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Simple Summary: There are multiple processes that can go awry to drive cancer. One of these arises
from a dysregulation of trafficking of cellular materials between the two major compartments of the
cell—the nucleus and the cytoplasm. These compartments are separated by a membrane or “wall”,
but in this wall reside a series of tunnels, or pores, that permit specific materials to transit. One of
these materials, known as RNA, carries the information from the nucleus to the cytoplasm to make
proteins that can act in certain cellular processes such as growth or survival. If these RNAs transit
between compartments inappropriately, they can cause dysregulation of a wide array of cellular
processes, which in turn can contribute to cancer. This review describes the relevant pathways and
presents strategies to target this process in cancer.

Abstract: Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the
expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export
of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects
elicited by NPC components and associated co-factors provides a molecular basis for the export of
selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in
primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets
of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export
machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in
cancer. The basic mechanisms associated with RNA export with relation to export machinery and
relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical
trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer
along with transcription and translation.
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1. Overview

Dysregulation of many cellular processes contributes to cancer. Aberrant transcription,
translation, and signaling are amongst the most widely studied. However, the entire
journey of coding RNA from transcription in the nucleus to translation into protein in the
cytoplasm is marked by important RNA processing steps such as m7G capping, splicing,
polyadenylation, and subsequent export to the cytoplasm [1–7]. Indeed, the transcriptome
does not always predict the proteome [8]; this arises in large part because of regulation
at the post-transcriptional level, which can decouple transcription and translation. Not
surprisingly, many aspects of RNA processing including RNA export are now known
to be dysregulated in, and contribute to, cancer [1–7]. To be exported, RNAs associate
with a wide array of adaptor proteins and are exported as large ribonucleotide complexes
(mRNPs), which enable them to traverse the channel in the nuclear envelope known as
the nuclear pore complex (NPC) [4,6,7]. Indeed, RNA export factors and NPC components
regulate the export of selected RNAs that act in nearly all facets of malignancy, e.g., survival,
proliferation, metastases, and invasion [4,6,7]. Many signaling pathways converge on the
RNA export machinery as well as the NPC, thereby positioning this process as a mediator
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of signaling and stress responses [4,6,7]. In this review, we focus on mRNA export and the
architectural features of the vertebrate NPC relevant to this activity.

2. General Features of Nuclear-Cytoplasmic Trafficking

The NPC is a megadalton protein complex embedded within the nuclear membrane
and serves as the primary transit route between the nucleus and cytoplasm. This route
is used by a wide array of macromolecules including mRNA. The structure of the NPC
was first described in early EM studies as an apparently hollow cylindrical moiety em-
bedded in the nuclear membrane with an eightfold symmetry around the pore [9,10]. The
NPC has been the subject of intense structural studies and its basic structural features
are conserved from fungi to humans [11–14] (and references therein). High-resolution
cryo-electron tomography has been used to generate 3D reconstructions of intact NPCs
while NMR and X-ray crystallography have been employed to elucidate the structures
of subcomplexes at atomic resolution [11–13]. These studies reveal that the NPC is com-
posed of three main structural features: a nuclear basket, a central membrane-traversing
channel, and cytoplasmic fibrils (Figure 1). The nuclear basket and cytoplasmic fibrils are
attached to the central framework of the pore through nuclear rings and cytoplasmic rings,
respectively. The nuclear basket is formed by eight filaments joined by a distal ring, while
eight cytoplasmic filaments or fibrils are anchored by the cytoplasmic rings (for clarity of
presentation, only four are shown in Figure 1). In humans, the NPC has a molecular mass
of ~10 MDa and is comprised of ~30 nucleoporins (Nups), which are present in multiple
copies. The protein constituent Nups are attributed names on the basis of their molecular
mass. The NPC is characterized with outer and inner diameters of approximately 120 nm
and 40 nm, respectively [15,16]. The nuclear basket serves as a docking site for export
cargoes with the NPC. The central channel is set within the nuclear envelope and is not
hollow. Within the channel, intrinsically disordered phenylalanine–glycine (FG) repeat
proteins constitute a diffusion barrier. Macromolecule cargoes smaller than ~30–50 kDa can
traverse passively through the diffusion barrier whereas larger molecules require nuclear
transport factors (also known as karyopherins) for successful translocation [11,17,18]. Char-
acteristics of cargoes such as their surface charge can dramatically alter their permeability,
allowing larger factors to diffuse passively in some instances [19–21]. On the cytoplasmic
side, filaments known as cytoplasmic fibrils can project up to 50 nm outward into the
cytoplasm [11–13]. These function as cargo release sites for export cargoes or docking sites
for nuclear import [4,22–24]. It is important to note that NPC composition can differ in
specific cell types, revealing context-dependent transport functions [25–27]. Further, the
NPC and some associated factors can also act in non-transport functions [25–28]; however,
we will focus on transport activities here.

Most cargoes must associate with nuclear transport receptors and associated factors
to transit through the NPC. Cargoes typically interact with nuclear transport receptors
such as importins, exportins, or transportins. For import of cargoes into the nucleus,
transport typically requires protein cargoes to contain an accessible nuclear localization
signals (NLS) [29]. In the cytoplasm, importins associate with cargoes displaying accessible
NLSs and allow these to transit through the NPC to the nucleus. Once in the nucleus,
cargoes must be released from the importin. This occurs via association of RanGTP with the
importin, which induces conformational changes that lead to cargo release. Subsequently
the RanGTP–importin complex is recycled to the cytoplasm [29–31]. In the cytoplasm, the
RanGTPase-activating protein (RanGAP) in the presence of Ran-binding proteins (RanBPs)
substantially stimulates hydrolysis of RanGTP, and the subsequent RanGDP dissociates
from the cargo for release into the cytoplasm, freeing the importin for future rounds of
nuclear import [29].

Export from the nucleus generally necessitates cargoes to possess an accessible nuclear
export signal (NES), permitting association with exportin proteins. The prevalent exportin
is known as exportin 1 or chromosome maintenance protein 1 (XPO1/CRM1). Here,
cargoes with an accessible NES form a complex with an exportin and RanGTP [32–34].
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This complex can now associate with factors at the nuclear basket and transit through the
central channel of the nuclear pore. At the cytoplasmic side, one of the major components
of the fibrils is Nup358, also known as RanBP2 [11–13]. RanBP2 contains docking sites
for many proteins and binds RanGAP as well as binding sites for both RanGDP and
RanGTP [12,13,24,35]. Here, the cargoes are released from the exportin by hydrolysis of
RanGTP to RanGDP through RanGAP associated with RanBP2 or in some cases with the
small, soluble RanBP1 [36]. Hydrolysis to RanGDP reduces the affinity of the exportin for
the NES-containing cargo, allowing its release into the cytoplasm and subsequent recycling
of the exportin to the nucleus for future rounds of export [37]. To ensure directionality of
transport, Ran is recycled by the nuclear transport factor 2 (NTF2), which binds RanGDP
in the cytoplasm and ferries it to the nucleoplasm [36]. Here, the RanGEF exchange factor
RCC1 facilitates nucleotide exchange to regenerate RanGTP [36].
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Figure 1. Schematics of the basic elements of the vertebrate nuclear pore complex. The nuclear basket,
central pore, and cytoplasmic fibrils are shown. For simplicity, only four cytoplasmic fibrils and four
nuclear basket protrusions are shown, rather than all eight.

3. General Features of mRNA Export

mRNA export is extremely important for gene regulation, serving two critical func-
tions: (1) it provides a surveillance mechanism, meaning that it weeds out aberrant mRNAs,
and thus these do not become translated into aberrant proteins with altered functions.
(2) It serves as an important regulatory step, permitting altered flow of specific mRNAs
into the cytoplasm in order to control their translation into protein and thus the response
to extracellular signals as well as stress conditions. Indeed, groups of mRNAs encoding
proteins acting in the same biochemical pathways can be coordinately exported, or retained
in the nucleus, providing a powerful means to quickly turn on or off biochemical pathways
that drive cell physiology [38–41]. This model of how to control groups of mRNAs is
referred to as RNA regulons. This coordinated control typically arises from the presence
of cis-acting elements conserved amongst mRNA targets, which are referred to as USER
(untranslated sequence elements for regulation) codes [38–41]. Transit through the NPC is
by far the major exit route for export, but there are examples of large mRNPs exiting the
nucleus by budding at the nuclear membrane [42]. In this review, the focus is on the NPC
route. As will be described below, the NPC plays an active role in RNA export and indeed
its modulation can impact on bulk mRNA export or on selected mRNAs.

Given the fundamental roles mRNA export plays in gene expression, it is not surpris-
ing that RNA export is typically closely tied to RNA processing. For mRNAs, this generally
involves the addition of a 7-methylguanosine (m7G cap) on the 5′ end of transcripts, splic-
ing and addition of a polyA tail on the 3′ end of transcripts. Interactions with particular
protein factors mark the mRNA as processed and ready for export [4,6]. Generally speaking,
mRNA cargoes cannot directly interact with proteins at the nuclear basket. Rather, their
protein co-factors influence the ability of cargo mRNPs to form complexes with nuclear
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receptors, which in turn mediate their interaction with the nuclear basket and subsequent
traversal of the NPC [4,6]. For the export of the majority of RNAs, the m7G cap plays a
key role permitting interactions with the cap-binding protein complex (CBC) or in some
cases with the eukaryotic translation initiation factor eIF4E as well as other factors [6].
To date, the best studied mRNA export receptors are the nuclear RNA export factor 1
(NXF1)/Tip-associating protein (TAP) acting in complex with NXT1 (nuclear transport
factor 2-like export 1)/p15 [43,44] or XPO1/CRM1 [4,6] (Figure 2). The majority of mRNAs
use the NXF1/NXT1 heterodimer route [4,45]. RNA export can be modulated at several
stages, including assembly of mRNPs in the nucleus, association with the nuclear basket,
RNA cargo release in the cytoplasm, and recycling of export factors back to the nucleus.
This provides multiple steps that can respond to extracellular stimuli, stress, intracellular
signals, or can be dysregulated in cancer.
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Figure 2. The two major RNA export receptor pathways, nuclear RNA export factor 1 (NXF1)/nuclear
transport factor 2-like export 1 (NXT1) and chromosome maintenance protein 1 (CRM1), are shown,
and both are dysregulated in cancer. There are multiple routes to engage either of these pathways.
For example, for the NXF1/NXT1 pathways, there are complexes that rely on ALY/REF (transcription
export (TREX) and AREX) and also on GANP (TREX2). There are the intronless H2a RNAs with
intronless transport elements (ITEs) that rely on SR proteins but additionally some intron-containing
RNAs also require SR proteins. For the NXF1/NXT1 pathway, cargo release depends on DDX9/Gle1.
There are also multiple routes to engage the CRM1 pathways. These are depicted for IFN1α, HuR,
eIF4E, and NXF3. For the CRM1 pathway, cargo release involves RanGTP hydrolysis through either
the RanBP1 or RanBP2 pathways (A). For the case of eIF4E overexpression (B), RanBP2 levels are
reduced (depicted by fibrils in shadow) and RanBP1 levels are increased. Thus, the RanBP1 release
pathways are thought to predominate. Once cargoes are released from both the NXF1/NXT1 and
CRM1 pathways, exportins and associated factors are recycled (not shown). Only four cytoplasmic
fibrils and four nuclear basket protrusions are displayed for simplicity of presentation (as there
are eight fibrils per nuclear pore complex (NPC)). Factors known to be involved in cancer are
encapsulated in red dashed lines. This is not an exhaustive list of all NPC factors that are dysregulated
in cancer but highlights the fact that all facets of the NPC can be impacted (nuclear basket, central
channel, and cytoplasmic fibrils).
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4. NXF1/NXT1 mRNA Export Pathways

NXF1 requires interaction with the small NXT1 co-factor to effectively associate with
components of the NPC and thus to act in RNA export. Indeed, depletion of NXT1 results
in nuclear accumulation of poly(A) transcripts [43,44]. The NXF1/NXT1 pathway is char-
acterized by several features including its use of the transcription export (TREX) complex.
TREX consists of UAP56, ALY/REF (ALY), CIP29, and the multi-subunit THO complex,
which is comprised of THOC1/Hpr1, hTho2, THOC5, THOC6, THOC7, and Tex1 [46–48].
ALY, through interactions with the THO complex, bridges interactions between the cargo
mRNAs and NXF1/NXT1 [46–48]. TREX is typically recruited to the transcripts during
splicing [49]. TREX associates with the 5′ end of RNA [50], while ALY appears to inter-
act with the 3′ end of transcripts [51]. ALY’s nuclear export functions are regulated by
inositol polyphosphate multi-kinase and its enzymatic product phosphatidylinositol(3,4,5)-
triphosphate [52]. In this way, signaling is tightly linked to RNA export activity. Recently,
it has been suggested that ALY recognizes 5-methylcytosine (m5C) in mRNAs, which has
been postulated to play a role in the export of some transcripts [53]. Several of the TREX-
associated proteins can directly bind mRNA to promote export. These include ALY and
THOC5 [54], which are considered critical for recruitment of NXF1 to the complex promot-
ing direct association between RNA and NXF1/NXT1 [54]. Even within the NXF1/NXT1
pathways, there is significant diversity including alternatives to the TREX complex, e.g.,
TREX2 and the alternative TREX (AREX) export complexes [4,6] (Figure 2). Common to
all of these is the use of NXF1/NXT1 to associate with the NPC through interactions with
NPC components that act in RNA export, Rae1 and Nup98, which then allow passage
through the central channel [55–57].

As alluded to above, nuclear basket components and associated factors, e.g., TPR,
Nup153, Nup50, Rae1, and Nup98, play important roles in mRNA export [7,14,58–61].
These factors can have specific or general effects on export. For example, TPR depletion
leads to accumulation of polyA RNA in the nucleus in some cell types [62–64]. These activ-
ities can be cell- and context-specific. For instance, during neurogenesis, a neuron-specific
transcript STX1b undergoes splicing, export, and translation, while in non-neuronal cells,
these RNAs are not spliced correctly, leading to nuclear retention and degradation, which is
TPR-dependent [65]. Additionally, the TPR protein is tethered to the NPC via Nup153 [66],
although there is some disagreement if this is required [67] (and references therein). Dis-
ruption of the TPR–Nup153 interaction leads to the leakage of intron-containing RNAs
into the cytoplasm, showcasing the mRNA surveillance activity of the nuclear basket [63].
The TREX2 component GANP requires TPR for association with the NPC [67]. Indeed,
depletion of Tpr more closely mirrored loss of NXF1 or GANP than did depletion of other
nuclear basket components Nup153 or Nup50, also highlighting that basket components
can have differential impacts on mRNA export [67]. Cell cycle-driven changes to the NPC
also contribute to changes in mRNA export. For instance, ubiquitination and subsequent
degradation of Nup96 during M and G1 phase permit export of selected RNAs includ-
ing those that encode regulators for the G1/S transition [68]. Nup96 heterozygote mice
have specific mRNA export defects in immune cells leading to increased virus suscepti-
bility [69]. Thus, while these are central components of the NPC, they selectively impact
specific mRNAs.

Once the mRNP cargoes arrive at the cytoplasmic face, they generally interact with
the cytoplasmic fibrils of the NPC (Figure 2). The cytoplasmic fibrils are the location of
most cargo release and subsequent recycling of export factors. Cargo release and recycling
are important stages of the export process, and thus are highly regulated. RanBP2, a major
constituent of the fibrils, contains binding sites for many proteins including NXF1/NXT1,
RanGAP, Ran, and CRM1 [22,70–72]. RanBP2 is linked to the central channel via Nup88
and Nup214 [22]. RanBP2 hypomorph mice do not have bulk mRNA export defects but
rather display specific effects with elevation of the export of selected mRNAs, whereas
knockout of RanBP2 leads to severe impairments in bulk mRNA export [23,73]. Interest-
ingly, hypomorph mice develop spontaneous cancers relative to littermate controls [73].
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Most mRNA cargoes are released into the cytoplasm by the ATP-dependent DEAD box
helicase (DDX19) and its co-factor Gle1 [74–76]. This step requires a potent signaling
molecule inositol-hexakisphosphate (InsP6), where Gle1–InsP6 complex stimulates the
binding of DDX19 to cargo mRNA, triggering ATP hydrolysis and cargo release [74–76].
Thus, signaling pathways can influence RNA export. Many of the components described
here such as RanBP2, Nup214, and Nup88 can act in other forms of RNA export as well,
providing excellent examples of the general plasticity and modularity of the system.

A variant of the NXF1/NXT1 export pathway involves serine/arginine-rich SR pro-
teins [77–79] (Figure 2). Initial studies into the role of SR proteins in mRNA export focused
on intronless H2a mRNAs. Two SR proteins, SRp20 and 9G8, associate with a 22-nucleotide
element in the H2a mRNA, referred to as the intronless transport element (ITE), and re-
cruit the NXF1/NXT1 heterodimer to facilitate export [77]. Follow-up studies revealed
that these factors are essential for the export of some spliced RNAs as well [79,80]. For
spliced transcripts, some SR proteins, e.g., hyperphosphorylated 9G8, are recruited to the
pre-mRNA and then are hypo-phosphorylated after splicing permitting association with
NXF1/NXT1 [79]. After transit through the pore, SR proteins are re-phosphorylated,
presumably allowing release of the cargo and facilitating recycling to the nucleus of
NXF1/NXT1 [79]. More recent studies demonstrated that SR proteins are implicated
in the export of > 1000 mRNAs in an NXF1/NXT1-dependent manner. SRSF3 and SRSF7
couple alternative splicing and alternative polyadenylation to NXF1/NXT1-mediated
RNA export [78]. In this way, these SR proteins can promote or impair export of alter-
natively processed transcripts by recruiting NXF1/NXT1 to nearby regulatory sites [78].
In all, this suggests that there are at least two classes of adaptors for the NXF1/NXT1
pathways, ALY/REF and SR proteins [78]. This provides a means to selectively export
(or retain) subsets of mRNAs using the same nuclear receptor NXF1/NXT1 but different
adaptors [78,79].

5. CRM-Mediated mRNA Export

A smaller subset of RNAs transit the nuclear pore through the CRM1/XPO1 path-
way (Figure 2). CRM1 plays multiple roles, as it is the major protein nuclear export
receptor in the cell but also exports small nuclear RNAs (U snRNAs) [70,81] and some
pre-microRNAs [82]. mRNAs shorter than 300 nucleotides in length also utilize a U snRNA-
type strategy for exit [83]. CRM1 interacts with its cargoes using the NES found in many
shuttling proteins [32,70]. In this way, CRM1 does not directly bind to mRNA but rather to
adaptor proteins that mediate the interactions with transcripts [70]. In the nucleus, CRM1
associates with cargo in the presence of RanGTP [70]. Release in the cytoplasm requires
interactions with RanGAP and either RanBP2 or the small, soluble RanBP1. This allows
hydrolysis of GTP and release of the mRNA cargo. As with NXF1 pathways described
above, Nup88, Nup214, and RanBP2 play critical roles in the release and recycling steps for
CRM1-dependent export [70].

There are multiple variants of CRM1-dependent mRNA export (Figure 2). CRM1
exports mRNA cargoes with various cis-acting elements or USER-codes and different
adaptor proteins. For example, some RNAs that contain AU-rich elements (AREs) in their 3′

untranslated region (UTR) undergo CRM1-mediated export via the co-factor HuR [84]. HuR
directly binds the ARE elements in these RNAs. If the CRM1 inhibitor leptomycin B (LMB)
is used, export of AU-rich (and some other RNAs), but not bulk RNA, is impaired [84].
Interestingly, HuD, an HuR family member specific to neurons, is associated with RNA and
NXF1, indicating that HuR family members are not restricted to CRM1-dependent mRNA
export [85]. Interferon-alpha-1 (IFNa1) transcripts are exported in a CRM1-dependent,
HuR-independent manner, indicating that other adaptors exist for mRNAs to engage the
CRM1 pathway [86]. An NXF family member known as NXF3 binds specific mRNAs but
does not appear to bind the Nups of the nuclear basket. Instead NXF3 uses CRM1 to transit
the NPC [87]. Presumably, there are specific USER code(s) that allow the recruitment of
these selected mRNAs to this pathway, but these are yet to be identified.
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CRM1 plays an essential role in mRNA export mediated by the eukaryotic transla-
tion initiation factor eIF4E [88–91] (Figure 2). While most focus on eIF4E is on its role in
the cytoplasm, it also localizes to the nucleus [92]. eIF4E forms nuclear bodies in many
organisms, e.g., yeast, Drosophila, Xenopus, mouse, and human [92–95]. Its best character-
ized nuclear role is in the export of specific RNAs, thereby increasing their cytoplasmic
concentrations and thus providing better availability to the translation apparatus, and,
in some cases, increasing their translational efficiency in the cytoplasm as well [93,96].
Consistent with its requirement for CRM1, LMB impairs eIF4E-dependent mRNA export,
while knockdown of NXF1/TAP1 has no effect [89]. Biochemically, eIF4E requires target
RNAs to have a m7G cap. Additionally, eIF4E requires translation targets to have a complex
5′ untranslated region (UTR), while for RNA export targets it needs a ~50-nucleotide ele-
ment in their 3′ UTR denoted an eIF4E sensitivity element (4ESE) [89–91,93,96]. In future,
other RNA export elements may also come to light. Genome-wide analyses revealed that
there are ~3000 RNAs that bind to eIF4E in the nucleus and thus are likely targets of
eIF4E-dependent RNA export, with many of these mRNAs acting in pathways driving
malignant transformation [88,89,97–100]. Some of these eIF4E-target transcripts alter the
surface architecture of cells, imbuing migration, invasion, and metastatic capacity [101]. By
contrast, housekeeping transcripts, e.g., GAPDH, are neither mRNA export nor translation
targets of eIF4E [93,96].

Biochemical studies demonstrate the leucine-rich pentatricopeptide repeat C-terminus
protein (LRPPRC) directly binds the 4ESE RNA element and eIF4E simultaneously [90,91]
(Figure 2). Thus, eIF4E binds the 5′ m7G cap, while LRPPRC recognizes the 4ESE element
in the 3′ UTR of cargo mRNAs. Furthermore, LRPPRC directly binds to CRM1 [91]. Thus,
LRPPRC acts as an RNA export assembly platform [90], and it appears that the eIF4E-
4ESE RNA–LRPPRC–CRM1 complex represents a minimal export complex [91]. These
interactions are also observed in the nuclei of human cells [90]. In cells, the nuclear
eIF4E export complexes also contains UAP56 and hnRNPA1, but not NXF1, CBC, or
REF/ALY [90]. Thus, this pathway shares elements with the bulk NXF1/NXT1 export
pathway but also uses specific factors to underpin its selectivity.

It is important to note that aside from its RNA export and translation activities, eIF4E
also promotes the capping [102] and 3′ end processing [103] of a subset of transcripts.
Thus, eIF4E appears to act as an m7G-cap chaperone, escorting RNAs through multiple
RNA processing steps [104]. This cap-chaperone model provides a biochemical basis for
eIF4E’s ability to act in these diverse processes. Further, it indicates that eIF4E has multiple
nuclear activities, but how these drive RNA export remains to be investigated. Importantly,
this means that eIF4E is poised to modulate mRNA export beyond forming the export
complex described above and indeed may feed into the NXF1/NXT1 pathways through
involvement in processing RNA substrates for that pathway. This possibility remains
to be tested. Consistent with this idea, through its RNA export activity, eIF4E elevates
production of Gle1 and DDX19 in human cells, suggesting it can increase cargo release in
the NXF1/NXT1 pathway as well [105].

6. Changes in the NPC Associated with mRNA Export and Cancer

Given the critical role of mRNA export, and more generally trafficking, it is not
surprising that both the NPC and the mRNA export machinery can be dysregulated in
cancer [106–108] (Figure 2, see factors encapsulated with dashed red line). Dysregula-
tion of these factors depends on the context specific landscape i.e. loss of some factors
is observed in one type of cancer while their elevation is found in other malignancies.
For example, THOC1 (component of the TREX complex) is reduced in skin and testes
cancer specimens but yet is highly elevated in primary lung, ovarian, and colon cancer
specimens [109,110]. In breast cancer, THOC1 levels are correlated with increased tumor
size and metastases [111]. Indeed, in this context reduction in THOC1 levels correlates
with inhibition of mRNA export, and it is likely that these mRNAs encode pro-survival and
proliferative factors, and thus its decrease leads to subsequent reduction in the oncogenic
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phenotype [111]. The RNA export factor ALY is elevated in oral squamous cell carcinoma
patient specimens [112]. Recent studies indicate that mutation of NXF1 in mice can lead
to disruptions in hematopoiesis in a lineage-specific manner [113], and NXF1 has been
found to be mutated in chronic lymphocytic leukemia (CLL) patients [114–116]. The ger-
minal center associated protein (GANP), a component of the TREX2 complex, is highly
elevated in several types of lymphomas [117]. While GANP is associated with bulk mRNA
export [118,119], more recent studies have suggested that reduction of GANP in human
cells impairs export of selected RNAs [120]. In either case, GANP elevation in lymphomas
likely promotes inappropriate recruitment of cargo mRNPs to the nuclear basket in order
to promote export and thus protein production. In addition, the nuclear basket protein
Rae1 is elevated in breast cancer [121].

The CRM1 pathway is also implicated in cancer, including gliomas and cervical and
pancreatic cancers, as well as in several hematological malignancies including multiple
myeloma [122–126]. CRM1 mutations, which impact on nuclear-cytoplasmic trafficking,
have been observed in cancer, specifically B cell malignancies [127]. Reduction in CRM1
levels and/or mutations in CRM1 in some cell types reduced proliferation, suggesting
a causal link between specific RNA export and/or protein export and cancer [122–127].
Nup88 is associated with cytoplasmic fibrils, where it plays roles in cargo release. Nup88
is overexpressed in ovarian, breast, mesothelioma, colon, and prostate cancer patient
specimens, and its overexpression is typically associated with advanced tumors [128–130].
Interestingly, in healthy cells, Nup88 relies on heterodimerization of Nup214 for its protein
stability; however, Nup214 is not elevated in these malignancies, indicating that this
relationship can be decoupled in cancer [129]. In all, the NPC and its associated receptors
and co-factors can be altered in, and contribute to, cancer.

Chromosomal translocations have been identified for many Nups and nuclear pore-
associated proteins in cancer [107,108]. Nup98 is involved in at least 14 translocations,
mainly associated with hematological malignancies including myelodysplastic syndrome
(MDS), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML) [107].
Nup214 translocations are present in rare forms of AML and acute non-lymphoblastic
leukemias [107]. The nuclear basket protein TPR is also found in translocations [107]. TPR–
Tkr1 translocation is associated with papillary thyroid cancers [131]. TPR–Met fusions,
where Met is a receptor tyrosine kinase that controls morphogenesis, proliferation, survival,
and migration, are found in gastric carcinomas [107,132]. Typically, the functions of the
fusion protein are not related to transport and could be the driving feature in terms of
cancer. However, in the case of RanBP2–ALK fusions, the fusion protein associates with
the NPC [133] and thus could potentially modify functions there; however, this remains to
be examined.

The inability to properly control the number of NPCs is also linked to tumorigene-
sis [134,135]. Indeed, the number of NPCs can vary between different cell types by orders
of magnitude, and this is not simply a function of available nuclear envelope surface area as
the NPC density also changes [136,137]. NPC numbers also change as a function of normal
physiological processes such as differentiation [137,138]. The nuclear basket protein TPR
negatively regulates NPC numbers in human cells [139]. This activity is controlled via the
ERK signaling pathway [139]. This provides a means to link proliferative signaling and
NPC number and thus could be related to cancer.

The first example that a single protein could reprogram the NPC comes from eIF4E
and relates to the major cytoplasmic fibril protein RanBP2 [105]. This reprogramming is
linked to eIF4E’s oncogenic activity. eIF4E is highly elevated in a broad array of human
cancers where this typically correlates with poor prognosis [45]. eIF4E overexpression
leads to tumor formation in mouse models and to oncogenic transformation in immor-
talized cell lines [140–144]. Previous mutational studies indicated that the mRNA export
activity of eIF4E substantially contributes to its oncogenic functions by promoting the
expression of target mRNAs that encode proteins acting in nearly all facets of malig-
nancy [93,101,105,145]. eIF4E overexpression leads to downregulation of RanBP2 and a
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partial relocation of Nup214 from the NPC to the nucleoplasm [105]. RanBP2 reduction
leads to enhanced eIF4E-dependent mRNA export with no effect on the bulk mRNA ex-
port pathway [105]. Conversely, overexpression of a RanBP2 fragment that binds CRM1
impairs eIF4E-dependent mRNA export, presumably by sequestering CRM1 [105]. eIF4E
overexpression causes a loss of contact inhibition [93,105], one of the hallmarks of cancer.
eIF4E’s mRNA export activity is directly related to this effect [93,105]. Consistently, RanBP2
overexpression suppresses the ability of eIF4E to form foci [105]. As mentioned above,
RanBP2 hypomorph mice develop more spontaneous tumors than littermate controls [73].
This suggests that the loss of control of eIF4E-mediated mRNA export could contribute to
the oncogenic phenotype. Importantly, RanBP2 can also function in mitosis, and this likely
also impacts its oncogenic activities [73].

Given the central role that the RanBP2 fibrils play in cargo release and recycling [70], it
is clear that eIF4E must introduce a compensatory mechanism in order to permit multiple
rounds of export. Indeed, the soluble co-factor RanBP1 is a direct mRNA export target
of eIF4E, and consistently, eIF4E overexpression leads to increased RanBP1 levels [105].
RanBP1 is only 25 kDa and soluble. In this model, RanBP1 enables mRNA cargo release and
CRM1 recycling more efficiently than with RanBP2, where RanBP2 can be associated with
slower release due to sequestration on the large cytoplasmic fibrils [105]. These findings
demonstrated that the NPC could be reprogrammed by oncogenes and related factors. In
this case, this reprogramming is poised to impact many target mRNAs [97].

7. Therapeutic Targeting of mRNA Export in Cancer

eIF4E levels are increased in many cancers, where it generally correlates with poor
prognosis [96]. In a subset of AML patients, eIF4E is substantially elevated and forms
abnormally large nuclear bodies relative to early progenitor CD34+ cells or bone marrow
mononuclear cells from healthy volunteers [145–148]. High-eIF4E AML is found in French
American British (FAB) M4/M5 AML subtypes as well as a substantial portion of M1 and
M2 AML subtypes (>150 specimens examined to date) [145–148]. While FAB subtypes are
no longer used to classify AML, this showcases that a substantial number of AML patients
have elevated, nuclear eIF4E relative to healthy volunteers. The nuclear enrichment of
eIF4E in these AML specimens correlates with elevated eIF4E-dependent mRNA export
relative to normal cells [145–148]. The contributions of its mRNA export activity to its
oncogenic phenotype have been observed in several cancers, e.g., AML, diffuse large B cell
lymphoma (DLBCL), and infant acute lymphoblastic leukemia [97,100,146,147,149].

eIF4E appears to play causative roles in malignancy given its overexpression promotes
foci formation, growth in soft agar, and apoptotic rescue from a variety of stimuli [45,96,101].
In xenograft mouse models, elevated eIF4E correlates with increased tumor numbers,
invasion, and metastases [143]. In transgenic models of eIF4E overexpression, mice develop
a variety of cancers [140]. eIF4E-mediated transformation was thought to rely only on
increased translation of oncogenic mRNAs [98]. However, eIF4E’s mRNA export functions
are also critical for its oncogenic activities, as shown by mutational studies dissecting the
role of translation and export and their relative impact on cancer [88,89,93,105,150,151].
eIF4E’s nuclear import via importin 8 and ability to modify the nuclear pore are also central
to its oncogenic activity [105,149]. Indeed, addition of an NLS to eIF4E is sufficient to
enhance its oncogenic activities, presumably by increasing eIF4E’s recycling to the nucleus
after each round of export [91,149].

eIF4E has been targeted with multiple strategies in clinical trials. To date, the most
promising studies have involved ribavirin, an old antiviral drug, which acts as a m7G-
cap competitor, directly binding eIF4E as shown by NMR and other biophysical tech-
niques [152–154]. Ribavirin inhibits eIF4E’s activities in mRNA export, translation, and
oncogenic transformation [148,152,153,155,156]. RNAi knockdown of eIF4E reduces rib-
avirin activity, supporting it acts via eIF4E [157,158]. This prompted three clinical trials
targeting eIF4E in AML patients, which resulted in objective clinical responses including
remissions [146,147] (as well as ClinialTrials.gov NCT02073838). In the ribavirin monother-
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apy trial, there were 6/15 objective responses, including 1 complete remission (CR), 2
partial remissions (PR), 3 blast responses ((BR) where a blast response is defined as a
drop in 50% or more of the leukemic blasts), and 6 stable diseases (SD) [146]. In the
second trial, the combination of low-dose AraC with ribavirin, there were 5/14 objec-
tive responses for those patients who had over 20 uM ribavirin plasma levels including
2 CR, 1 PR, 2 BR, and 2 SD [147]. In patients, ribavirin blocks eIF4E’s association with
importin 8, leading to cytoplasmic retention of eIF4E, impaired eIF4E-dependent mRNA
export, and clinical responses [146,147,149]. Relapse correlated with nuclear re-entry of
eIF4E and increased mRNA export due to chemical deactivation of ribavirin [146,149,152].
Other groups also completed early stage clinical trials targeting eIF4E with ribavirin, e.g.,
castration-resistant prostate cancer and head and neck cancers, and observed objective
clinical responses [159,160]. There are >15 ongoing trials using ribavirin to target eIF4E in
cancer (see https://clinicaltrials.gov as of 24 December 2020).

Other efforts have been made to target eIF4E in cancer. In mouse models, eIF4E was
targeted with an antisense oligonucleotide (ASO) with promising results in a prostate
cancer mouse model [161]. Unfortunately, in humans, the eIF4E ASO strategy was not
as effective at reducing eIF4E levels and there were no objective clinical responses in 15
patients examined beyond stable disease for 7 patients and with no patient on trial for
more than 3 months [162]. Similarly, targeting eIF4E indirectly via mTOR with a rapamycin
analogue yielded 1 patient with a hematological improvement out of 22 AML patients [163].
Given the multiple roles of eIF4E, it is clear that targeting mRNA export is related to disease
burden, but other facets of eIF4E activity likely also correlate with its oncogenic activities,
and ASO, rapamycin, and ribavirin would target all of its cap-dependent activities.

8. Targeting CRM1 in Cancer

There has been substantial interest in targeting CRM1 in patients given its multiple
roles in export. For example, inhibition of CRM1 represses eIF4E-mediated mRNA ex-
port [89–91]. CRM1 is also involved in export of other RNAs via HuR, as described above,
as well as protein export, and thus all of these activities likely contribute to its clinical
impact. Depletion of CRM1 or its pharmacological inhibition restored drug sensitivity
towards many chemotherapies such as doxorubicin, etoposide, and others in cell lines [164].
The first identified CRM1 inhibitor was LMB [165]. LMB forms a covalent bond with Cys
528 of CRM1 in the same groove used to bind to NES signals on protein cargoes [32,166].
In this case, the lactone ring of LMB is hydrolyzed. After hydrolysis, LMB forms additional
interactions with CRM1. In the absence of the lactone ring, the LMB derivative slowly
de-conjugates, which is not observed with the parent LMB compound [166]. In early phase
clinical trials in cancer carried out prior to the molecular understanding of its activity [167],
LMB treatment resulted in overt toxicity, even at low doses, and there was found to be no
clinical benefit, leading to a halt in these studies [167]. Consistent with this observation,
LMB irreversibly blocks export in both cancer and in many normal cells, which leaves little
in the way of a therapeutic window [168].

Despite these early findings, next-generation CRM1 inhibitors known as selective
inhibitors of nuclear export (SINE) have shown some clinical success. SINEs also form
covalent bonds with Cys 528 of CRM1, but this bond is slowly reversible, likely due
to the absence of a lactone group, thereby preventing hydrolysis [168]. Indeed, SINEs
such as KPT-330 (selinexor) interact with CRM1 in a slowly reversible manner [125,168].
Additionally, SINEs induce CRM1 degradation with subsequent re-synthesis, and thus
CRM1 activity is not permanently blocked in these cells [125,166,169]. In all, these features
of SINEs likely account for reduced toxicity in patients relative to LMB. Selinexor has
been tested in many types of cancers, with promising results in some [168]. To date, it
is approved by the US Food and Drug Administration for the treatment of relapsed or
refractory multiple myeloma [170–172].

https://clinicaltrials.gov
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9. Other Disorders Involving NPC and RNA Export

There are several other disorders associated with dysregulated NPC components,
some of which directly impact on mRNA export [26]. Mutations in Gle1 are associated
with two genetic disorders: LCCS1 (lethal congenital contracture syndrome 1) and LAAHD
(lethal arthrogryposis with anterior horn cell disease) [173]. Here, mutations lead to defects
in Gle1-mediated cargo release from the NPC [173,174]. Gle1 also acts in translation [175],
and thus these other functions may also contribute to the phenotypes observed. However,
Gle1 oligomerization is perturbed by the disease-causing mutations, and this property is
required for its mRNA export but not its translation activity, strongly suggesting that it is
disturbed mRNA export that contributes to these disorders [174]. Mutation in Nup155 leads
to cardiac disorders where Nup155 is in the inner ring and associated with Gle1. Mutations
in Nup155 associated with disease by altering Nup155 localization and NPC permeability,
leading to reduced HSP70 mRNA export among other aberrancies [176,177]. It has been
suggested that disruption of Gle1-dependent mRNA export causes atrial fibrillation [178],
but this has yet to be established. The NPC and mRNA export can also be impacted by viral
infections. One example comes from vesicular stomatitis virus (VSV) work, which show
that the VSV M protein promotes the export of specific viral RNAs. Here, the VSV matrix M
protein disrupts interactions on the nuclear basket between Nup98 and Rae1 [56]. mRNA
export is also disrupted in several neurodegenerative conditions [179]. Furthermore, NPCs
are known to change composition upon oxidative stress [68,180]. Thus, modulation of NPC
components and mRNA export can impact on a wide array of events, ultimately impacting
on cell physiology.

10. Conclusions

Regulation of mRNA export provides a mechanism to rapidly control the proteome
without necessitating further transcription. The multiplicity of exit strategies for RNAs
affords an elegant molecular basis for selectively. Aberrant mRNA export can lead to
dysregulation of a wide variety of processes that support malignancy. The ability of mRNA
export to respond to signaling implicates it as a key integrator of gene expression and cell
physiology. mRNA export machinery and relevant NPC components are dysregulated in a
variety of human cancers. Recent clinical studies suggest that targeting these pathways
could lead to clinical benefit. Importantly, many of the factors described here also play
roles in addition to mRNA export, and thus their other activities likely also contribute to
the observed phenotypes. In all, mRNA export is an important step in gene regulation,
contributes to a diverse set of human malignancies and can be targeted in patients, which
in some cases is associated with clinical benefit.
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