy (SLE-TM)
in US, China, and Australia to investigate efficacy, safety,
tolerability, pharmacokinetics, and pharmacodynamics of
KP-104 (NCT05504187).

Daxdilimab is a fully humanized mAb against
immunoglobulin-like transcript (ILT) 7 expressed on the
surface of pDCs, leading to cytotoxic effect of pDCs depen-
dent on recruitment of the effector cells [77]. pDCs were the
prominent immune cell type that were highly associated
with production of IFN-I, which was a crucial driver in
SLE [78]. Preclinical study had shown that daxdilimab-
induced pDC depletion significantly reduced the IFN-I levels.
Daxdilimab, therefore, is primarily expected to treat IFN-I-
mediated autoimmune diseases. Early clinical data had pro-
vided the evidence that daxdilimab treatment reduced locally
dermal pDCs and IFN-I levels, thereby inducing a durable
improvement in disease activity with well-tolerated feature.
Currently, a RECAST phase II study is underway to evaluate
potentially therapeutic effect and safety of daxdilimab in
treatment ofmoderate-to-severe discoid lupus erythematosus
(DLE) (NCT05591222).

Litifilimab is a humanized IgG1 mAb targeting blood
dendritic cell antigen 2 (BDCA2) receptor predominantly
expressed on pDCs. It is being investigated the therapeutic
potential in treatment of cutaneous lupus erythematosus
(CLE) and SLE. In a phase II clinical trial with 132 patients
with histologically confirmed CLE, treatment with litifili-
mab at Week 16 induced the considerable reduced skin
disease activity score compared with placebo group, with
rare antibody-treated adverse cases during the course of
trial [79]. The results from another phase II study enrolled
334 patients with SLE, arthritis, and active skin disease
who received different doses of litifilimab or placebo had
demonstrated significant decrease in number of swollen
and tender joints in litifilimab-treated group (19.0 ± 8.4) as
placebo group (21.6 ± 8.5) over 6 months, although adverse
events are occasionally observed in litifilimab-treated re-
ceipts, two cases of who had herpes zoster and one case in
those patient experienced herpes keratitis [80]. With these
positive data, there are two concurrent phase III clinical
trials: TOPAZ-1 (NCT04895241) and TOPAZ-2 (NCT04961567),
evaluating the efficacy and safety of litifilimab therapy
about a period of year in active SLE patients against placebo
treatment.

Itolizumab is a humanized IgG1 mAb against CD6
molecule as a co-stimulatory receptor mostly expressed in

T cells and a subset of B cells. CD6 and its ligand, activated
leukocyte cell adhesion molecule (ALCAM), have been
demonstrated to contribute to T cell activation, trafficking,
Th1/Th17 differentiation, as well as pathogenesis of SLE and
LN disease [81]. In an EQUALISE phase Ib dose-escalation
study, was divided by two parts: Itolizumab displayed well-
tolerated in the receipts dosed from 0.4 mg/kg to 2.4 mg/kg.
A half proportion of patients receiving 3.2 mg/kg were dis-
continued to further therapy after the first dose owing to the
reduced tolerability. No serious adverse events (SAEs) were
reported. The complete or partial response was achieved in
83 % of participants and over 80 % reduction in the ratio of
urine protein and creatinine was observed in 67 % of sub-
jects by 28 weeks. No treatment-related serious adverse
events occurred [82]. The safety data combined with phar-
macokinetics, pharmacodynamics, and clinical activity
support further investigation in SLE patients.

Rigerimod, as a novel peptide-based treatment for SLE, is
a synthetic 21-mer linear peptide derived from small nuclear
ribonucleoprotein U1-70K [83]. Treatment with rigerimod
caused inhibition of T cell activation, reduced expression of
major histocompatibility complex class II (MHC II) in antigen-
presenting cells (APCs), and decrease in proteinuria and
anti-dsDNA antibody in lupus-pronemousemodel [84, 85]. In a
phase IIb clinical trial, rigerimod therapy significantly less-
ened disease activity and was efficacious and generally well
tolerated with generally mild injection-site erythema [86].
Even though rigerimod showed no treatment-related serious
adverse events and superior clinical response and remission,
treatmentwith rigerimod (200mg) every 4weeks for 48weeks
concomitant with standard therapy did not demonstrate any
improvement in disease activity of SLE in comparison with
standard care alone in a phase III trial (NCT02504645).
Notwithstanding these disappointing data, ImmuPharma is
continuing to support rigerimod clinical program for the
treatment of SLE by a higher dosing exploration under FDA
guideline and recommendation.

Potential bispecific antibody
therapy

Rozibafusp alfa is a first-in-class bispecific antibody-peptide
conjugate that dually inhibits BAFF and inducible cos-
timulator ligand (ICOSL). Preclinical study reported that
treatment with rozibafusp alfa yielded significantly benefi-
cial effectiveness in several mousemodels with arthritis and
lupus by dual inhibition of BAFF and ICOSL [87]. The data
from a phase Ib study had shown that rozibafusp alfa ther-
apy withmultiple ascending doses in patients with active RA
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werewell tolerated, with 20 %of patients detecting anti-drug
antibodies. Numerical improvement in disease activity
was observed with rozibafusp alfa therapy relative to pla-
cebo [88]. A phase II trial for evaluation of efficacy and safety
of rozibafusp alfa in participants with active SLE is ongoing
(NCT04058028).

Tibulizumab is a subcutaneously administered dual-
antagonist bispecific antibody that simultaneously targets
BAFF and IL-17 for the treatment of autoimmune disease
such as SS and RA [89]. The potential pathogenesis of SS
might be implicated with abnormal T cell activation to
damage epithelial cells and gland, excessive production of
proinflammatory cytokines, and autoantibodies secreted by
self-reactive B cells [90]. Preclinical study reported that
tibulizumab effectively neutralized human BAFF and IL-17
activities and reducedB cells ina dose-dependentmanner [89].
Currently, two phase I clinical studies to evaluate its efficacy
and safety in treatment of SS and RA have completed. No
further result and clue were reported.

PRV-3279 is novel biological therapeutic bispecific anti-
body against human CD32B and CD79B molecules on B cells
for treatment of SLE and other autoimmune disorders.
CD32B, also known as FcγRIIb, plays a key role in sup-
pression of aberrant B cell activation, while CD79B is a
subunit of B cell receptor associated with B cell activation.
The potential pharmacological treatment of PRV-3279 is
thought to activate CD32B inhibitory effect and spontaneously
inhibit CD79B-mediated B cell activation [91]. Current avail-
able data have demonstrated that PRV-3279waswell-tolerated
and reduced immune response by inhibitory pathway in a
phase Ia single ascending dose study in healthy volunteers
(NCT03955666). The PREVAIL-2 study to assess the safety and
potential efficacy of PRV-3279 in flare prevention in SLE
patients with active disease after amelioration induced by
corticosteroid treatment is ongoing (NCT05087628).

Cell therapy

KYV-101 is a novel autologous fully human anti-CD19 CAR T
therapy for B cell-induced autoimmune diseases, such as
LN, systemic sclerosis, and inflammatory myopathies.
KYV-101 is intended for reduction of inflammatory cyto-
kine and autoantibody levels driven by B cells, providing a
long-lasting and stable protective effect to destroy B cells.
Recently, the FDA has granted permission for the first
KYV-101 therapy candidate to begin clinical testing in lupus
nephritis patients in early 2023 based on their undisclosed
results in a phase I/II study to evaluate the efficacy and
safety of KYV-101 therapy in 20 patients with B cell
lymphoma [92, 93].

Mesenchymal stem cell (MSC) and MSCs-secreted exo-
some therapy has garnered significant attention and has
been extensively investigated for the treatment of refractory
autoimmune diseases in recent years due to their potential
immunomodulatory effects. However, there is no officially
approved MSC therapy for SLE worldwide so far. Most
studies are still under clinical investigation. Indeed, clinical
therapeutic inconsistency might be a major impediment to
their clinical application, which may be due to the involve-
ment of different tissue-derived MSCs, appropriate dose of
infused cells, and dosing frequency, although a good safety
profile of MSC therapy has been largely certified in clinical
trials [94–96]. Further attempts will be focused on dis-
tinguishing the biological properties and functions of MSCs
derived from different tissues, establishing an optimal
culturing system for rapid expansion of MSC, and producing
potent lesion-directed functional MSC against inflammatory
cytokine.

Precision medicine in SLE

Precision medicine in SLE is highly complex, requiring a
personalized approach across diagnosis, treatment, and
management. As outlined in Table 3 using the 2019 EULAR/
ACR classification criteria, SLE exhibits diversity in clinical
manifestations, serology, and underlying immunological
mechanisms [97]. Standardized criteria aid in identifying
patient populations with shared characteristics, facilitating
targeted research and personalized treatments. Omic tech-
nologies differentiate treatment-sensitive from resistant SLE
patients by identifying genetic and molecular distinctions.
Precision SLE treatment customizes interventions based on
personalized diagnosis and genetics, improving outcomes and
quality of life while minimizing side effects.

Conclusions and further
perspectives

SLE remains a complex autoimmune disease with diverse
multi-systemic manifestations, posing significant challenges
for clinicians, patients, and researchers in identifying spe-
cific therapy targets. While no cure exists for SLE, significant
progress has been made in its treatment. This includes
promising developments in antibody-targeted therapies and
orally administered drugs like Voclosporin for SLE and LN.
In this review, we have presented an overview of current
and past antibody-targeted therapeutic approaches in the
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treatment of SLE, and have proposed several potential
future therapeutic strategies for SLE.

It has become evident that abnormal B cell function,
T cell dysfunction, complementary system dysregulation,
and inflammation-driven pathology are potential targets for
SLE therapy. Notably, sirolimus, also known as rapamycin, is
an immunosuppressive medication that has been investi-
gated for its potential role in treating SLE through inhibiting
mTOR signaling pathway, reducing the activity of immune
cells, and thereby slowing down inflammatory responses
and autoimmune attacks [101, 102]. Recently, treating active
SLE patients with sirolimus improves disease activity,
increases Tregs, and suppresses IL-4 and IL-17 generation
without safety concerns [103]. Furthermore, sirolimus
exhibited comparable efficacy to both tacrolimus and MMF
in treating SLE or LN patients, while demonstrating superior
results in terms of serological enhancements and glucocorti-
coid reductionbased on the realworld Chinese SLETreatment
and Research group (CSTAR) cohort studies. Crucially, siroli-
mus was well-tolerated among SLE patients [104, 105]. How-
ever, the use of sirolimus requires caution, as it can lead to
certain side effects and immune suppression, necessitating
clinical monitoring. More research is needed to confirm
sirolimus’s effectiveness for treating SLE. Notably, CSTAR is
committed to raising awareness among Chinese SLE patients,
providing crucial clinical insights, optimizing treatment
strategies, and offering evidence-based references for
informed policy decisions.

Proper animal models play a critical role in assessing
the preclinical efficacy and safety of new therapies before
human trials. There is no ideal animal model for evaluating
fully humanized antibody efficacy in SLE. Despite challenges
in creating appropriate models for biologics, organoids
derived from tissue-specific progenitor cells of SLE pa-
tients, such as kidney and skin tissue, show promise for un-
derstanding SLE mechanisms [77, 106]. Likewise, upcoming

Table : Current approved-immunotherapy for systemic lupus erythematosus (SLE).

Brand Targets Sponsor Nation Indications Years

Benlysta B-cell activating factor (BAFF) GlaxoSmithKline US Active lupus in adults 

Lupus in children 

Adult patients with active LN 

Children ages  and older with active LN 

Saphnelo Type I interferon (IFN-I) AstraZeneca US Adults with moderate to severe lupus 

Telitacicept BAFF and a proliferation-inducing ligand (APRIL) RemeGen Co.,Ltd China Lupus in adults 

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; IFN-I, type  interferon; LN, lupus nephritis.

Table : Emerging biological therapy for systemic lupus erythematosus
(SLE) treatment.

Drug/
Code

Target Indications Status NCT

KP- Complement-
targeted

PNH; SLE-TM Phase II NCT

Daxdilimab ILT DLE; LN; SLE Phase II NCT
Litifilimab BCDA SLE Phase

III
NCT

Itolizumab CD SLE Phase I NCT
Rigerimod Peptides-targeted SLE Phase

III
NCT

BCDA, blood dendritic cell antigen; CD, cluster of differentiation; DLE,
discoid lupus erythematosus; ILT, immunoglobulin-like transcript; LN, lupus
nephritis; PNH, paroxysmal nocturnal hemoglobinuria; SLE-TM, SLE
associated with thrombotic microangiopathy.

Table : Prospective strategies for tailored therapy based on precision
methods.

Steps Contents Reference

Clinical
phenotype

Malar rash, photosensitivity, discoid rash,
oral ulcers, arthritis, serositis, renal disor-
der, neurologic disorder, hematologic
disorder, antinuclear antibodies,
immunologic disorders.

[]

Personalized
diagnosis

() Multi-omic analysis detects genetic
variations and molecular patterns in SLE
individuals.

[]

() Clinical data and patient history aid
precise diagnosis.

Precision
therapeutics

() Targeted treatments focus on immune
pathways andmolecular targets specific to
different SLE subtypes.

[, ]

() Genetic and molecular profiling guides
treatment strategies, optimizing therapy
effectiveness and minimizing side effects.
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technologies like organs-on-chip, artificial intelligence
(AI) advancements, and CRISPR-Cas9 genome editing will
greatly influence our understanding of SLE’s causes,
biomarker identification, and the progress of diagnosis
and treatment.

Epigenetics research has led to novel drugs for SLE, with
microRNA (miRNA) dysfunction in immune cells contributing
to the disease.miR-146 andmiR-155 have garnered substantial
attention for their contributions to disease development, and
they are notably elevated in the plasma of SLE patients [107].
miR-146 functions as a negative regulator of innate immune
signaling in DCs, specifically targeting genes within TLR
pathways. Conversely, miR-155 is upregulated in B cells,
driving autoantibody production and inflammatory pathway
activation [108–110]. While miRNA-targeting therapies have
not been approved for SLE yet, miRNA-based treatments
show promise due to advantages like quick production, cost-
effectiveness, and potential for oral administration, suggest-
ing significant market potential [111].

Last, exploring multiple therapy combinations for opti-
mized clinical benefits while ensuring safety are the avenue
to be explored. Currently, the treat-to-target approach, aiming
for clinically effective treatment endpoints, is crucial in SLE
clinical trial design and futuremedical strategies. The success
of belimumab and anifrolumab stems from stringent entry
criteria and the SRI-4 measurement, yielding more impactful
outcomes. Novel SLE therapies demand thoughtful consider-
ation of targets, druggable properties, dosing, safety, patient
enrollment, clinical efficacy assessment, and risk-benefit
analysis.
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