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ABSTRACT

The computation of genomic distances has been a very active field of computational compar-
ative genomics over the past 25 years. Substantial results include the polynomial-time com-
putability of the inversion distance by Hannenhalli and Pevzner in 1995 and the introduction of
the double cut and join distance by Yancopoulos et al. in 2005. Both results, however, rely on
the assumption that the genomes under comparison contain the same set of unique markers
(syntenic genomic regions, sometimes also referred to as genes). In 2015, Shao et al. relax this
condition by allowing for duplicate markers in the analysis. This generalized version of the
genomic distance problem is NP-hard, and they give an integer linear programming (ILP)
solution that is efficient enough to be applied to real-world datasets. A restriction of their
approach is that it can be applied only to balanced genomes that have equal numbers of
duplicates of any marker. Therefore, it still needs a delicate preprocessing of the input data
in which excessive copies of unbalanced markers have to be removed. In this article, we
present an algorithm solving the genomic distance problem for natural genomes, in which
any marker may occur an arbitrary number of times. Our method is based on a new graph
data structure, the multi-relational diagram, that allows an elegant extension of the ILP by
Shao et al. to count runs of markers that are under- or over-represented in one genome with
respect to the other and need to be inserted or deleted, respectively. With this extension,
previous restrictions on the genome configurations are lifted, for the first time enabling an
uncompromising rearrangement analysis. Any marker sequence can directly be used for the
distance calculation. The evaluation of our approach shows that it can be used to analyze
genomes with up to a few 10,000 markers, which we demonstrate on simulated and real data.

Keywords: comparative genomics, DCJ-indel distance, genome rearrangements.

1. INTRODUCTION

The study of genome rearrangements has a long tradition in comparative genomics. A central question

is how many (and what kind of) mutations have occurred between the genomic sequences of two indi-

vidual genomes. To avoid disturbances due to minor local effects, often the basic units in such comparisons are
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syntenic regions identified between the genomes under study, much larger than the individual DNA bases. We

refer to such regions as genomic markers, or simply markers, although often one also finds the term ‘‘genes.’’

Following the initial statement as an edit distance problem (Sankoff, 1992), a comprehensive trail of

literature has addressed the problem of computing the number of rearrangements between two genomes. In

a seminal article in 1995, Hannenhalli and Pevzner (1999) introduced the first polynomial time algorithm

for the computation of the inversion distance of transforming one chromosome into another one by means

of segmental inversions. Later, the same authors generalized their results to the HP model (Hannenhalli and

Pevzner, 1995), which is capable of handling multi-chromosomal genomes and accounts for additional

genome rearrangements. Another breakthrough was the introduction of the double cut and join (DCJ)

model (Yancopoulos et al., 2005; Bergeron et al., 2006), which is able to capture many genome re-

arrangements and whose genomic distance is computable in linear time. The model is based on a simple

operation in which the genome sequence is cut twice between two consecutive markers and re-assembled

by joining the resulting four loose cut-ends in a different combination.

A prerequisite for applying the DCJ model in practice is that their genomic marker sets must be identical

and that any marker occurs exactly once in each genome. This severely limits its applicability in practice.

Linear time extensions of the DCJ model allow markers to occur exclusively in one of the two genomes,

computing a genomic DCJ-insertion/deletion (indel) distance that minimizes the sum of DCJ and indel

events (Braga et al., 2011; Compeau, 2013). Still, markers are required to be singleton, that is, no duplicates

can occur. When duplicates are allowed, the problem is more intricate and all approaches proposed so far

are NP-hard (see for instance, Sankoff, 1999; Bryant, 2000; Bulteau and Jiang, 2013; Angibaud et al., 2009;

Martinez et al., 2015; Shao et al., 2015; Yin et al., 2016). From the practical side, more recently, Shao et al.

(2015) presented an integer linear programming (ILP) formulation for computing the DCJ distance in the

presence of duplicates, but restricted to balanced genomes, where both genomes have equal numbers of

duplicates. Yin et al. (2016) then developed a branch and bound approach to compute the DCJ-indel

distance of quasi-balanced genomes, which have not only an equal number of duplicated common markers

but also markers that occur exclusively in one of the two genomes. An ILP that computes the DCJ-indel

distance of unbalanced genomes was later presented by Lyubetsky et al. (2017), but their approach does not

seem to be applicable to real data sets; see Section 6.1.2 for details.

In this article, we present the first feasible exact algorithm for solving the NP-hard problem of computing the

distance under a general genome model where any marker may occur an arbitrary number of times in any of the

two genomes, called natural genomes. Specifically, we adopt the maximal matches model where only markers

appearing more often in one genome than in the other can be deleted or inserted. Our ILP formulation is based on

the one from Shao et al. (2015), but with an efficient extension that allows to count runs of markers that are under-

or over-represented in one genome with respect to the other, so that the pre-existing model of minimizing the

distance allowing DCJ and indel operations (Braga et al., 2011) can be adapted to our problem. With this

extension, once we have the genome markers, no other restriction on the genome configurations is imposed.

The evaluation of our approach shows that it can be used to analyze genomes with up to a few 10,000

markers, provided the number of duplicates is not too large. The complete source code of our ILP

implementation and the simulation software used for generating the benchmarking data in Section 6.2 are

available from https://gitlab.ub.uni-bielefeld.de/gi/ding.

This article is an extended version of earlier work that was presented at RECOMB 2020 (Bohnenkämper

et al., 2020).

2. PRELIMINARIES

A genome is a set of chromosomes, and each chromosome can be linear or circular. Each marker in a

chromosome is an oriented DNA fragment. The representation of a marker m in a chromosome can be the

symbol m itself, if it is read in direct orientation, or the symbol �m, if it is read in reverse orientation. We

represent a chromosome S of a genome A by a string s, obtained by the concatenation of all symbols in S,

read in any of the two directions. If S is circular, we can start to read it at any marker and the string s is

flanked by parentheses.

Given two genomes A and B, let U be the set of all markers that occur in any of the two genomes.

For each marker m 2 U, let FA(m) be the number of occurrences of m in genome A and FB(m) be the

number of occurrences of m in genome B. We can then define DF(m) =FA(m) -FB(m). If both FA(m) > 0
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and FB(m) > 0, m is called a common marker. We denote by G � U the set of common markers of A and B.

The markers in UnG are called exclusive markers. For example, if we have two unichromosomal linear

genomes A = f13254354g and B = f1623173413g, then U = f1‚2‚3‚4‚5‚6‚7g and

G = f1‚2‚3‚4g. Further, DF(1) = 1 - 3 = - 2, DF(2) = 1 - 1 = 0, DF(3) = 2 - 3 = - 1, DF(4) = 2 - 1 = 1,

DF(5) = 2, and DF(6) =DF(7) = - 1.

2.1. The DCJ-indel model

A genome can be transformed or sorted into another genome with the following types of mutations:

� A DCJ is the operation that cuts a genome at two different positions (possibly in two different

chromosomes), creating four open ends, and joins these open ends in a different way. This can

represent many different rearrangements, such as inversions, translocations, fusions, and fissions. For

example, a DCJ can cut linear chromosome 124356 before and after 43, creating the segments

12�, �43� and �56, where the symbol � represents the open ends. By joining the first with the third

and the second with the fourth open end, we invert 43 and obtain 123456.
� Since the genomes can have distinct multiplicity of markers, we also need to consider insertions and

deletions of segments of contiguous markers (Yancopoulos and Friedberg, 2009; Braga et al., 2011;

Compeau, 2013). We refer to insertions and deletions collectively as indels. For example, the deletion

of segment 5262 from linear chromosome 123526 24 results in 1234. Indels have two

restrictions: (1) only markers that have positive DF can be deleted; and (2) only markers that have

negative DF can be inserted.

In this article, we are interested in computing the DCJ-indel distance between two genomes A and B, that

is denoted by did
DCJ(A‚ B) and corresponds to the minimum number of DCJs and indels required to sort A

into B. We separate the instances of the problem in four types:

(1) Singular genomes: The genomes contain no duplicate markers, that is, each common marker is

singular in each genome. (The exclusive markers are not restricted to be singular, because it is

mathematically trivial to transform them into singular markers when they occur in multiple copies.)

Formally, we have that, for each m 2 G, FA(m) =FB(m) = 1. The distance between singular genomes

can be easily computed in linear time (Bergeron et al., 2006; Braga et al., 2011; Compeau, 2013).

(2) Balanced genomes: The genomes contain no exclusive markers, but can have duplicates, and the

number of duplicates in each genome is the same. Formally, we have G =U and, for each m 2 U,

FA(m) =FB(m). Computing the distance for this set of instances is NP-hard, and an ILP formulation

was given in Shao et al. (2015).

(3) Quasi-balanced genomes: The genomes contain exclusive markers and can have duplicates, but still

the number of duplicates in each genome is the same. Formally, we have G � U and, for each m 2 G,

FA(m) =FB(m). Computing the distance for this set of instances is also NP-hard, and a branch and

bound approach was given in Yin et al. (2016).

(4) Natural genomes: These genomes can have exclusive markers and duplicates, with no restrictions on

the number of copies. Since these are generalizations of balanced genomes, computing the distance

for this set of instances is also NP-hard. In the present work, we present an efficient ILP formulation

for computing the distance in this case.

3. DCJ-INDEL DISTANCE OF SINGULAR GENOMES

First, we recall the problem when common duplicates do not occur, that is, when we have singular

genomes. We will summarize the linear time approach to compute the DCJ-indel distance in this case that

was presented in Braga et al. (2011), already adapted to the notation required for presenting the new results

of this article.

3.1. Relational diagram

For computing a genomic distance, it is useful to represent the relation between two genomes in some

graph structure (Hannenhalli and Pevzner, 1995; Bergeron et al., 2006; Friedberg et al., 2008; Braga et al.,
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2011). Here, we adopt a variation of this structure, defined as follows. For each marker m, denote its two

extremities by mt(tail) and mh(head). Given two singular genomes A and B, the relational diagram R(A‚ B)

has a set of vertices V = V(A) [ V(B), where V(A) has a vertex for each extremity of each marker of genome

A and V(B) has a vertex for each extremity of each marker of genome B. Due to the 1-to-1 correspondence

between the vertices of R(A‚ B) and the occurrences of marker extremities in A and B, we can identify each

extremity with its corresponding vertex. It is convenient to represent vertices in V(A) in an upper line,

respecting the order in which they appear in each chromosome of A, and the vertices in V(B) in a lower line,

respecting the order in which they appear in each chromosome of B.

If the marker extremities c1 and c2 are adjacent in a chromosome of A, we have an adjacency edge

connecting them. Similarly, if the marker extremities c01 and c02 are adjacent in a chromosome of B, we

have an adjacency edge connecting them. Marker extremities located at chromosome ends are called

telomeres and are not connected to any adjacency edge. In contrast, each extremity that is not a telomere is

connected to exactly one adjacency edge. Denote by EA
adj and by EB

adj the adjacency edges in A and in B,

respectively. In addition, for each common marker m 2 G, we have two extremity edges, one connecting

the vertex mh from V(A) to the vertex mh from V(B) and the other connecting the vertex mt from V(A) to the

vertex mt from V(B). Denote by Ec the set of extremity edges. Finally, for each occurrence of an exclusive

marker in UnG, we have an indel edge connecting the vertices representing its two extremities. Denote by

EA
id and by EB

id the indel edges in A and in B. Each vertex is then connected either to an extremity edge or to

an indel edge.

All vertices have degree one or two, therefore R(A‚ B) is a simple collection of cycles and paths. A path

that has one endpoint in genome A and the other in genome B is called an AB-path. In the same way, both

endpoints of an AA-path are in A and both endpoints of a BB-path are in B. A cycle contains either zero or

an even number of extremity edges. When a cycle has at least two extremity edges, it is called an AB-cycle.

Moreover, a path (respectively cycle) of R(A‚ B) composed exclusively of indel and adjacency edges in one

of the two genomes corresponds to a whole linear (respectively circular) chromosome and is called a linear

(respectively circular) singleton in that genome. Actually, linear singletons are particular cases of AA-paths

or BB-paths. An example of a relational diagram for singular is given in Figure 1.

The numbers of telomeres and of AB-paths in R(A‚ B) are even. The DCJ-cost (Braga et al., 2011) of a

DCJ operation q, denoted by k q k, is defined as follows. If it increases either the number of AB-cycles by

one, or the number of AB-paths by two, q is optimal and has k q k = 0. If it does not affect the number of

AB-cycles and AB-paths in the diagram, q is neutral and has k q k = 1. If it decreases either the number of

AB-cycles by one, or the number of AB-paths by two, q is counter-optimal and has k q k = 2.

3.2. Runs and indel-potential

The approach that uses DCJ operations to group exclusive markers for minimizing indels depends on the

following concepts.

Given two genomes A and B and a component C of R(A‚ B), a run (Braga et al., 2011) is a maximal

subpath of C in which the first and the last edges are indel edges and all indel edges belong to the same

genome. It can be an A-run when its indel edges are in genome A, or a B-run when its indel edges are in

genome B. We denote by L(C) the number of runs in component C. If L(C) � 1, the component C is said to

be indel-enclosing; otherwise, if L(C) = 0, C is said to be indel-free.

While sorting components separately with optimal DCJs only, runs can be merged (when two runs

become a single one), and also accumulated together (when all its indel edges alternate with adjacency

A

B

FIG. 1. For genomes A = f1653‚ 42g and B = f172345‚ 78g, the relational diagram contains one cycle,

two AB-paths (represented in blue), one AA-path, and one BB-path (both represented in red). Short dotted horizontal

edges are adjacency edges, long horizontal edges are indel edges, and top–down edges are extremity edges.
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edges only and the run can be inserted or deleted at once) (Braga et al., 2011). The indel-potential of a

component C, denoted by k(C), is the minimum number of indels derived from C after this process and can

be directly computed from L(C):

k(C) = 0‚ if L(C) = 0 (C is indel - free);
ØL(C) + 1

2
ø‚ if L(C) � 1 (C is indel - enclosing):

�

Figure 2 shows a BB-path with 4 runs, and how its indel-potential can be achieved.

The indel-potential allows to state an upper bound for the DCJ-indel distance.

Lemma 1 (from Bergeron et al., 2006; Braga et al., 2011): Given two singular genomes A and B, whose

relational diagram R(A‚ B) has c AB-cycles and i AB-paths, we have:

did
DCJ(A‚ B) � jGj - c -

i

2
+

X
C2R(A‚ B)

k(C) :

Let k0 and k1 be, respectively, the sum of the indel-potentials for the components of the relational

diagram before and after a DCJ q. The indel-cost of q is then Dk(q) = k1 - k0, and the DCJ-indel cost of q is

defined as Dd(q) = k q k +Dk(q). While sorting components separately, it has been shown that by using

neutral or counter-optimal DCJs one can never achieve Dd < 0; therefore, we cannot decrease the upper

bound stated earlier with DCJ operations that act on a single component of the diagram (Braga et al., 2011).

3.3. Distance of circular genomes

For singular circular genomes, the diagram R(A‚ B) is composed of cycles only. In this case, the upper

bound given by Lemma 1 is tight and leads to a simplified formula (Braga et al., 2011):

did
DCJ(A‚ B) = jGj - c +

X
C2R(A‚ B)

k(C) :

3.4. Recombinations and linear genomes

For singular linear genomes, the upper bound given by Lemma 1 is achieved when the components of

R(A‚ B) are sorted separately. However, there is another type of DCJ operation, called recombination, whose

cuts are applied on two distinct components. These two components are called sources, whereas the com-

ponents obtained after the joinings are called resultants. In particular, some recombinations whose both

sources are paths have Dd < 0 and are then said to be deducting. The total number of types of deducting

recombinations is relatively small. By exhaustively exploring the space of recombination types, it is possible

to identify groups of chained recombinations, so that the sources of each group are the original paths of the

diagram. In other words, a path that is a resultant of a group is never a source of another group. This results

in a greedy approach that optimally finds the value to be deducted, as we will describe in the following.

3.4.1. Deducting recombinations. Any recombination whose sources are an AA-path and a BB-path

is optimal. A recombination whose sources are two different AB-paths can be either neutral, when the

resultants are also AB-paths, or counter-optimal, when the resultants are an AA-path and a BB-path. Any

recombination whose sources are an AB-path and an AA- or a BB-path is neutral (Braga and Stoye, 2010;

Braga et al., 2011).

i ii

FIG. 2. (i) A BB-path with four runs. (ii) After an optimal DCJ that creates a new cycle, one A-run is accumulated

(between edges e4 and e3 there is only an adjacency edge) and two B-runs are merged (e2 is in the same run with e5 and

e6). Indeed, the indel-potential of the original BB-path is three.

414 BOHNENKÄMPER ET AL.



Let A (respectively B) be a sequence with an odd (� 1) number of runs, starting and ending with an A-

run (respectively B-run). We can then make any combination of A and B, such as AB, that is a sequence

with an even (� 2) number of runs, starting with an A-run and ending with a B-run. An empty sequence

(with no run) is represented by e. Then each one of the notations AAe, AAA, AAB, AAAB � AABA, BBe, BBA,

BBB, BBAB � BBBA, ABe, ABA, ABB, ABAB, and ABBA represents a particular type of path (AA, BB, or AB)

with a particular structure of runs (e, A, B, AB, or BA). By convention, an AB-path is always read from A

to B. These notations were adopted due to the observation that, besides the DCJ type of the recombination

(optimal, neutral, or counter-optimal), the only properties that matter are whether the paths have an odd or

an even number of runs and whether the first run is in genome A or in genome B (Braga et al., 2011). An

example of a deducting recombination is given in Figure 3.

The complete set of path recombinations with Dd � - 1 is given in Table 1. In Table 2, we also list

recombinations with Dd = 0 that create at least one source of recombinations of Table 1. We denote by � an

AB-path that cannot be a source of a recombination in Tables 1 and 2, such as ABe, ABA, and ABB.

The two sources of a recombination can also be called partners. Looking at Table 1, we observe that

all partners of ABAB- and ABBA-paths are also partners of AAAB- and BBAB-paths, all partners of AAA-

and AAB-paths are also partners of AAAB-paths, and all partners of BBA- and BBB-paths are also partners

of BBAB-paths. Moreover, in some cases deducting recombinations are chained, that is, resultants from

deducting recombinations in Tables 1 and 2 are sources of other deducting recombinations, as shown in

Figure 4. These observations allow the identification of groups of chained recombinations, as listed in

Table 3.

Each group is represented by a combination of letters, where:

� W represents an AAAB, W represents an AAA, and W represents an AAB;
� M represents a BBAB, M represents a BBA, and M represents a BBB;
� Z represents an ABAB, and N represents an ABBA.

Although some groups have reusable resultants, those are actually never reused. (If groups that are lower

in the table use as sources resultants from higher groups, the sources of all referred groups would be

previously consumed in groups that occupy even higher positions in the table.) Due to this fact, the number

of occurrences in each group depends only on the initial number of each type of component.

The deductions shown in Table 3 can be computed with an approach that greedily maximizes the groups

in P, Q, T , S,M, and N in this order. The P part contains only one operation and is, thus, very simple.

The same happens with Q, since the two groups in this part are exclusive after applying P. The four

FIG. 3. An optimal recombination with Dd =Dk = - 2.

Table 1. Path Recombinations That Have Dd � - 1 and Allow the Best Reuse of the Resultants

Sources Resultants Dk k q k Dd Sources Resultants Dk k q k Dd

AAAB + BBAB � + � - 2 0 - 2 AAAB + AAAB AAA + AAB - 2 + 1 - 1

AAAB + BBA � + ABBA - 1 0 - 1 BBAB + BBAB BBA + BBB - 2 + 1 - 1

AAAB + BBB � + ABAB - 1 0 - 1 AAAB + ABAB � + AAA - 2 + 1 - 1

AAA + BBAB � + ABAB - 1 0 - 1 AAAB + ABBA � + AAB - 2 + 1 - 1

AAB + BBAB � + ABBA - 1 0 - 1 BBAB + ABAB � + BBB - 2 + 1 - 1

AAA + BBA � + � - 1 0 - 1 BBAB + ABBA � + BBA - 2 + 1 - 1

AAB + BBB � + � - 1 0 - 1 ABAB + ABBA � + � - 2 + 1 - 1
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subparts of T are also exclusive after applying Q. (Note that groups WWM, WWM, MMW, and MMW of T are

simply subgroups of Q.) The groups in S correspond to the simple application of all possible remaining

operations with Dd = - 1. After applying operations of type ZN, WM, and WM, the remaining operations in

S are all exclusive. After S, the two groups inM are exclusive and then the same happens to the six groups

in N (that are simply subgroups of M).

We can now write the theorem that gives the exact formula for the DCJ-indel distance of linear singular

genomes.

Theorem 1 (from Braga et al., 2011):

Given two singular linear genomes A and B, whose relational diagram R(A‚ B) has c AB-cycles and i AB-

paths, we have:

did
DCJ(A‚ B) = jGj - c -

i

2
+

X
C2R(A‚ B)

k(C) - d‚

where d = 2P + 3Q + 2T +S + 2M +N and P, Q, T , S,M, and N here refer to the number of deductions

in the corresponding chained recombination groups.

4. DCJ-INDEL DISTANCE OF NATURAL GENOMES

Based on the results presented so far, we develop an approach for computing the DCJ-indel distance of

natural genomes A and B. First, we note that it is possible to transform A and B into matched singular

genomes Az and Bz as follows. For each common marker m 2 G, if FA � FB, we should determine which

occurrence of m in B matches each occurrence of m in A, or if FB < FA, which occurrence of m in A

matches each occurrence of m in B. The matched occurrences receive the same identifier (e.g., by adding

the same index) in Az and in Bz. Examples are given in Figure 5 (top and center). Observe that, after this

procedure, the number of common markers between any pair of matched genomes Az and Bz is:

n� =
X
m2G

minfFA(m)‚FB(m)g :

Table 2. Path Recombinations with Dd = 0 Creating Resultants That

Can Be Used in Recombinations with Dd � - 1

Sources Resultants Dk k q k Dd Sources Resultants Dk k q k Dd

AAA + ABBA � + AAAB - 1 + 1 0 AAA + BBB � + ABAB 0 0 0

AAB + ABAB � + AAAB - 1 + 1 0 AAB + BBA � + ABBA 0 0 0

BBA + ABAB � + BBAB - 1 + 1 0 ABAB + ABAB AAA + BBB - 2 + 2 0

BBB + ABBA � + BBAB - 1 + 1 0 ABBA + ABBA AAB + BBA - 2 + 2 0

FIG. 4. Chained recombinations transforming four paths (2 · AAAB + BBA + BBB) into four other paths

(3 · ABe + ABB) with overall Dd = - 3.
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Let M be the set of all possible pairs of matched singular genomes obtained from natural genomes A and

B. The DCJ-indel distance of A and B is then defined as:

did
DCJ(A‚ B) = min

(Az‚ Bz)2M

fdid
DCJ(Az‚ Bz)g :

4.1. Multi-relational diagram

Although the original relational diagram clearly depends on the singularity of common markers, when

they appear in multiple copies we can obtain a data structure that integrates the properties of all possible

relational diagrams of matched genomes. The multi-relational diagram MR(A‚ B) of two natural genomes A

and B also has a set V(A) with a vertex for each of the two extremities of each marker occurrence of genome

A and a set V(B) with a vertex for each of the two extremities of each marker occurrence of genome B.

Again, sets EA
adj and EB

adj contain adjacency edges connecting adjacent extremities of markers in A and in

B. But here the set Ec contains, for each marker m 2 G, an extremity edge connecting each vertex in V(A)

that represents an occurrence of mt to each vertex in V(B) that represents an occurrence of mt, and an

extremity edge connecting each vertex in V(A) that represents an occurrence of mh to each vertex in V(B)

that represents an occurrence of mh. Further, for each marker m 2 U with FA(m) > FB(m), the set EA
id

contains one indel edge connecting the vertices representing the two extremities of the same occurrence of

Table 3. Chained Recombination Groups Obtained from Tables 1 and 2

ID Sources Resultants Dd scr

P WM AAAB BBAB — — — — 2 · � - 2 - 1

Q WWMM 2 · AAAB BBA + BBB — — — — 4 · � - 3 - 3=4

MMWW AAA + AAB 2 · BBAB — — — — 4 · � - 3 - 3=4

T WZM AAAB BBA ABAB — — — 3 · � - 2 - 2=3

WWM 2 · AAAB BBA — AAB — — 2 · � - 2 - 2=3

WNM AAAB BBB ABBA — — — 3 · � - 2 - 2=3

WWM 2 · AAAB BBB — AAA — — 2 · � - 2 - 2=3

MNW AAA BBAB ABBA — — — 3 · � - 2 - 2=3

MMW AAA 2 · BBAB — — BBB — 2 · � - 2 - 2=3

MZW AAB BBAB ABAB — — — 3 · � - 2 - 2=3

MMW AAB 2 · BBAB — — BBA — 2 · � - 2 - 2=3

S ZN — — ABAB + ABBA — — — 2 · � - 1 - 1=2

WM AAA BBA — — — — 2 · � - 1 - 1=2

WM AAB BBB — — — — 2 · � - 1 - 1=2

WM AAAB BBA — — — ABBA � - 1 - 1=2

WM AAAB BBB — — — ABAB � - 1 - 1=2

WZ AAAB — ABAB AAA — — � - 1 - 1=2

WN AAAB — ABBA AAB — — � - 1 - 1=2

WW 2 · AAAB — — AAB + AAA — — — - 1 - 1=2

MW AAA BBAB — — — ABAB � - 1 - 1=2

MW AAB BBAB — — — ABBA � - 1 - 1=2

MZ — BBAB ABAB — BBB — � - 1 - 1=2

MN — BBAB ABBA — BBA — � - 1 - 1=2

s — 2 · BBAB — — BBB + BBA — — - 1 - 1=2

M ZZWM AAB BBA 2 · ABAB — — — 4 · � - 2 - 1=2

NNWM AAA BBB 2 · ABBA — — — 4 · � - 2 - 1=2

N ZWM AAB BBA ABAB — — ABBA 2 · � - 1 - 1=3

ZZW AAB — 2 · ABAB AAA — — 2 · � - 1 - 1=3

ZZM — BBA 2 · ABAB — BBB — 2 · � - 1 - 1=3

NWM AAA BBB ABBA — — ABAB 2 · � - 1 - 1=3

NNW AAA — 2 · ABBA AAB — — 2 · � - 1 - 1=3

NNM — BBB 2 · ABBA — BBA — 2 · � - 1 - 1=3

The column scr indicates the contribution of each path to the distance decrease (the table is sorted in ascending order with respect to

this column).

REARRANGEMENT DISTANCE OF NATURAL GENOMES 417



m in A. Similarly, for each marker m0 2 U with FB(m0) > FA(m0), the set EB
id contains one indel edge

connecting the vertices representing the two extremities of the same occurrence of m0 in B. An example of a

multi-relational diagram is given in Figure 5 (bottom).

4.1.1. Consistent decompositions. Note that if A and B are singular genomes, MR(A‚ B) reduces to

the ordinary R(A‚ B). On the other hand, in the presence of duplicate common markers, MR(A‚ B) may

contain vertices of a degree larger than two. A decomposition is a collection of vertex-disjoint components,

which can be cycles and/or paths, covering all vertices of MR(A‚ B). There can be multiple ways of

selecting a decomposition, and we need to find one that allows to match occurrences of a marker in genome

A with occurrences of the same marker in genome B.

Let m(A) and m(B) be, respectively, occurrences of the same marker m in genomes A and B. The extremity

edge that connects mh
(A) to mh

(B) and the extremity edge that connects mt
(A) to mt

(B) are called siblings. A set

S � Ec is a sibling set if it is exclusively composed of pairs of siblings and does not contain any pair of

incident edges. In other words, there is a clear bijection between matchings of occurrences and sibling sets

of MR(A‚ B). In particular, a maximal sibling set S corresponds to a maximal matching of occurrences of

common markers in both genomes and we denote by AzS and BzS the matched singular genomes corre-

sponding to the sibling set S.

The set of edges D [S] induced by a maximal sibling set S is said to be a consistent decomposition of

MR(A‚ B) and can be obtained by the following two steps: (i) In the beginning, D [S] is the union of S with

the sets of adjacency edges EA
adj and EB

adj; (ii) for each indel edge e, if its two endpoints have degree one or

zero in D [S], then e is added to D [S]. Note that the consistent decomposition D [S] covers all vertices of

MR(A‚ B) and is composed of cycles and paths, allowing us to compute the value:

did
DCJ(D) = n� - cD -

iD

2
+
X
C2D

k(C) - dD ‚

A

B

FIG. 5. Natural genomes A =13254354 and B =1623173413 can give rise to many distinct pairs of

matched singular genomes. The relational diagrams of two of these pairs are represented here, in the top and center. In

the bottom, we show the multi-relational diagram MR(A‚ B). The decomposition that gives the diagram in the top is

represented in red/orange. Similarly, the decomposition that gives the diagram in the center is represented in blue/cyan.

Edges that are in both decompositions have two colors.
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where cD and iD are the numbers of AB-cycles and AB-paths in D [S], respectively, and dD is the optimal

deduction of recombinations of paths from D [S]. Since n� is constant for any consistent decomposition, we

can separate the part of the formula that depends on D [S], called weight of D [S]:

w(D [S]) = cD +
iD

2
-
X

C2D[S]

k(C) + dD :

Given two natural genomes A and B, the DCJ-indel distance of A and B can then be computed by the

following equation:

did
DCJ(A‚ B) = min

S2SMAX

fdid
DCJ(D [S])g = n� - max

S2SMAX

fw(D [S])g ‚

where SMAX is the set of all maximal sibling sets of MR(A‚ B).

A consistent decomposition D [S] such that did
DCJ(D [S]) = did

DCJ(A‚ B) is said to be optimal. Computing the

DCJ-indel distance between two natural genomes A and B, or, equivalently, finding an optimal consistent

decomposition of MR(A‚ B) is an NP-hard problem. In Section 6, we will describe an efficient ILP formulation

to solve it. Before that, we need to introduce a transformation of MR(A‚ B) that is necessary for our ILP.

5. CAPPING

The ends of linear chromosomes produce some difficulties for the decomposition. Fortunately there is an

elegant technique to overcome this problem, called capping (Hannenhalli and Pevzner, 1995). It consists of

modifying the genomes by adding artificial singular common markers, called caps, that circularize all linear

chromosomes, so that their relational diagram is composed of cycles only, but, if the capping is optimal, the

genomic distance is preserved.

5.1. Capping of canonical genomes

When two singular genomes A and B have no exclusive markers, they are called canonical genomes.

The diagram R(A‚ B) of canonical genomes A and B has no indel edges, and the indel-potential of any

component C is k(C) = 0. In this case, the upper bound given by Lemma 1 is tight, and the distance formula

can be simplified to did
DCJ(A‚ B) = jGj - c - i

2
, as already shown in Bergeron et al. (2006).

Also, obtaining an optimal capping of canonical genomes is quite straightforward (Hannenhalli and

Pevzner, 1995; Yancopoulos et al., 2005; Braga and Stoye, 2010), as shown in Table 4: The caps should

guarantee that each AB-path is closed into a separate AB-cycle, and each pair composed of an AA- and a

BB-path is closed into an AB-cycle by linking each extremity of the AA-path to one of the two extremities

of the BB-path (there are two possibilities of linking, and any of the two is optimal). If the numbers of linear

chromosomes in A and in B are different, there will be some AA- or BB-paths remaining. For each of these,

an artificial adjacency between caps is created in the genome with less linear chromosomes, and each

artificial adjacency closes each remaining AA- or BB-path into a separate AB-cycle.

Let jA be the total number of linear chromosomes in A and jB be the total number of linear chromosomes

in B. The difference between the number of AA- or BB-paths is equal to the difference between jA and jB.

Table 4. Linking Paths from R(A‚ B) of Canonical Genomes

Linking AB-cycle Dn Dc D(2i) Dd

Paths

AB ðABÞ + 0:5 + 1 - 0:5 0

AA + BB (AA‚ BB) + 1 + 1 0 0

Remaining paths

AA (AA‚GB) + 1 + 1 0 0

BB (BB‚GA) + 1 + 1 0 0

The symbol GA represents an artificial adjacency in A, and the symbol GB represents an

artificial adjacency in B. The value Dd corresponds to Dn -Dc -D(2i).
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In other words, if R(A‚ B) has a AA-paths, b BB-paths, and i AB-paths, the number of artificial adjacencies

in such an optimal capping is exactly a� = jjA - jBj = ja - bj. Moreover, the number of caps to be added is:

p� = maxfjA‚ jBg = maxfa‚ bg +
i

2
:

We can show that the capping described earlier is optimal by verifying the corresponding DCJ-indel

distances. Let the original genomes A and B have n markers and R(A‚ B) have c AB-cycles, besides the

paths. Then, after capping, the circular genomes A� and B� have n0 = n + p� markers and R(A�‚ B�) has

c0 = c + i + maxfa‚ bg AB-cycles and no path, so that:

did
DCJ(A�‚ B�) = n0 - c0 = n + maxfa‚ bg +

i

2
- c - i - maxfa‚ bg = n - c -

i

2
= did

DCJ(A‚ B) :

An example of an optimal capping of two canonical linear genomes is given in Figure 6.

5.2. Singular genomes: correspondence between recombinations and capping

When exclusive markers occur, we can obtain an optimal capping by simply finding caps that properly link

the sources of each recombination group (listed in Table 3) into a single AB-cycle. Indeed, in Table 5 we give

a linking that achieves the optimal Dd for each recombination group, followed by the optimal linking of

remaining paths. The remaining paths are treated exactly as the linking of paths in canonical genomes. By

greedily linking the paths following a top–down order of the referred Table 5, we clearly obtain an optimal

capping that transforms A and B into circular genomes A� and B� with did
DCJ(A�‚ B�) = did

DCJ(A‚ B). See an

example in Figure 7.

Further, similar to the case of canonical genomes, the numbers of artificial adjacencies and caps in such a

capping are, respectively, a� = jjA - jBj and p� = maxfjA‚ jBg as we will show in the following.

In Table 5, we can observe that there are two types of groups: (1) balanced, which contain the same

number of AA- and BB-paths, and (2) unbalanced, in which the numbers of AA- and BB-paths are distinct.

Unbalanced groups require some extra elements to link the cycle. These elements can be indel-free AA- or

BB-paths (of the type, i.e., under-represented in the group) or, if these paths do not exist, artificial adja-

cencies either in genome A or in genome B (again, of the genome, i.e., under-represented in the group). We

then need to examine these unbalanced groups to determine the number of caps and of artificial adjacencies

that are required for an optimal capping.

Proposition 1: After identifying the recombination groups, either we have only unbalanced groups

that are over-represented in genome A or we have only unbalanced groups that are over-represented in

genome B.

Proof: It is clear that, after P and until N , we have either only groups W� (over-represented in A) or only

groups M� (over-represented in B). The question is whether groups in N that are over-represented in B are

compatible with previous groups of type W� and, symmetrically, whether groups in N that are over-

represented in A are compatible with previous groups of type M�.
Let us examine the case of group ZZW. (1) At a first glance, one could think that this group is compatible

with MMW. However, if all components of these two unbalanced groups would be in the diagram, we would

instead have two times the group MZW, which is balanced and located before the two other groups in the

FIG. 6. Optimal capping of canonical genomes A = f21‚43g and B = f12‚34g into A� = f(215)‚ (436)g, and

B� = f(125)‚ (346)g. Each pair of AA-+BB-path is linked into a separate AB-cycle.
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table (observe that 2 · MZW has a smaller Dd than ZZWj +MMW). (2) When we test the compatibility of

ZZW with MMW, we see that with the same components we would get MMWW, which is balanced and

located before the two other groups in the table (observe that MMWW has the same Dd as ZZW +MMW).

With a similar analysis we can show that for all cases either we have only unbalanced groups that

are over-represented in genome A or we have only unbalanced groups that are over-represented in

genome B. -

Proposition 2: When an unbalanced group is being linked, either there is a remaining AA- or BB-path

(of the genome that is under-represented), which is then used to link the group, or there is no remaining AA-

or BB-path (of the genome, i.e., under-represented) and an artificial adjacency links the group.

Table 5. Linking Sources of Chained Recombination Groups from Table 3

ID Sources Linking AB-cycle Dn Dc D(2i) Dk Dd

P WM AAAB + BBAB (AAAB‚ BBBA) + 1 + 1 0 - 2 - 2

Q WWMM 2 · AAAB + BBA + BBB (AAAB‚ BBB‚ AABA‚ BBA) + 2 + 1 0 - 4 - 3

MMWW 2 · BBAB + AAA + AAB (BBAB‚ AAB‚ BBBA‚ AAA) + 2 + 1 0 - 4 - 3

T WZM AAAB + BBA + ABAB (ABAB‚ AABA‚ BBA) + 1:5 + 1 - 0:5 - 3 - 2

WWM 2 · AAAB + BBA (AABA‚ BBA‚ AAAB‚ BBe 	 GB) [ + 2 + 1 0 - 3 - 2

WNM AAAB + BBB + ABBA (ABBA‚ AAAB‚ BBB) + 1:5 + 1 - 0:5 - 3 - 2

WWM 2 · AAAB + BBB (AAAB‚ BBA‚ AAAB‚ BBe 	 GB) [ + 2 + 1 0 - 3 - 2

MNW BBAB + AAA + ABBA (ABBA‚ AAA‚ BBAB) + 1:5 + 1 - 0:5 - 3 - 2

MMW 2 · BBAB + AAA (BBBA‚ AAA‚ BBAB‚ AAe 	 GA) \ + 2 + 1 0 - 3 - 2

MZW BBAB + AAB + ABAB (ABAB‚ AAB‚ BBBA) + 1:5 + 1 - 0:5 - 3 - 2

MMW 2 · BBAB + AAB (BBAB‚ AAB‚ BBBA‚ AAe 	 GA) \ + 2 + 1 0 - 3 - 2

S ZN ABAB + ABBA (ABAB‚ ABBA) + 1 + 1 - 1 - 2 - 1

WM AAA + BBA (AAA‚ BBA) + 1 + 1 0 - 1 - 1

WM AAB + BBB (AAB‚ BBB) + 1 + 1 0 - 1 - 1

WM AAAB + BBA (AABA‚ BBA) + 1 + 1 0 - 1 - 1

WM AAAB + BBB (AAAB‚ BBB) + 1 + 1 0 - 1 - 1

WZ AAAB + ABAB (AABA‚ BBe 	 GB‚ ABAB) [ + 1:5 + 1 - 0:5 - 2 - 1

WN AAAB + ABBA (AAAB‚ BBe 	 GB‚ ABBA) [ + 1:5 + 1 - 0:5 - 2 - 1

WW AAAB + AAAB (AAAB‚ BBe 	 GB‚ AABA‚ BBe 	 GB) [ + 2 + 1 0 - 2 - 1

MW BBAB + AAA (AAA‚ BBAB) + 1 + 1 0 - 1 - 1

MW BBAB + AAB (AAB‚ BBBA) + 1 + 1 0 - 1 - 1

MZ BBAB + ABAB (BBBA‚ ABAB‚ AAe 	 GA) \ + 1:5 + 1 - 0:5 - 2 - 1

MN BBAB + ABBA (BBAB‚ ABBA‚ AAe 	 GA) \ + 1:5 + 1 - 0:5 - 2 - 1

MM BBAB + BBAB (BBAB‚ AAe 	 GA‚ BBBA‚ AAe 	 GA) \ + 2 + 1 0 - 2 - 1

M ZZWM 2 · ABAB + AAB + BBA (ABAB‚ AAB‚ BABA‚ BBA) + 2 + 1 - 1 - 4 - 2

NNWM 2 · ABBA + AAA + BBB (ABBA‚ AAA‚ BAAB‚ BBB) + 2 + 1 - 1 - 4 - 2

N ZWM ABAB + AAB + BBA (ABAB‚ AAB‚ BBA) + 1:5 + 1 - 0:5 - 2 - 1

ZZW 2 · ABAB + AAB (ABAB‚ AAB‚ BABA‚ BBe 	 GB) [ + 2 + 1 - 1 - 3 - 1

ZZM 2 · ABAB + BBA (BABA‚ BBA‚ ABAB‚ AAe 	 GA) \ + 2 + 1 - 1 - 3 - 1

NWM ABBA + AAA + BBB (ABBA‚ AAA‚ BBB) + 1:5 + 1 - 0:5 - 2 - 1

NNW 2 · ABBA + AAA (ABBA‚ AAA‚ BAAB‚ BBe 	 GB) [ + 2 + 1 - 1 - 3 - 1

NNM 2 · ABBA + BBB (BAAB‚ BBB‚ ABBA‚ AAe 	 GA) \ + 2 + 1 - 1 - 3 - 1

Remaining paths

AB� (AB�) + 0:5 + 1 - 0:5 0 0

AA� + BB� (AA�‚ BB�) + 1 + 1 0 0 0

AA� (AA�‚GB) [ + 1 + 1 0 0 0

BB� (BB�‚GA) \ + 1 + 1 0 0 0

The symbol GA represents an artificial adjacency in A, and the symbol GB represents an artificial adjacency in B. The notation

AAe 	 GA means that an AAe-path is preferred to close the cycle, but if it does not exist, we take an artificial adjacency in A. To give

the correct order of linking, we sometimes need to represent a path ABAB by BABA and a path ABBA by BAAB . The value Dd

corresponds to Dn -Dc -D(2i) +Dk. Unbalanced groups over-represented in genome A are marked with a ‘‘[,’’ whereas unbalanced

groups over-represented in genome B are marked with a ‘‘\.’’
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Proof: First we observe that, after distributing all paths of the relational diagram among the recombi-

nation groups, following the top–down greedy approach, there could be AA- and/or BB-paths remaining,

which were not assigned to any group, and they might be useful to link unbalanced groups. We will now

examine the procedure of linking the unbalanced groups either with those remaining paths or with artificial

adjacencies.

A particular case are the unbalanced groups from T . Since all unbalanced groups in T have analogous

compositions, without loss of generality, suppose a group over-represented in genome A of type WWM is

being linked. If, at this point, there is a remaining indel-enclosing BB-path, it cannot be BBAB or BBB;

otherwise with the components of the group being linked and the existing remaining path we could form a

balanced group that appears in a higher position of the table, with at least the same Dd, which is a

contradiction. We could, however, have an extra BBA-path. In this case, we would take the alternative

solution of linking each pair AAAB+BBA into a separate cycle, which is twice group WM of S, achieving the

same Dd. If no BBA-path remains, we would have the standard linking of the three paths into a single cycle,

including either an indel-free BB-path or an artificial adjacency in B.

The unbalanced groups from S or N are easier to analyze: If one of these groups, over-represented in

genome A (respectively in genome B), is being linked, there cannot be any remaining indel-enclosing BB-

path (respectively AA-path). We can verify this by supposing, without loss of generality, that an unbalanced

group over-represented in genome A is being linked. If, at this point, there is a remaining indel-enclosing

BB-path, then with the components of the group being linked and the existing remaining path we could

form a balanced group that appears in a higher position of the table, with at least the same Dd, which is a

contradiction. -
Propositions 1 and 2 prove the following result.

Theorem 2: Let jA and jB be, respectively, the total numbers of linear chromosomes in singular

genomes A and B. We can obtain an optimal capping of A and B with exactly

p� = maxfjA‚ jBg

caps and a� = jjA - jBj artificial adjacencies between caps.

FIG. 7. Optimal capping of singular genomes A = f521‚ 5453g and B = f6162‚364g into

A� = f(752185453)g and B� = f(761628364)g. This capping shows how to optimally link the four

sources of the chained recombinations of Figure 4 into a single AB-cycle.
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5.3. Capped multi-relational diagram

We can transform MR(A‚ B) into the capped multi-relational diagram MR�(A‚ B) as follows. First, we need

to create 4p� new vertices, named �1
A‚ �2

A ‚ . . . ‚ �2p�
A and �1

B‚ �2
B ‚ . . . ‚ �2p�

B , with each one representing a cap

extremity. Each of the 2jA telomeres of A is connected by an adjacency edge to a distinct cap extremity among

�1
A‚ �2

A ‚ . . . ‚ �2jA

A . Similarly, each of the 2jB telomeres of B is connected by an adjacency edge to a distinct

cap extremity among �1
B‚ �2

B ‚ . . . ‚ �2jB

B . Moreover, if jA < jB, for i = 2jA + 1‚ 2jA + 3‚ . . . ‚ 2jB - 1, connect

�i
A to �i + 1

A by an artificial adjacency edge. Otherwise, if jB < jA, for j = 2jB + 1‚ 2jB + 3‚ . . . ‚ 2jA - 1,

connect �j
B to �j + 1

B by an artificial adjacency edge. All these new adjacency edges and artificial adjacency

edges are added to EA
adj and EB

adj, respectively. We also connect each �i
A, 1 � i � 2p�, by a cap extremity edge

to each �j
B, 1 � j � 2p�, and denote by E� the set of cap extremity edges. An example of a capped multi-

relational diagram is given in Figure 8.

A set P � E� is a capping set if it does not contain any pair of incident edges. A capped consistent

decomposition Q [S‚ P] of MR�(A‚ B) is induced by a maximal sibling set S � Ec and a maximal

capping set P � E� and is composed of vertex disjoint cycles covering all vertices of MR�(A‚ B). We

then have did
DCJ(Q[S‚ P]) = n� + p� - w(Q [S‚ P]), where the weight of Q [S‚ P] can be computed by the

simple formula:

w(Q [S‚ P]) = cQ -
X

C2Q[S‚ P]

k(C) :

Theorem 3: Let PMAX be the set of all maximal capping sets from MR�(A‚ B). For each maximal sibling

set S of MR(A‚ B) and MR�(A‚ B), we have:

w(D [S]) = max
P2PMAX

fw(Q [S‚ P])g :

Proof: Recall that each maximal sibling set S of MR(A‚ B) corresponds to a pair of matched singular

genomes AzS and BzS . Further, in MR�(A‚ B), (1) each maximal capping set P corresponds to exactly p�
caps, and (2) all adjacencies, including the jjA - jBj artificial adjacencies between cap extremities, are part

of each consistent decomposition Q [S‚ P]. Theorem 2 states that the pair of matched singular genomes AzS

and BzS can be optimally capped with p� caps and jjA - jBj artificial adjacencies. Therefore, it is clear that

at least one optimal capping of AzS and BzS corresponds to a consistent decomposition of MR�(A‚ B), that is,

w(D [S]) = maxP2PMAX
fw(Q [S‚ P])g. -

As a consequence of Theorem 3, if SMAX is the set of all maximal sibling sets and PMAX is the set of all

maximal caping sets, we have:

did
DCJ(A‚ B) = n� + p� - max

S2SMAX‚ P2PMAX

fw(Q [S‚ P])g :

Each decomposition Q [S‚ P] corresponds to several capped versions of singular genomes AzS and BzS ,

depending on how the cap extremities are paired. We do not need to identify the exact capped version we

get, because all versions obtained with the same capping set P give the same DCJ-indel distance.

B

A

FIG. 8. Natural genomes A =13254354 and B =1623173413 and their capped multi-relational di-

agram MR�(A‚ B).
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6. AN ALGORITHM TO COMPUTE THE DCJ-INDEL
DISTANCE OF NATURAL GENOMES

An ILP formulation for computing the distance of two balanced genomes A and B was given by Shao

et al. (2015). In this section, we describe an extension of that formulation for computing the DCJ-indel

distance of natural genomes A and B, based on consistent cycle decompositions of MR�(A‚ B). The main

difference is that here we need to address the challenge of computing the indel-potential k(C) for each cycle

C of each decomposition. Note that a cycle C of R(A‚ B) has either 0, or 1, or an even number of runs;

therefore, its indel-potential can be computed as follows:

k(C) = L(C)‚ if L(C) � 1;
L(C)

2
+ 1 if L(C) � 2:

�

The formula cited earlier can be redesigned to a simpler one, which is easier to implement in the ILP.

First, let a transition in a decomposition Q [S‚ P] be an indel-free path that is flanked by an indel edge from

EA
id and an indel edge from EB

id. Each transition is part of some cycle C of Q [S‚ P] and we denote by @ (C)

the number of transitions in C. Observe that, if C is indel-free, then obviously @ (C) = 0. If C has a single

run, then we also have @ (C) = 0. On the other hand, if C has at least 2 runs, then @ (C) =L(C). Our new

formula is then split into a part that simply tests whether C is indel-enclosing and a part that depends on the

number of transitions @ (C).

Proposition 3: Given the function r(C) defined as r(C) = 1 if L(C) � 1; otherwise r(C) = 0, the indel-

potential k(C) can be computed from the number of transitions @ (C) with the formula:

k(C) =
@(C)

2
+ r(C) :

Note that
P

C2Q[S‚ P] r(C) = cr
Q + sQ, where cr

Q and sQ are the number of indel-enclosing AB-cycles and the

number of circular singletons in Q [S‚ P], respectively. Further, the number of transitions in Q [S‚ P], given

by the sum
P

C2Q[S‚ P] @(C) does not really need to be computed per cycle, that is, we can directly count the

number of transitions in Q [S‚ P] without keeping trace of which cycle each transition belongs to. We then

denote by @Q =
P

C2Q[S‚ P] @(C) the number of transitions in Q [S‚ P].

Now, we need to find a consistent decomposition Q [S‚ P] of MR�(A‚ B) maximizing the weight:

w(Q [S‚ P]) = cQ -
X

C2Q[S‚ P]

k(C) = cQ - cr
Q + sQ +

X
C2Q[S‚ P]

@(C)

2

 !
= c~r

Q -
@Q

2
- sQ ‚

where c~r
Q = cQ - cr

Q is the number of indel-free AB-cycles in Q [S‚ P].

6.1. ILP formulation

Our formulation (shown in Algorithm 1) searches for an optimal consistent cycle decomposition of

MR�(A‚ B) = (V‚ E), where the set of edges E is the union of all disjoint sets of the distinct types of edges,

E = Ec [ E� [ EA
adj [ EB

adj [ EA
id [ EB

id.

In the first part, we use the same strategy as Shao et al. (2015). A binary variable xe (Domain D:01) is

introduced for every edge e, indicating whether e is part of the computed decomposition. Constraint C.01 ensures

that adjacency edges are in all decompositions, Constraint C.02 ensures that each vertex of each decomposition has

degree 2, and Constraint C.03 ensures that an extremity edge is selected only together with its sibling. Counting the

number of cycles in each decomposition is achieved by assigning a unique identifier i to each vertex vi that is then

used to label each cycle with the numerically smallest identifier of any contained vertex (see Constraint C.04,

Domain D.02). A vertex vi is then marked by variable zi (Domain D:03) as representative of a cycle if its cycle

label yi is equal to i (Constraint C:06). However, unlike Shao et al., we permit each variable yi to take on value 0,

which, by Constraint C.05, will be enforced whenever the corresponding cycle is indel-enclosing. Since the

smallest label of any vertex is 1 (cf. Domain D.02), any cycle with label 0 will not be counted.

The second part is our extension for counting transitions. We introduce binary variables rv (Domain D:04) to

label runs. To this end, Constraint C.07 ensures that each vertex v is labeled 0 if v is part of an A-run and

otherwise it is labeled 1, indicating its participation in a B-run. Transitions between A- and B-runs in a cycle

are then recorded by binary variable te (Domain D:05). If a label change occurs between any neighboring pair
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of vertices u‚ v 2 V of a cycle, Constraint C.08 causes transition variable tfu‚ vg to be set to 1. We avoid an

excess of co-optimal solutions by canonizing the locations in which transitions are observed. More spe-

cifically, Constraint C.09 prohibits label changes in adjacencies not directly connected to an indel and

Constraint C.10 in edges other than adjacencies of genome A, resulting in the transition being observed as

close to the A-run as possible.

In the third part we add a new constraint and a new domain to our ILP, so that we can count the number

of circular singletons. Let K be the circular chromosomes in both genomes and Ek
id be the set of indel edges

of a circular chromosome k 2 K. For each circular chromosome we introduce a decision variable

sk (Domain D:06), which is 1 if k is a circular singleton and 0 otherwise. A circular chromosome is then a

singleton if all its indel edges are set (see Constraint C.11). Only in that case the left side of the inequality

will take on value 1 and enforces sk to be set to 1 as well.

The objective of our ILP is to maximize the weight of a consistent decomposition, which is equivalent to

maximizing the number of indel-free cycles, counted by the sum over variables zi, while simultaneously

minimizing the number of transitions in indel-enclosing AB-cycles, calculated by half the sum over vari-

ables te, and the number of circular singletons, calculated by the sum over variables sk.

Algorithm 1: ILP for the computation of the DCJ-indel distance of natural genomes

Objective:

Maximize
P

1�i�jV j
zi - 1

2

P
e2E

te -
P
k2K

sk

Constraints:

(C.01) xe = 1 8e 2 EA
adj [ EB

adj

(C.02)
P

fu‚ vg2E

xfu‚ vg = 2 8u 2 V

(C.03) xe = xd 8e‚ d 2 Ec such that e and d are siblings

(C.04) yi � yj + i(1 - xfvi‚ vjg) 8fvi‚ vjg 2 E

(C.05) yi � i(1 - xfvi‚ vjg) 8fvi‚ vjg 2 EA
id [ EB

id

(C.06) i 
 zi � yi 81 � i � jV j
(C.07) rv � 1 - xfu‚ vg 8fu‚ vg 2 EA

id ‚

rv0 � xfu0‚ v0g 8fu0‚ v0g 2 EB
id

(C.08) tfu‚ vg � rv - ru - (1 - xfu‚ vg) 8fu‚ vg 2 E

(C.09)
P

d2EA
id

‚
d\e6¼;

P
xd - te � 0 8e 2 EA

adj

(C.10) te = 0 8e 2 EnEA
adj

(C.11)
P

e2Ek
id

xe - jkj + 1 � sk 8k 2 K

Domains:

(D.01) xe 2 f0‚ 1g 8e 2 E

(D.02) 0 � yi � i 81 � i � jV j
(D.03) zi 2 f0‚ 1g 81 � i � jV j
(D.04) rv 2 f0‚ 1g 8v 2 V

(D.05) te 2 f0‚ 1g 8e 2 E

(D.06) sk 2 f0‚ 1g 8k 2 K

6.1.1. Implementation. We implemented the construction of the ILP as a python application,

available at https://gitlab.ub.uni-bielefeld.de/gi/ding.

6.1.2. Comparison to the approach by Lyubetsky et al. As mentioned in Section 1, another ILP

for the comparison of genomes with unequal content and paralogs was presented by Lyubetsky et al.

(2017). To compare our method with theirs, we ran our ILP by using CPLEX on a single thread with the

two small artificial examples given in that article on page 8. The results in terms of DCJ distance were the

same. A comparison of running times is presented in Table 6.
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6.2. Performance benchmark

For benchmarking purposes, we used Gurobi 9.0 as a solver. In all our experiments, we ran Gurobi on a

single thread.

6.2.1. Generation of simulated data. Here, we describe our simulation tool that is included in our

software repository (https://gitlab.ub.uni-bielefeld.de/gi/ding) and used for evaluating the performance of

our ILP implementation.

Our method samples marker order sequences over a user-defined phylogeny. However, here we restrict our

simulations to pairwise comparisons generated over rooted, weighted trees of two leaves. Starting from an

initial marker order sequence of user-defined length (i.e., number of markers), the simulator samples Poisson-

distributed DCJ events with expectation equal to the corresponding edge weights. Likewise, insertion, deletion,

and duplication events of one or more consecutive markers are sampled; however, their frequency is addi-

tionally dependent on a rate factor that can be adjusted by the user. The length of each segmental insertion,

deletion, and duplication is drawn from a Zipfian distribution, whose parameters can also be adjusted by the

user. At each internal node of the phylogeny, the succession of mutational operations is performed in the

following order: DCJ operations, duplications, deletions, insertions. To this end, cut points, as well as locations

for insertions, deletions, and duplications are uniformly drawn over the entire genome.

In our simulations, we used s = 4 for Zipfian distributions of insertions and deletions, and s = 6 for

duplications. Unless specified otherwise, insertion and deletion rates were set to be 0:1 and 0:2, respec-

tively. We set the length of the root genome to 20,000 marker occurrences.

6.2.2. Evaluating the impact of the number of duplicate occurrences. To evaluate the impact of

the number of duplicate occurrences on the running time, we first keep the number of simulated DCJ events

fixed to 10‚ 000 and vary parameters that affect the number of duplicate occurrences.

Our ILP solves the decomposition problem efficiently for real-sized genomes under small to moderate

numbers of duplicate occurrences: Solving times for genome pairs with <10,000 duplicate occurrences (50%

of the genome size) shown in Figure 9(i) are with a few exceptions below 5 minutes and exhibit a linear

increase, but solving time is expected to increase dramatically with higher numbers of duplicate occurrences.

To further exploit the conditions under which the ILP is no longer solvable with reasonable compute

resources, we continued the experiment with even higher amounts of duplicate occurrences and instructed

Gurobi to terminate within 1 hour of computation. We then partitioned the simulated data set into 8 intervals

of length 500 according to the observed number of duplicate occurrences. For each interval, we determined

the average as well as the maximal multiplicity of any duplicate marker and examined the average opti-

mality gap, that is, the difference in percentage between the best primal and the best dual solution computed

within the time limit. The results are shown in Table 7 and emphasize the impact of duplicate occurrences in

solving time: Below 14,000 duplicate occurrences, the optimality gap remains small and sometimes even the

exact solution is computed, whereas above that threshold the gap widens very quickly.

6.2.3. Evaluating additional parameters. So far, we have examined only the impact of duplicates on

solving times of our program. However, other parameters of our experiment are expected to have an effect on

the solving times, too. We ran three experiments, in each varying one of the following parameters while keeping

the others fixed: (1) genome size, (2) number of simulated DCJs and indels, and (3) number of chromosomes.

The duplication rate was fixed at 0:4 for these experiments, and the running time was limited to 1 hour.

The results, shown in Figure 9(ii)–(iv), indicate that the number of linear chromosomes plays a major factor

in the solving time. At the same time, solving times vary more widely with increasing chromosome number.

Table 6. Comparison of Running Times and Memory Usage to the Integer Linear

Programming in Lyubetsky et al.

Dataset

No. of

markers

No. of marker

occurrences

Running time as reported

by Lyubetsky et al. (2017)

Our running time

(seconds)

Our peak

memory (kb)

Example 1 5/5 9/9 ‘‘About 1.5 hours’’ 0.16 13,200

Example 2 10/10 11/11 ‘‘About 3 hours’’ 0.05 13,960
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The latter has a simple explanation: Telomeres, represented as caps in the multi-relational diagram, behave

in the same way as duplicate occurrences of the same marker do. Increasing their number (by increasing the

number of linear chromosomes) increases exponentially the search space of matching possibilities.

Conversely, the number of simulated DCJs and indels has a minor impact on the solving times of our

simulation runs. However, although initially exhibiting collinearity, the solving times for higher numbers of

DCJs and indels divert super-linearly. Lastly, the genome size has a negligible effect on solving time within

the tested range of 20‚ 000 to 50‚ 000 marker occurrences.

i ii

iii iv

FIG. 9. Solving times for: (i) genomes with a varying number of duplicate occurrences, totaling 20,000 marker

occurrences per genome; (ii) genome pairs with a varying number of linear chromosomes with 20,000 marker oc-

currences per genome; (iii) varying number of DCJs and indels applied by the simulation to genomes of 35,000 marker

occurrences; and (iv) genome pairs with a varying total number of marker occurrences from both genomes.

Table 7. Average Optimality Gap for Simulated Genome Pairs Grouped

by Number of Duplicate Occurrences After 1 Hour of Running Time

No. of duplicate

occurrences

Average multiplicity

of duplicate markers

Maximum

multiplicity

Average optimality

gap (%)

11500..11999 2.206 8 0.000

12000..12499 2.219 8 0.031

12500..12999 2.217 7 0.025

13000..13499 2.233 9 0.108

13500..13999 2.247 8 0.812

14000..14499 2.260 8 1.177

14500..14999 2.274 8 81.865

15000..15499 2.276 9 33.102
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6.3. Real data analysis

To demonstrate the applicability to real datasets, we compared the genomes of six Drosophila species

and reconstructed their phylogeny from pairwise DCJ-indel distances. The species names and the NCBI

accession numbers of the assemblies are listed in Table 8.

We used two types of markers. In our first experiment, markers correspond to the longest annotated

coding sequences (CDSs) per locus obtained from the respective NCBI annotations. Their numbers are

listed in Table 8 as well. Subsequently, we inferred hierarchical orthologous groups of these markers, with

Drosophila busckii being the outgroup species running OMA standalone version 2.4.1 (Altenhoff et al.,

2019) with default settings. As described earlier, we used Gurobi in computing pairwise DCJ-indel dis-

tances. As can be seen in Table 9, Gurobi was able to solve most instances within seconds with the

exception of one pair, which took about 9 hours to compute, emphasizing again the sensitivity of the ILP’s

solving time to the number of duplicate occurrences.

Using Neighbor Joining in MEGA X (Kumar et al., 2018), we constructed a phylogeny of the considered

species. The tree rooted by D. busckii is shown in Figure 10(i). It is consistent with the knowledge on the

Drosophila phylogeny so far, except for the resolution of the subtree containing the taxa melanogaster,

sechellia, and simulans. Considering the corresponding Splits diagram constructed by NeighborNet in

SplitsTree (Huson and Bryant, 2005) [Fig. 10(ii)], we observe that the distances in this subtree do not

behave very tree-like. This suggests that, rather than an erroneous tree being computed, the resolution of the

gene-based inference of markers simply does not provide distances for meaningfully clustering any two of

the three taxa together.

Table 8. List of Genome Assemblies Used in Our Experiments

Species NCBI assembly No. of genes No. of segments

Drosophila busckii ASM1175060v1 11,371 23,285

Drosophila melanogaster Release 6 plus ISO1 MT 13,048 62,415

Drosophila pseudoobscura UCI_Dpse_MV25 13,399 46,692

Drosophila sechellia ASM438219v1 13,037 60,855

Drosophila simulans ASM75419v2 13,023 59,520

Drosophila yakuba dyak_caf1 12,835 60,946

Table 9. Pairwise Comparisons of the Six Drosophila species (busckii [dbus], melanogaster [dmel],

pseudoobscura [dpse], sechellia [dsec], simulans [dsim], and yakuba [dyak])

Genome pair

Maximum multiplicity

of duplicate marker

No. of duplicate

markers

No. of duplicate

occurrence. did
DCJ

Solving time

(seconds)

dbus-dmel 23 303 832 4661 6.02

dbus-dpse 17 361 934 4688 5.29

dbus-dsec 15 295 766 4710 5.64

dbus-dsim 13 281 721 4767 5.05

dbus-dyak 19 318 785 4756 5.00

dmel-dpse 23 469 1319 3799 32,218.93

dmel-dsec 23 326 902 901 6.78

dmel-dsim 23 322 893 1093 5.73

dmel-dyak 23 362 972 1379 7.22

dpse-dsec 17 464 1227 3866 13.82

dpse-dsim 17 449 1198 3962 6.81

dpse-dyak 19 481 1259 3951 8.96

dsec-dsim 15 314 843 1138 5.67

dsec-dyak 19 354 903 1516 6.56

dsim-dyak 19 347 864 1661 23.07

Genomes were constructed by using genes as markers. All instances were solved by Gurobi on a single thread.
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To increase coverage and resolution, we also generated a second set of markers, directly from the

genomic sequences and not restricted to genes or CDSs. We used GEESE (Rubert et al., 2020b) to

construct genomic markers of length at least 500 bp. GEESE implements a heuristic for the genome

segmentation problem (Visnovská et al., 2013) and takes as input local pairwise sequence align-

ments that we computed with LASTZ. The parameter settings used for both GEESE and LASTZ are

detailed in our software repository. The number of markers in each genome is shown in Table 8. Again

using Gurobi on a single thread, we were able to solve all corresponding instances of the ILP within a

few minutes. The distances as well as data regarding duplicates and solving times can be found in

Table 10.

Using the same procedure as described earlier to construct the Neighbor Joining tree and the Splits

diagram (Fig. 11(i) and (ii), respectively), we find that the segmentation-based approach not only produces

the correct topology of the tree, but also improves the strength of all correct splits in the previously

problematic subtree, including those involving Drosophila yakuba. We notice, however, that the branch

length of D. busckii is comparatively short. This is most likely due to the lack of markers, which could be

inferred on the D. busckii genome (Table 8), thus leading to some rearrangements being missed. One might

attribute the fact that the segmentation did not infer many homologies in this case to more rapid sequence

evolution in non-coding regions.

iii

FIG. 10. The gene-based distances in Table 9 are used as input to reconstruct Drosophila-Phylogeny: (i) with

Neighbor Joining; and (ii) as a Splits diagram.

Table 10. Pairwise Comparisons of the Six Drosophila Species (busckii [dbus], melanogaster [dmel],

pseudoobscura [dpse], sechellia [dsec], simulans [dsim], and yakuba [dyak])

Genome pair

Maximum multiplicity

of duplicate marker

No. of duplicate

markers

No. of duplicate

occurrences did
DCJ

Solving time

(seconds)

dbus-dmel 15 582 1439 13,965 31.77

dbus-dpse 46 675 1882 14,329 29.94

dbus-dsec 15 578 1429 13,877 41.97

dbus-dsim 15 545 1349 13,822 23.69

dbus-dyak 15 615 1508 13,801 12.51

dmel-dpse 43 952 2480 18,660 20.38

dmel-dsec 43 1166 3126 5137 378.21

dmel-dsim 14 1045 2561 4791 23.85

dmel-dyak 34 1697 3896 7384 35.41

dpse-dsec 22 966 2511 18,469 22.72

dpse-dsim 14 897 2264 18,362 19.39

dpse-dyak 46 1174 3109 18,602 19.64

dsec-dsim 23 1228 3151 3403 29.61

dsec-dyak 23 1701 3908 7361 27.95

dsim-dyak 14 1562 3492 7141 30.20

Genomes were constructed by using segmentation. All instances were solved by Gurobi on a single thread.
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7. CONCLUSION

By extending the DCJ-indel model to allow for duplicate markers, we introduced a rearrangement model that

is capable of handling natural genomes, that is, genomes that contain shared, individual, and duplicated markers.

In other words, under this model, genomes require no further processing nor manipulation once genomic

markers and their homologies are inferred. The DCJ-indel distance of natural genomes being NP-hard, we

presented a fast method for its calculation in the form of an integer linear program. Our program is capable

of handling real-sized genomes, as evidenced in simulation and real data experiments. It can be applied

universally in comparative genomics and enables uncompromising analyses of genome rearrangements.

Our experiments on real data show that our approach is easily applicable to real-world genomes, with markers

generated by different methods. The power of the method, however, depends on the quality of the markers. Genes

as markers proved reliable in resolving distances and relations between further related taxa while not being

expressive enough to resolve some closer relations. In contrast, segmentation-based markers are better suited to

resolve close distances, but they might underestimate larger distances due to lack of markers.

We hope that similar analyses will provide further insights into the underlying mutational mechanisms of

other, less well-studied species. Conversely, we expect the model presented here to be extended and

specialized in future to reflect the insights gained by these analyses. Follow-up work with a family-free

version of our model has just appeared in the Proceedings of the Workshop on Algorithms in Bioinfor-

matics (WABI 2020) (Rubert et al., 2020a).
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Visnovská, M., Vinař, T., and Brejová, B. 2013. DNA sequence segmentation based on local similarity. ITAT 1003, 36–43.

Yancopoulos, S., Attie, O., and Friedberg, R. 2005. Efficient sorting of genomic permutations by translocation,

inversion and block interchange. Bioinformatics 21, 3340–3346.

Yancopoulos, S., and Friedberg, R. 2009. DCJ path formulation for genome transformations which include insertions,

deletions, and duplications. (A preliminary version appeared in Proc. of RECOMB-CG 2008.) J. Comput. Biol. 16,

1311–1338.

Yin, Z., Tang, J., Schaeffer, S.W., et al. 2016. Exemplar or matching: modeling DCJ problems with unequal content

genome data. J. Comb. Opt. 32, 1165–1181.

Address correspondence to:

Prof. Jens Stoye

Faculty of Technology and Center for Biotechnology (CeBiTec)

Bielefeld University

Postfach 10 01 31

33501 Bielefeld

Germany

E-mail: jens.stoye@uni-bielefeld.de

REARRANGEMENT DISTANCE OF NATURAL GENOMES 431


