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Most people in the world live in urban areas, and their high population densities, heavy
reliance on external sources of food, energy, and water, and disproportionately large waste
production result in severe and cumulative negative environmental effects. Integrated
study of urban areas requires a system-of-systems analytical framework that includes
modeling with social and biophysical data. We describe preliminary work toward an
integrated urban food-energy-water systems (FEWS) analysis using co-simulation for
assessment of current and future conditions, with an emphasis on local (urban and urban-
adjacent) food production. We create a framework to enable simultaneous analyses of
climate dynamics, changes in land cover, built forms, energy use, and environmental
outcomes associated with a set of drivers of system change related to policy, crop
management, technology, social interaction, and market forces affecting food production.
The ultimate goal of our research program is to enhance understanding of the urban FEWS
nexus so as to improve system function and management, increase resilience, and
enhance sustainability. Our approach involves data-driven co-simulation to enable
coupling of disparate food, energy and water simulation models across a range of
spatial and temporal scales. When complete, these models will quantify energy use
and water quality outcomes for current systems, and determine if undesirable
environmental effects are decreased and local food supply is increased with different
configurations of socioeconomic and biophysical factors in urban and urban-adjacent
areas. The effort emphasizes use of open-source simulationmodels and expert knowledge
to guide modeling for individual and combined systems in the urban FEWS nexus.
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INTRODUCTION

Over 55% of people in the world, and 80% of people in the
United States, live and work in urban areas [United Nations
(UN), 2018]. These areas support human interactions and result
in innovations such as the sharing economy, renewable energy
transitions, and green infrastructure that could lead to increased
sustainability [ACERE (Advisory Committee for Environmental
Research and Education), 2018]. However, dense human
populations and activities generate disproportionate negative
impacts for intensive energy use, increased global greenhouse
gas emissions (GHGE), elevated temperatures, high levels of
water consumption/wastewater production, and pollution of
air, land and water.

Human choices in urban areas drive significant changes
in both social and physical landscape features, so it is
imperative to integrate social dynamics in analyses of the
urban food, energy and water systems (FEWS) nexus.
Although frameworks emphasizing the biophysical
elements of urban FEWS and interactions among them
exist, they are difficult to develop and use because these
settings are characterized by disconnected processes for
production, distribution, consumption, and cycling of
food, energy and water [Ramaswami et al., 2017; ACERE
(Advisory Committee for Environmental Research and
Education), 2018]. In addition, changes in climate, land
use, built forms, and their impacts on other processes are
often considered in isolation, even though in reality they are
interdependent (Cutter et al., 2014).

Problems related to urban food systems, in particular, are
associated with important impacts on the environment
(energy use, GHGE, waste production) as a result of high
population density, heavy reliance on external food sources,
and failure to recycle nutrients in densely populated areas
(Vermeulen et al., 2012; Mohareb et al., 2017). To conduct
robust analyses of urban FEWS requires consideration of
dynamic interactions within the urban system itself, as well
as the trans-boundary interactions with areas adjacent to and
removed from the system (Goldstein et al., 2017). Previous
efforts have not yet closely integrated social, biophysical and
climatic models to characterize the urban FEW “system-of-
systems.” Further, these systems can vary greatly across
geographies, so place-based studies are necessary to extend
data science approaches and increase understanding of
potential drivers of change (ACERE (Advisory Committee
for Environmental Research and Education), 2018).

To contribute to the development of solutions to these
problems, we have begun work to focus on the potential
benefits and challenges associated with shifting more food
production for humans (“specialty crops,” such as fruits and
vegetables, as well as meat, dairy products, oils, and sugars) to
urban and urban-adjacent areas in the rainfed agricultural
region of the Midwest United States. This could bring food
production and consumption into closer proximity, although
successful adoption of such systems in the United States has
been limited (Goldstein et al., 2016). Potential barriers to
expansion of localized food production include producers’

experiences and attitudes, especially for farmers whose
operations have been very successful for commodity crop
production (corn, soybeans) and who have real and/or
perceived barriers to markets that could facilitate sales of
specialty crops (Low et al., 2015). In addition, food
production systems that require large land areas have
limited feasibility within city boundaries, creating
significant challenges for meeting local consumer food
demand (Badami and Ramankutty, 2015). Expanding the
system boundaries to include both urban and urban-
adjacent production could be more realistic, and provide
larger quantities of food as well as broaden distribution
opportunities (Hu et al., 2011; Opitz et al., 2016).
Ultimately, integration of such food systems could require
less transport, cold storage, processing, and packaging, as well
as reduce costs, improve food access (Food and Agriculture
Organization of the United Nations (FAO), 2007; Ackerman
et al., 2014), and reduce GHGE compared to current food
systems (Kulak et al., 2013). Another important variable in
urban systems is typical land covers–built (hard, impervious)
surfaces vs. vegetative (soft, pervious) surfaces. This affects
transformation of solar energy as it reaches these surfaces and
the movement of water across them, which in turn influence
energy use in the built environment and exacerbate the urban
heat island effect (causing temperatures to be elevated relative
to surrounding rural areas; Oke, 1973).

To study urban/near-urban food production, we formed a
transdisciplinary team with expertise in agronomy, horticulture,
urban ecology, social psychology, urban planning, environmental
science, sustainability, energy efficiency, water quality, climate
adaptation, and built forms. The team has begun to evaluate
potential for more locally driven, closed-loop human food
production and consumption in an urban system. The team’s
ultimate goal is to enhance understanding of the urban FEWS
nexus to improve system function and management, and to
increase resiliency and enhance sustainability. We identified a
set of “what ifs?” for local food production and have begun work
to develop a comprehensive modeling approach that will enable
simultaneous analyses of climate dynamics, land use/cover and
built forms, energy use (for crop/food production, transportation,
and in buildings), and their associated environmental outcomes.
This approach will ultimately allow us to examine current
conditions and explore future conditions for local food
production associated with a set of five drivers of FEW
systems change. The drivers we are considering include policy,
crop management, technology, social interaction, and market
factors. Our hypotheses are that: 1) data-driven co-simulation
strategies will enable coupling of disparate (spatial/temporal
scale) FEWS simulation models; 2) the environmental
footprint (energy use, water quality, waste production) for an
urban system can be decreased and food supply increased
through greater levels of production in urban and urban-
adjacent areas; and 3) the potential effects of changes (social,
economic, environmental) in urban and urban-adjacent
landscapes will be synergistic. Here we present an initial
overview of how we will test these hypotheses via team science
principles and convergent research.
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METHODS

Study Site
Our study site is the Des Moines-West Des Moines Metropolitan
Statistical Area (MSA), with an estimated population of
approximately 699,000 (the MSA is a six-county area in
central Iowa, United States; US Census Bureau, 2019). It
consists of a principal city, Des Moines, that is socially and
economically tied to smaller communities and rural areas in
the adjacent landscape. This study site was chosen because it is
representative of many such MSAs in the upper Midwest,
United States, with respect to both population level and
proportion of nearby rainfed agricultural land (e.g., Madison
WI, Omaha, NE, Fort Wayne, IN, Dayton, OH, Lansing, MI).

Overall Modeling Approach
We are developing a comprehensive modeling approach
adaptable for use in urban and near-urban contexts that
emphasizes close ties between social and biophysical systems.
We are developing future scenarios in which half of the
nutritional needs of MSA residents could be met in the local
landscape to guide our simulations and to assess the impact of
such changes.

We use open-source platforms and legacy models (models that
are in common use, with transparent inputs and outputs) for
individual systems and to combine them in the urban FEWS
nexus (Table 1; Figure 1). Use of open-source models will
enhance future transferability of this approach to other
settings. Each of the sub-models requires large quantities of

input data and generates large quantities of output data. To
accommodate these characteristics, a preliminary “soft
coupling” will be used to examine interactions among the
inputs/outputs for two to three models at a time. This will be
followed by adaptive sampling for co-simulation using all of the
models representing FEWS components. For the sake of brevity,
in this paper we describe very early results for a subset of the
models and our approach to integration among them.

Description of Selected Urban FEWS
Models
We include sevenmodels in our design (Table 1); here we provide
examples of data collection andmodel parameters for five of them
(ABM, WRF, USEEIO, SWAT, and CFD/EnergyPlus) in the
following paragraphs. Outputs of all models determined for
current conditions will then be compared to predicted outputs
for future conditions. Future scenarios will be generated using
empirical data to guide simulations for food production at a level
that would provide for half of the nutritional needs of all Des
Moines MSA residents. Our method for integration through soft
coupling and co-simulation (work that has not yet begun) is also
described in the following paragraphs.

Social Dynamics: Agent-Based Model (ABM)
We are collecting local data to provide the empirical basis for an
urban food system agent-based model (ABM) for the Des Moines
MSA. ABM is a computational simulation modeling method
performed by using software agents to represent real-life

TABLE 1 | Legacy models and datasets (open-source, with transparent inputs and outputs) for individual systems and used in combination via soft coupling and co-
simulation for modeling current and potential future conditions in the urban FEWS nexus.

Model Model Inputs Model Outputs References

NetLogo (ABM)
Agent based model for social systems

Producer intentions, behaviors, consumer
intentions, behaviors, markets, production and
consumption patterns, social interactions within/
between groups

Types of food crops grown, quantity of production,
demand for local produce, levels of consumption

Wilensky and Rand,
(2015)

NARCCAP
North American Regional Climate
Change Assessment Program (dataset
for climate change)

Land cover, thermal data, cumulus accumulation,
solar radiation

Air temperature, relative humidity, cloud cover,
wind speed, air pressure

Mearns et al. (2009)

WRF
Weather Research and Forecasting (for
current and future climate)

Land surface, green vegetation fraction, leaf area
index, albedo, urban morphology (impervious
surface, building height and width, road width)

Dry and wet bulb air temperature, wind speed,
humidity

Skamarock et al.
(2008)

APEX
Agricultural Policy/ Environmental
eXtender (for crop growth)

Precipitation/irrigation, temperature, solar radiation,
wind, relative humidity, crop/livestock type, fertilizer,
manure

Soil erosion, carbon capture, field crop and food
crop growth and yield

Williams et al.
(2012)

USEEIO (LCA)
United States Environmentally Extended
Input-Output Model (for energy use)

Population, diet (nutrients), crop production (tillage,
fuel, fertilizer, pesticide, water), yield, processing,
transport, waste

GHG emissions, ozone depletion, smog formation,
energy use, metals released, crop value (US$)

US EPA (2020);
Yang et al. (2020)

CFD
Computational fluid dynamics (for urban
microclimate characteristics)

Surface temperature, vegetative evapotranspiration,
solar radiation, air movement, air temperature

Heat flux, air temperature, surface temperature Toparlar et al.
(2017)

EnergyPlus
Building energy dynamics (for built forms)

Sensible heat flux, building and road geometry, air
temperature, relative humidity, cloud cover, wind
speed, air pressure, occupancy schedules

Energy Use Intensity (EUI),GHG emissions,
anthropogenic heat, imperviousness, albedo and
emissivity, heat capacity

US DOE (2020)

SWAT
Soil and Water Assessment Tool (for
hydrological impacts)

Climate, topography, soil, slope, land cover,
cropping systems

Streamflow, tile drain flow, evapotranspiration, soil
loss (erosion), nitrogen, phosphorus and sediment
loads

Arnold et al. 1998
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actors (farmers). Agents are capable of autonomous decision
making and action, and programmed with abilities to acquire
knowledge and adapt over time based on their objectives,
observations, and interactions with others (Wooldridge and
Jennings, 1995; Macal, 2016). We will use ABM to create a
virtual representation of current conditions for farmers in the
MSA, populated with heterogeneous agents that represent
producers of commodity and/or specialty crops. In each
simulated season, agents will make decisions on types and
volumes of crops to produce based on their individual
observations of demand, prices and yields from prior
seasons, their objectives (e.g., profit, “fit” for their
operation, and/or protecting the environment), and
interactions with others.

Preliminary work currently underway includes assembly of
empirical data from focus groups with farmers (about their
operations, social networks, interest in producing food crops,
factors influencing their production capacity) and consumers
(where they purchase food, social networks, importance of
local foods, and factors influencing choices about food

purchases) in the MSA (approved by the Iowa State
University Institutional Review Board for the Study of
Human Subjects). These data are being used to inform
development of a survey (currently being administered
under the same IRB) to obtain responses from a larger and
more representative population of each group. Together with
existing literature, this empirical human behavior data will
inform design of the agents’ decision logic and social behavior
within the ABM.We will use local experts’ opinions to evaluate
face validity for agent behaviors.

We will create this ABM for a virtual food system in the MSA
using NetLogo (Wilensky and Rand, 2015). The ABM for current
conditions will be used as the basis to predict future food system
developments in which agents and their interactions will take
place driven by changes in policy, management, technology,
social interaction, and market forces, as determined using data
from both focus group and survey responses. Output from a set of
these ABM iterations will then be used to provide static input to
guide future condition boundaries in all other models, for soft
coupling tests, and in our final co-simulation.

FIGURE 1 | Framework to integrate social and biophysical models for the urban FEWS nexus.We integrate widely available open-sourcemodels for under dynamic
climate conditions (NARCCAP and WRF), social systems (NetLogo for ABM) with those for food (APEX), energy (USEEIO, Energy Plus) and water (SWAT, SWMM) with
different drivers of change for local food production in the Des Moines-West Des Moines Metropolitan Statistical Area.
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Urban Climate Dynamics: Weather Research and
Forecasting (WRF) Model
We are using the weather research and forecasting (WRF) model
(Skamarock et al., 2008) to simulate urban and near-urban
climate conditions associated with current land cover and to
predict the influence of future land cover changes related to
increased local food production in both areas. We began this
process by characterizing land surface properties in WRF, using
satellite imagery and geospatial data for the MSA. Parameters in
the model include green vegetation fraction, leaf area index,
albedo, land use/land cover types, and urban morphological
information derived from impervious surface area, building
heights and widths, and road widths.

UsingWRF, our initial lateral boundary conditions were taken
from reanalysis data of the Global Forecast System. The National
Oceanic and Atmospheric Administration’s (NOAA) Land
Surface and Single-layer Urban Canopy models are used to
parameterize water and energy fluxes based on land surface
properties. (MLRC, 2020) Seamless Moderate-resolution
Imaging Spectroradiometer (MODIS) daily land surface
temperature data (as per Li et al., 2018) at approximately 1:00
pm and 1:00 amwere used to evaluate spatial patterns in theWRF
land surface temperature (LST) simulations. Hourly air
temperature observations at two meteorological stations (in
Des Moines and Ankeny) were used to evaluate the
performance of WRF air temperature simulations. Output data
included dry bulb and wet bulb temperature, wind speed, and
humidity which will be converted to input for future urban
building energy modeling. The WRF will be further validated
using theMulti-objective Shuffled Complex EvolutionMetropolis
(MOSCEM) optimization algorithm (Chen et al., 2011).

Energy: Life Cycle Assessment–United States
Environmentally Extended Input-Output (USEEIO)
Model
We are using the open-source USEEIO life cycle assessment
(LCA) model (US EPA, 2020) to estimate energy inputs,
product outputs, and environmental impacts associated with
crop and food production in the MSA (Yang et al., 2020).
Model inputs include population, dietary patterns, food
nutrients, production methods for different crops (yields,
associated fertilizers, pesticides, water use), food processing,
food prices, transportation (mode and distance), and waste
produced. The LCA analyses are currently underway and
focused on energy use, water use, and multiple environmental
performance indicators for the production systems evaluated. We
account for commodity crops (in this landscape primarily corn
and soybeans produced as row crops) as well as food crops (such
as meat and eggs, fruits/berries, vegetables, grains, oils, and
sugars). System boundaries are defined as extending from
cradle to consumer (food waste will be incorporated in future
simulations).

The LCA simulations for current conditions are ongoing and
based on contemporary levels of production [USDA NASS
(National Agricultural Statistics Service), 2016] and
consumption [USDA ERS (Economic Research Service), 2018]
within the MSA. The LCA simulations for future conditions (not

yet accomplished) will be based on projected increases in food
crop production for each of the scenario-driven ABM outputs
which are designed to reach 50% of consumption. Additional
simulations will be used for scenarios that include changes in
consumption based on better adherence to dietary guidelines (US
DHHS and USDA, 2015).

Water: Soil andWater Assessment Tool (SWAT) Model
The Soil and Water Assessment Tool (SWAT) is an eco-
hydrological model that we are using to quantify crop growth,
hydrological cycling, nutrient cycling/transport, erosion
processes, sediment transport, and transport of pesticides/
pathogens used in cropping systems and associated with those
management practices (Arnold et al., 1998; Gassman et al., 2007,
Arnold et al., 2012; Bieger et al., 2017). We include inputs for
climate (Texas, 2020), topography (USGS, 2020), soil (USDA,
2020), landcover (Macal, 2016) and cropping systems to generate
outputs including streamflow, evapotranspiration, and
subsurface tile drainage flow. In addition, we will be able to
simulate nitrate, phosphorus, and sediment loads to characterize
current conditions for the MSA. To allow us to discriminate
between upstream and within-MSA effects on water quality, our
SWAT models include the North and South Raccoon River,
North and South Skunk River, Middle Des Moines River, and
Lake Red Rock watersheds which drain to and through it.

Computational Fluid Dynamics (CFD) and Built Form
(EnergyPlus) Models
To integrate microclimate around buildings into the energy
balance, we are using computational fluid dynamics (CFD)
and EnergyPlus (US DOE, 2020) within the urban modeling
interface framework (umi, Reinhart et al., 2013) to compute
heating and cooling loads for buildings at a neighborhood
scale, integrating previous efforts by our team (e.g., Hashemi
et al., 2018; Passe, et al., 2020). We are using sensitivity analyses
based on WRF model datasets (work currently underway, Ghiasi
et al., 2021) to compare simulations for scenarios with and
without trees. This work is enabling us to explore impacts of
changes to surface composition in urban and near-urban
environments (current hard/impervious and heat-reflecting
surfaces vs. potential future soft/pervious and heat absorbing
vegetative surfaces in urban agricultural production systems).

Model Integration
The legacy software models we are using or plan to use can
exchange inputs and outputs. The co-simulation follows a four-
step approach, which is presently a work in progress for our
“current condition” modeling efforts. First, we identified the
inputs and outputs of each model to construct a dependency
diagram among the relevant variables. In this step we also
provided meta-labels to variables to specify whether each is
static or dynamic. We then compiled a suite of model
executables (for ABM, WRF, USEEIO, SWAT, CFD/
EnergyPlus) that have consistent input/output (I/O) file
formats via appropriate read/write modules. We will then
(work ongoing) use these I/O files for soft coupling by
sequentially executing selected sets of individual models to

Frontiers in Big Data | www.frontiersin.org May 2021 | Volume 4 | Article 6621865

Thompson et al. Social and Biophysical FEWS Models

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


examine the sensitivity of models to each variable. We are using
Python programming language for this step. Insights gained from
limited model orchestration will then be used in the future to
inform a more formal co-simulation process using a functional
mockup interface (FMI) method to sequentially integrate all sub-
models (Modelisar, 2018).

PRELIMINARY RESULTS

Here we present our earliest results for the individual FEWS
models we are creating using place-based data for the Des Moines
MSA. Our initial data collection and modeling efforts are focused
on characterizing the current conditions for these systems which
we will then later use for comparison to simulated future
conditions. The preliminary results we are currently generating
will also guide our use of disciplinary expertise to inform future
transdisciplinary soft-coupling and co-simulation efforts.

Social Dynamics–ABM Conceptual Model
Focus group and survey data have been used to inform
development of our current conceptual ABM to represent an
abstraction of the real-world system (Robinson, 2008; Robinson,
2013; Sargent, 2013). This conceptual ABM will then be used to
align multiple modeler and stakeholder viewpoints (Robinson
et al., 2015), to explain model processes and agent logic in a non-
technical way, and to guide later more formal ABM models.

Our current conceptual ABM represents a sequence of farmer
agents’ decisions and behaviors during a single production season
(Figure 2). At the start of each simulated season, a farmer agent
selects crops to produce, their production methods, and specific
distribution channels to target. These decisions are based on
information from agents’ previous experiences and input from a
social network of other agents. The farmer agent will evaluate this
data via a multi-attribute utility function, which will be
parameterized using survey data for values, preferences, and
risk acceptance of farmers in the MSA. Guided by outputs of

the utility function, the final virtual farmer agents will be designed
to produce and sell crops, and the outcomes (for example, yields
and profit generated) will also become inputs to production
planning decisions for the following season. The current
conceptual model is being used as a tool to communicate the
function of the ABM across the research team via a process of
presenting the model and receiving and incorporating feedback.
This model will also eventually serve as the “roadmap” to guide
future development of our more detailed ABM of producers in
NetLogo.

Urban Climate Dynamics
A preliminary result we have already generated using the WRF
model is gridded air temperature data with 1-km resolution,
which can be used later to explore spatial variation of the urban
heat island (UHI) effect within Des Moines. We extracted the
daily maximum UHI magnitude and calculated the monthly
mean for August 2012 in our pilot work. We calculated the
hourly UHI ΔTi as the difference between the 2-m elevation air
temperatures in urban and rural areas (ΔTi � TUi − TRi), where
TRi is the average temperature at local time i in rural pixels and
TUi is the temperature at local time i in the urban pixels. Monthly
UHI intensity is close to 3.0°C in the center of Des Moines and
decreases gradually along a gradient to the city boundaries
(Figure 3A; Ghiasi et al., 2021). We observed a stronger UHI
effect for the southeastern area of the city compared to the
northwestern area. We are aware that certain land cover
classes in our study area could affect our results for specific
areas (e.g., El Kenawy et al., 2019) and will work to minimize this
potential bias.

Energy: Life Cycle Assessment–
United States Environmentally Extended
Input-Output Model
Preliminary results in our first LCA efforts establish a baseline for
potential environmental impacts associated with current food

FIGURE 2 |Conceptual agent-basedmodel (ABM). This conceptual model is based on producer focus group discussions and represents producer agent decision
logic and behaviors for a single simulated production season, incorporating information from social interactions and results of crop production and distribution.
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production in the Des Moines MSA. The current food system
produces a global warming potential (GWP) of 48,669,000 kg
CO2eq/yr, energy use of 540,000 MJ/yr, and water use of
48,917,000 m3/yr. Other environmental indicators in the
baseline model include potential for acidification (545,000 kg
SO2eq/yr), eutrophication (372,000 kg Neq/yr), ozone depletion
(458 kg CFC11eq/yr), and smog formation (1,999,000 kg O3eq/yr).
Potential for human health cancer is 0.013 CTUh (cases/kg
emitted)/yr, and human health non-cancer is 0.357 CTUh/yr.
More in-depth analyses of environmental, social, and
economic trade-offs across scenarios will require a more
complex future model (currently in development) for local
production in the MSA. The LCA is a deterministic model, so
we do not include probabilistic model validation for this
preliminary work. In future work, our approach to validation
will include use of Monte Carlo techniques and additional
methods of uncertainty analyses will be conducted
concurrently with co-simulation.

Water: Soil and Water Assessment Tool
Model
Preliminary streamflow simulation and testing has also been
conducted for the full MSA scale (Figure 3B). Example
comparisons of initial simulated vs. measured streamflow
comparisons for two sub-basins, the North Skunk River and
South Raccoon River watersheds, are shown for the period 2001
to 2013 (Figure 4). These North Skunk and South Raccoon
simulations indicate that SWAT replicates much of the
observed monthly hydrograph over the 13-years simulation
period. However, several peak flows are under-predicted, and
over-predictions also were observed for some low-flow periods.
These preliminary SWAT results underscore that further
refinement and testing of the SWAT models will be needed

and will soon be conducted to improve hydrologic estimates.
Further testing of SWAT will be performed using both temporal
and spatial calibration/validation techniques, in which calibrated
parameters will be validated using measured stream flow rates for
different time periods (temporal) and at different gauge sites
(spatial). Pollutant testing will also be conducted to the extent
possible with more limited measured data available to the team
from public data sources. Both graphical and statistical methods
will be used to evaluate future calibrated models including
statistical criteria (e.g., R2 of at least 0.60 and Nash-Sutcliffe
efficiency of at least 0.50, as suggested by (Moriasi et al., 2007 and
Moriasi et al., 2015) and comprehensive modeling approaches
described earlier by our team members (Jha et al., 2010).

Microclimate Computational Fluid
Dynamics and Built Forms: EnergyPlus
Model
Preliminary simulations for energy consumption by 340
buildings in the Capitol East neighborhood were developed
using WRF-generated weather data files and compared to
those using nearby weather station data. Building cooling load
estimates increased by 21% using the more specific WRF dataset,
suggesting that future use of this data will lead to greater accuracy
for estimates of cooling load (Ghiasi et al., 2021). Separate
simulations focused on a portion of the neighborhood for
which a comprehensive tree inventory allowed comparison of
building energy demand related to presence and shading near
buildings. On average, we found that heat flux to the
surroundings decreased by 4.5% for houses surrounded by
trees, and maximum heat flux reduction was close to 10%
(Gao et al., 2021). Future work will evaluate the contribution
of vegetative evapotranspiration and also include investigation of
hypothetical situations in which more surfaces are dedicated to

FIGURE 3 | (A) Spatial distribution of monthly UHI (difference between rural and urban temperatures in August 2012) for the City of Des Moines, Polk County,
United States. Temperature differences are greatest for older residential neighborhoods southeast of the downtown area (B) Location of watersheds that drain to Des
Moines (outlined in orange) that drain through the MSA (the six-county area outlined in darker gray) and to the City of Des Moines in central Iowa, United States (yellow
areas are upstream inlets).
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food production near and on buildings (vertical or rooftop
gardens). Validation for the CFD modeling will be conducted
in the future (as per Chen and Srebric, 2002) and cross-checked
using data from controlled experiments.

Model Integration
To construct a dependency graph, we first identified key inputs/
outputs for each model to establish preliminary linkages among
the models (Figure 5). The ABM is the head node of the
dependency graph, establishing coupling with other models by
providing estimates of future crop and food production
information as outputs. These will be used to inform the
future weather (WRF), energy (USEEIO), water (SWAT), and
built form energy (EnergyPlus) models. Future weather models
also feed into water and built form energy models. Finally, all
models will produce outputs used to assess food, energy and water
indicators for both current and future conditions. We will include
feedback from food, water and energy model outcomes back to

the ABM (andWRF) among a set of future simulation campaigns
to allow multiple assessments of potential future conditions.

DISCUSSION

Our transdisciplinary approach to modeling the urban FEWS nexus
allows us to focus on the potential effects of increasing food
production across variable spatial and temporal scales. We do so
in order to allow future exploration of a set of “what-ifs?” for a near-
urban landscape currently dominated by production of commodity
crops and an urban landscape in which opportunities for urban
agricultural production are presently limited. Our preliminary work
on the individual systemmodels provides a clearer understanding of
this urban FEWS, while future development of links betweenmodels
in our future co-simulation campaign will allow us to examine
interactions, differences and similarities in modeling assumptions
and levels of abstraction.

FIGURE 4 | (A) Sub-basin delineations for the South Raccoon (top, left) and North Skunk (top, right) river watersheds (B) Comparisons of average annual August
streamflows for the period 2001–2013 for the South Raccoon (bottom, left) and North Skunk (bottom, right) watersheds.
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The conceptual ABMprovides a window into the social aspects of
complex and de-coupled producer-consumer dynamics given large-
scale production of commodity crops (rather than production of
food for humans) in this landscape at the present time. Relatively
short loops between social interactions and crop production in data
gathering and longer loops for distribution and sales are likely to
influence system dynamics (Figure 2). Although much interest has
been expressed in “localizing” food production from a biophysical
standpoint (e.g., Horst and Gaolach, 2015) there is not a large
literature exploring this possibility in heavily industrialized
agricultural production landscapes (but see Hu et al., 2011; Kurtz
et al., 2020). Producing more food for humans will require future
land use changes in both near-urban and urban areas of this
landscape (Peters et al., 2016; Kurtz et al., 2020). It is likely that
the attendant effects of doing so may mitigate other urban FEWS
dilemmas (energy use, GHGE, water pollution, excess heat, food
access; Benis et al., 2017). Our initial exploration of the potential for
increased local food production and understanding of the social
dynamics related to it indicates that it certainly has the potential to
lead to more sustainable food supplies and resilient cities (Barthel
and Isendahl, 2013).

Incorporation of climate datasets and WRF models allows us
to examine the initial effects of future conditions for food/crop
production as well as dynamics affecting integrated energy
demand and consumption for built forms as well as near-
urban landscapes. While we know climatic changes will affect
crop growth, it is unclear whether those changes will increase or
decrease yields, especially in urban environments (Boote et al.,
2012; Takle et al., 2013; Wortman and Lovell, 2013). In addition,
land use changes will have direct effects on building-related
energy consumption. Overall, UHI intensity decreases across
distance, with temperature differences highest in the
downtown area and lowest near the city boundary. In
addition, older neighborhoods bordering the downtown area
appear to be among areas strongly impacted. Preliminary
results also indicated potential for UHI effects to cause

10–20% increases in building energy demand in those areas.
However, if more urban land is used for food production, those
impacts could decrease. Thus, as we continue this project we will
produce much-needed information on complex interactions of
crop/food growth, climate, and built forms in these areas.

Our use of LCA is already providing insight on the integrated
effects of energy, water, and land use for current conditions and
possible future production scenarios that integrate more local
human food production (e.g., Benis et al., 2017). It allows for
assessment of multiple environmental parameters associated with
different product mixes, processes and systems, and their
potential impacts across the system from cradle to grave. Our
early LCA model results suggest GWP associated with current
food systems (which rely on long-distance transport for most
human food) is much greater than what would be expected for
scenarios that include more locally produced foods. Additional
LCA models presently under development will examine other
system parameters and provide a foundation to assess system
changes and the desirability of different potential future states.
These additional models we plan to develop will allow
identification of other supply chain components with
environmental impacts, which can be used to guide future
decisions and policies.

The SWATmodeling we have done encompasses a large swath
of central Iowa and allows us to build on prior work that was done
to examine flow rates, discharge, and pollutant contributions in
area streams and rivers (e.g., Jha et al., 2010). Prior work is also
informing ongoing efforts in model calibration and validation,
and enables incorporation of expert opinion in model
development processes. Going forward, particular attention in
the future will be given to hydrological modeling in urban and
near-urban environments related to land use change for food
production, a topic not yet adequately studied.

Further, our work on model integration requires
synchronization of datasets and careful attention to input/
output parameters. Team exercises to create and revise the

FIGURE 5 | Approach to co-simulation using the set of models (and model inputs/outputs) included in the iowa Urban FEWS project. Scenarios in which system
changes that inform the ABM will drive changes in crop types and crop production methods reflected in energy use for food systems and in the built environment. Food,
energy, and water system indicators feed back to the ABM to inform decisions in subsequent iterations and are used to evaluate whole-system outcomes.
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dependency graph based on ongoing work have been critical
and have spurred important discussions with respect to both
spatial and temporal scales, as well as the importance of
integrating feedback mechanisms among models in future
iterations.

CONCLUSION

The setting for our research and our use of open-source platforms
will both contribute strongly to the applicability of this work as it
proceeds to fill gaps in contemporary understanding of the urban
FEWS nexus. Further, this work is likely to lead to improvements
in system management and function to increase resilience and
enhance sustainability particularly for urban and near-urban food
systems. The ultimate goal for the larger project in which we are
conducting this work is a transferable framework that will be
useful to envision and implement more localized urban food
systems in other rainfed agricultural areas. We hope our
analytical method will be used in the future and in many
settings to increase reliance on local production while at the
same time minimizing the negative environmental effects of
doing so.
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