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Abstract
Preventing the ototoxicity caused by cisplatin is a major issue yet to be overcome. Useful preventive treatments will soon be
available. Consequently, the next step is to filter out those patients who are more prone to develop ototoxicity. The aim of this study
was to prospectively evaluate potential predictive markers of acute ototoxicity as determined by measures of distortion product
otoacoustic emissions (DPOAEs). A total of 118 patients from our previous DPOAE analysis were put under evaluation. Ototoxic
cases were divided according to unilateral (n = 45) or bilateral (n = 23) involvement. The clinicopathological characteristics, hearing
test results, germline GSTT1, GSTM1, and GSTP1 polymorphisms, and common laboratory parameters were included in the new
analysis. Univariate and multivariate statistical tests were applied. According to multivariate logistic regression, the only indepen-
dent predictor of unilateral ototoxicity (vs. non-affected) was a GSTM1 null genotype (OR = 4.52; 95%CI = 1.3–16.3), while for
bilateral damage, the GSTT1 null genotype (OR = 4.76; 1.4–16) was a predictor. The higher starting serum urea level was
characteristic of bilateral ototoxicity; however, the only independent marker of bilateral (vs. unilateral) ototoxicity was the presence
of GSTT1 null genotype (OR = 2.44; 1.23–4.85). Different processes, involving the GSTM1 and GSTT1 genotypes, respectively,
govern the development of acute unilateral and bilateral ototoxicities. Further research is needed to clarify these processes. Based on
the above findings, patients whom are at risk may be selected for otoprotective therapies.

Key messages
& The acute ototoxicity was determined by DPOAE in 118 testicular cancer patients.
& GSTM1 null was the only marker of unilateral ototoxicity (vs. non-affected).
& The only marker of bilateral hearing loss (vs. non-affected) was the GSTT1 null.
& GSTT1 null was also the marker of bilateral vs. unilateral ototoxicity.
& A high-risk group may be selected for new, individualized otoprotective treatment.

Keywords Acute ototoxicity . Cisplatin . DPOAEs . GST
polymorphisms . Testicular cancer

Introduction

Germ cell tumors are among the most frequent neoplasms
identified in men from 15–44 years of age [1], even at an
advanced stage germ cell tumors can be successfully treated
by the use of a combination of chemotherapeutical regimens
[2]. In the past decades, the 5-year tumor-free survival rate
gradually improved and now it exceeds 90%. One of the most
important components of the combined chemotherapeutic reg-
imen is cisplatin with its most frequently appearing side effect,
ototoxicity [3]. One of the major requirement from a chemo-
therapeutic drug is to assure the long-term survival of patients,
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which can be achieved by applying the potentially ototoxic
platinum compounds. In clinical practice, ototoxicity is the
major dose-limiting side effect of cisplatin treatments [4].
The reported incidence of cisplatin ototoxicity varies from 9
to 91%, based on the differences in chemotherapeutical regi-
mens, patients population, and the definition of ototoxicity,
along with variations and inconsistencies in the assessment
and grading of hearing loss [5]. Preventing ototoxicity is cru-
cial; however currently available methods to avoid ototoxic
side effects are limited, even in the case of endangered pa-
tients: use of platinum drugs with less ototoxic potential (usu-
ally carboplatin) [4], reduced dose of cisplatin [6], use of
otoprotective drugs [7–10], or advices to avoid concomitant
or further noise injuries [3], etc. Many ongoing clinical trials
are addressing this issue suggests that useful preventive treat-
ments will soon be available [4]. Consequently, the next step
is to identify those patients, who are going to develop ototox-
icity; however, predicting which patients will experience oto-
toxicity is a significant clinical challenge. The risk of devel-
oping hearing loss from drugs is most often correlated with
dosage, but this correlation is highly variable. Individual sus-
ceptibility to hearing damage is influenced by multiple bio-
chemical, physiologic, and genetic factors [11]. By using re-
sults from international literatures [12–14], it can be conclud-
ed that the appearance of ototoxic effect of platinum-
containing chemotherapeutic drug is influenced by the pres-
ence or absence of certain types of glutathione-S-transferase
(GST) enzymes, which are partly responsible for cisplatin
metabolism. These earlier experiments were retrospectively
conducted and subjective methods using audiometers were
utilized for the audiological measurements.

The aim of this study was to prospectively investigate for
possible predictive markers of acute ototoxicity, which was
determined by using distortion product otoacoustic emission
(DPOAE) measurements. The study evaluated the modifica-
tions in the acute phase immediately after the 1st cisplatin
cycle; thus, the findings do not address changes in DPOAEs
due to chronicity or permanent damage to the cochlea. Besides
GSTT1, GSTM1, and GSTP1 polymorphisms, other laborato-
ry parameters and past records of hearing tests were examined.
The a priori identification of a high-risk group can served the
basis for a better definition of individualized treatment and the
targeted use of new otoprotective drugs.

Experimental details

Patients

A total of 118 patients with testicular cancer were treated with
combination of cisplatin + bleomycin + etoposide were con-
sidered for the investigation of predictive markers for acute
ototoxicity. These patients represent a subcohort (i.e., those

without missing laboratory data) of patients presented in our
previous study [15].

The Institutional Ethical Committee and the Hungarian
Medical Research Council approved the study (323-101/
2005-1018EKU). All patients signed an informed consent.

Hearing evaluation and identification of ototoxicity

At the treatment site, patient’s clinical records were reviewed
for the following factors: past hearing complaints, present
hearing complaints, noise injuries, exposure to noise pollu-
tion, hearing loss risk factors, and smoking habits. The histor-
ical data were also considered in the analysis. The description
of DPOAEmeasurement and the exclusion criteria for patients
including presbyacusis, abnormal tympanic cavity pressure,
etc. were detailed in our previous study [15]. Ototoxicity
was established by measuring DPOAEs separately for both
ears before and immediately after the 1st cycle of cisplatin-
based chemotherapy at 100 mg/m2/5 days.

The ototoxic effect of cisplatin is known to primarily occur
at higher frequencies [16]; therefore, to correctly select the
affected patients, only the frequencies 2, 3, 4, 6, and 8 kHz
were considered. Dreisbach et al. [17] concluded that “overall,
a 4-9 dB change in DPOAE level is considered statistically
significant for short, long term monitoring of DPOAEs at
frequencies lower than 8 kHz.” According to Reavis et al.
[18], the standard error of DPOAE measurement (SEM) was
defined by test-retest changes, and the 90% DPOAE shift
reference intervals were calculated for each frequency. The
reference intervals were as follows: ± 5.47 dB at 2 kHz; ±
5.81 dB at 3 kHz; ± 6.14 dB at 4 kHz; ± 6.92 dB at 6 kHz;
and ± 5.83 dB at 8 kHz. Based on the above statement and the
calculated reference intervals, we defined acute ototoxicity at
a ≥ 7 dB decrease in DPOAE amplitudes. Moreover, patients
were considered unilaterally or bilaterally affected. Out of 118
patients, 23 presented with bilateral and 45 with unilateral
ototoxicity (Fig. 1). In both groups, 67% of patients showed
significant changes in at least one of the two highest frequen-
cies. In 46% of affected patients, a significant DPOAE shift
was detected in two or more frequencies in at least one ear.

Clinicopathological parameters

In addition to patient’s age, histology result (seminoma vs.
non-seminoma), disease stage (1 vs. 2–3), and blood pressure
(normotension vs. hypertension) at the beginning of treatment
were used in the analysis. The following laboratory data were
recorded before the treatment were used for the analysis: white
blood cell and platelet count, serum level of hemoglobin and
hematocrit, and levels of aspartate aminotransferase, alanine
transaminase, gamma-glutamyl transferase, urea, creatinine,
glucose, bilirubin, Na, K, Ca, and Mg. At the end of the first
treatment cycle, the white blood cell and platelet count; serum
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level of hemoglobin, hematocrit, and urea; and creatinine
levels were available for investigation.

Genotyping

Blood samples were taken from patients and DNA prepared as
described earlier [19].GSTT1 and GSTM1 null genotypes and
the GSTP1 Ile105Val (rs1695) polymorphism were evaluated
by multiplex PCR and the PCR-RFLP method, respectively,
as described in detail by Kiran et al [20].

Statistical analyses

All continuous and categorical data were compared in the
three subgroups with one-way ANOVA (or Kruskal-Wallis)
and chi-squared (or exact) tests, respectively. Post hoc tests
were applied to find all pairwise differences between the sub-
groups. In the case of parameters available before and after
treatment, the changes were also analyzed. P < 0.05 value was
considered statistically significant. A series of logistic regres-
sions were applied to find independent markers of unilateral
and bilateral, or any ototoxicity, and, moreover, to differenti-
ate between unilateral and bilateral ototoxicities. All variables,
with P < 0.1 of post hoc tests in univariate analysis, were
introduced in the respective logistic regression analysis to de-
termine the independent markers of acute ototoxicity. The
Hardy-Weinberg equilibrium was tested for GSTP1 polymor-
phism on www.dr-petrek.eu/documents/HWE.xls. The NCSS
program (NCSS 12 Statistical Software (2018). NCSS, LLC.

Kaysville, Utah, USA, ncss.com/software/ncss.) was used for
the statistical analyses.

Results

The distribution of the clinicopathological parameters of the
patients are presented in Table 1.

In the case of the GSTP1, there was no deviation from the
Hardy-Weinberg equilibrium (P = 0.195). The frequency of
the null genotypes of GSTT1 and GSTM1 was 21.2% and
47.5%, respectively, (see Table 1).

There was a statistically significant accumulation of pa-
tients (43%) with the GSTT1 null genotype presenting with
bilateral ototoxicity (Table 1), while the distribution of the null
genotype was lower for unaffected or unilaterally affected
patients (20% and 11%, respectively). The presence of the
GSTM1 null genotype was significantly more frequent in pa-
tients with only one ear involvement (60%), while this value
was 38–43% for the other subgroups.

In comparison with the pre-treatment measures, white
blood cell count and urea level significantly increased at the
end of first cycle, while the hemoglobin, hematocrit, and cre-
atinine levels were decreased (Wilcoxon signed-rank test) in
all subgroups, except for the white blood cell count and the
urea level in patients with bilateral ototoxicity.

The initial level of urea was higher in patients with acute
bilateral ototoxicity than in the other two subgroups (P = 0.02
and P = 0.023). Interestingly, this high initial level of serum
urea remained unchanged even after the 1st cycle of

Fig. 1 Results of DPOAE
measurement according to the
number of affected ears. The
values are expressed as mean
DPOAE before (solid line) and
after (dotted line) the 1st cisplatin
cycle. *In 23 patients the right ear
and in 22 patients the left ear was
affected
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Table 1 Hearing test results and genomic and laboratory parameters of the patients according to ototoxicity (none, unilateral, or bilateral) measured by
DPOAEs

Parameters Patients presenting ototoxicity

None (N = 50) Unilateral (N = 45) Bilateral (N = 23)
Median (95% CI) Median (95% CI) Median (95% CI)

Age (range)
[years]

31.5 (29 to 36) 34 (32 to 36) 33 (28 to 40)

Histology
seminoma/non-seminoma

13/37 12/33 3/20

Stage
1/2–3

17/33 20/25 12/11

Former hearing complaints n/y/NA 36/2/12 27/5/13 11/2/10

Noise injury
n/y/NA

24/14/12 19/13/13 6/7/10

Noise pollution
n/y/NA

23/15/12 19/13/13 6/7/10

Hearing loss risk factors
n/y/NA

30/9/11 20/14/11 7/7/9

Hearing complaints
before the 1st cycle n/y/NA

36/0/14 30/1/14 12/0/11

Hearing complaints
after the 1st cycle n/y/NA

31/6/13 26/5/14 11/2/10

Smoking ever
n/y/NA

13/25/12 13/19/13 2/11/10

Hypertension
before the 1st cycle n/y/NA

31/9/10 18/11/16 10/5/8

GSTT1
wild type/null

40/10 40/5 13/10*

GSTM1
wild type/null

31/19 18/27** 13/10

GSTP1
wild type/hetero/homo

21/25/4 22/19/4 11/12/0

White blood cell count
before the 1st cycle [G/L]

7.5 (6.5 to 8.4) 7.5 (6.8 to 8.5) 7.3 (6.5 to 9.1)

White blood cell count
after the 1st cycle [G/L]

8.5 (7.7 to 9.5) 8.7 (8.1 to 9.6) 8.1 (7.1 to 8.7)

White blood cell count
change [% of before]

6 (− 5 to 12.7) 13.3 (2.5 to 26.7) 8.1 (− 3.9 to 23.2)

Hemoglobin
before the 1st cycle [mmol/L]

14.8 (14.4 to 15.1) 15.1 (14.6 to 15.4) 14.7 (13.9 to 15.5)

Hemoglobin
after the 1st cycle [mmol/L]

13.7 (13.1 to 14) 13.9 (13.5 to 14.2) 13.6 (12.8 to 14.3)

Hemoglobin
change [% of before]

− 6.7 (− 8.9 to − 4.9) − 7.7 (− 9.4 to − 4.9) − 6.5 (− 10.6 to − 3.5)

Hematocrit
before the 1st cycle [L/L]

0.44 (0.44 to 0.46) 0.45 (0.44 to 0.47) 0.45 (0.43 to 0.47)

Hematocrit
after the 1st cycle [L/L]

0.41 (0.4 to 0.42) 0.41 (0.4 to 0.42) 0.41 (0.38 to 0.42)

Hematocrit
change [% of before]

− 7.3 (− 10.9 to − 5.4) − 8.6 (− 10.6 to − 6.5) − 8.8 (− 12.8 to − 4.9)

Platelet count
before the 1st cycle [G/L]

254 (240 to 275) 249 (229 to 266) 247 (225 to 297)

Platelet count
after the 1st cycle [G/L]

268 (234 to 296) 251 (219 to 270) 221 (208 to 282)

Platelet count
change [% of before]

− 3.1 (− 38 to 4.9) 0 (− 2.6 to 4.7) − 2.7 (− 9 to 2.5)

Creatinine
before the 1st cycle [μmol/L]

89 (84 to 94) 89 (81 to 95) 89 (85 to 94)

Creatinine
after the1st cycle [μmol/L]

89 (78 to 92) 82 (77 to 89) 87 (79 to 98)

Creatinine
change [% of before]

− 1.8 (− 10.1 to 2.5) − 3.2 (− 12.9 to 0) − 5.7 (− 11.7 to 1.4)
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chemotherapy, while in the other subgroups, a ~ 20% increase
was observed.

The following variables were introduced in the logistic
regressionmodel of 0 vs. 1 involved ear:GSTM1, “urea after,”
and aspartate aminotransferase. Only the presence of the
GSTM1 null proved to be an independent marker of unilateral
ototoxicity with OR = 3.62; (95% CI 1.3–10.5); P = 0.018.
The area under the receiver operating curve (ROC) was 0.624.

The GSTT1, glucose, and urea levels were used as covari-
ates in the logistic regressionmodel for 0 vs. two affected ears.
Only the GSTT1 null was an independent marker of bilateral
ototoxicity: OR = 3.6; (1.1–11.4); P = 0.029. The area under
the ROC curve was 0.617.

The model for unilateral vs. bilateral involvement included
the following parameters: the GSTT1, urea, glucose, and
“white blood cell count after,” while “urea change” was ex-
cluded because of a multicollinearity. Only the GSTT1 null
was found to be an independent predictor of acute bilateral
ototoxicity compared with unilateral damage: OR = 4.31;
(2.8–4.3); P = 0.033. The area under the ROC curve was
0.706.

If ototoxicity (either or both ears involved vs. non-affected
patients) was considered and age and GSTM1 were used as
covariates, logistic regression resulted in no significant variables.

Discussion

In this study, we aimed to evaluate the potential predictive
markers of cisplatin-caused acute ototoxicity as determined
by DPOAEs to give further assistance to oncologists in de-
signing individual therapies for patients at risk. DPOAE mea-
sures indicated earlier damage of outer hair cells compared
with the outcomes of routine audiometric tests [21]. In our
previous study [15], acute ototoxicity was demonstrated by
measuring DPOAEs before and after the 1st cycle of a
cisplatin-based treatment in patients with testicular cancer. In
the present report, we divided patients into three subgroups
according to the nature of ototoxicity, i.e., no ototoxicity, uni-
lateral toxicity, and bilateral ototoxicity. Data regarding hear-
ing complaints, routine laboratory parameters, and three
germline genetic polymorphisms (GSTM1, GSTT1, and

Table 1 (continued)

Parameters Patients presenting ototoxicity

None (N = 50) Unilateral (N = 45) Bilateral (N = 23)
Median (95% CI) Median (95% CI) Median (95% CI)

Urea
before the 1st cycle [mmol/L]

4.2 (3.9 to 4.9) 4.6 (4.2 to 5) 5.2 (4.8 to 5.9)***

Urea
after the 1st cycle [mmol/L]

5 (4.6 to 5.3) 5.6 (4.9 to 6.2) 4.9 (4.6 to 6.3)

Urea
change [% of before]

12.2 (0 to 28.6) 15.5 (7.1 to 35.4) − 1.7 (− 12.9 to 15)****

Aspartate aminotransferase
[IU/L]

23 (21 to 27) 24 (23 to 26) 23 (21 to 26)

Alanine transaminase
[IU/L]

26.5 (20 to 30) 28 (25 to 33) 25 (20 to 31)

Gamma-glutamyl transferase
[IU/L]

33.5 (25 to 40) 41 (34 to 47) 33 (27 to 40)

Glucose
[mmol/L]

5.2 (4.9 to 5.4) 5.1 (5 to 5.3) 5.2 (5.1 to 5.8)

Bilirubin
[μmol/L]

11.2 (8.5 to 13.5) 11.3 (9.4 to 14) 10.6 (8 to 16.2)

Na
[mmol/L]

138 (137 to 138) 138 (137 to 139) 139 (138 to 140)

K
[mmol/L]

4.5 (4.3 to 4.6) 4.4 (4.3 to 4.6) 4.3 (4.2 to 4.5)

Ca
[mmol/L]

2.5 (2.45 to 2.54) 2.5 (2.46 to 2.52) 2.5 (2.49 to 2.55)

Mg
[mmol/L]

0.85 (0.83 to 0.89) 0.84 (0.82 to 0.87) 0.85 (0.8 to 0.87)

CI confidence interval, hetero heterozygous, homo homozygous mutant, n no, NA not available, y yes
*P = 0.008 (0 vs. 2 P = 0.037; 1 vs. 2 P = 0.002)
** 0 vs. 1 P = 0.032
***P = 0.034 (0 vs. 2 P = 0.02; 1 vs. 2 P = 0.023)
****P = 0.031 (1 vs. 2 P = 0.007)
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GSTP1) were investigated. The frequencies of GSTM1 null
and GSTT1 null genotypes were similar to those published
for a Hungarian population (47.4% and 20.6%, respectively)
[22]. The distributions of GSTP1 genotypes were in Hardy-
Weinberg equilibrium. We have observed that a GSTM1 null
was associated with unilateral involvement, while the GSTT1
null was associated with a bilateral acute ototoxicity. It is
likely that other non-investigated parameters can also contrib-
ute to the development of an ototoxicity, because the observed
areas under the ROC curves for both markers were ~ 0.6.

There are few reports, which have studied GST polymor-
phisms in cisplatin-induced acute toxicity (see Table 2). To

our knowledge, this is the first study investigating the role of
GSTM1, GSTT1, and GSTP1 polymorphisms in acute ototox-
icity after the 1st cycle of cisplatin determined by DPOAEs in
patients with testicular cancer. Khrunin et al. did not find any
association between the GSTM1, GSTT1, orGSTP1 gene var-
iants, and ototoxicity measured audiometrically after the 2nd
cycle of cisplatin [23]. Talach et al. and Jurajda et al. measured
ototoxicity by pure-tone audiometry and found significant as-
sociations with theGSTT1 +/+ genotype both after the 1st and
2nd cisplatin cycles [12, 24]. Barahmani et al. also investigat-
ed GST polymorphisms in patients presenting with a grade 3
audiologic toxicity during cisplatin treatment, but there was

Table 2 Association between ototoxicity and studied GST polymorphisms

Study n Ototoxicity Cumulative
dose
m g / m 2

cisplatin

Method GSTT1
null/null vs others

GSTM1
null/null vs others

GSTP1
w/h/m

Present 118 Early 100 DPOAE OR = 4.1; p = 0.004a + b

(OR = 3.6; p =
0.029)a**

OR = 2.4; p = 0.032b

(OR = 3.6; p =
0.018)b**

NS

[23] 104 Early 200 PTA NS NS NS

[12,
24]

54 Early 100 PTA (OR = 6.4; p = 0.009)* NS NS

[12,
24]

38 Early 200 PTA (OR = 6.3; p = 0.027)* NS NS

[25] 34 Any during
CHT

75–600 PTA NS NS –

[26] 72 Late Median ~ 400 DPOAE+
PTA/ABR

– – (m vs others OR > 1; p = 0.03)
(m vs others NS)**

[14] 173 Late Median ~ 400 PTA NS NS
(OR = 0.4; p =

0.022)**

p = 0.021
(m vs others OR = 0.2; p <

0.001)**

[27] 162 Late Median 400 PTA – NS NS

[28] 106 Late Median 400 PTA NS
(OR = 3.5; p =

0.038)**

NS p = 0.046
(w vs others OR = 3.8; p =

0.012)**

[23] 104 Late 600 PTA NS NS NS

[29]
[13]

90
68

Late
Late

Median 265
Median 526

PTA
PTA

OR = 0.2; p = 0.01
OR = 0.2; p = 0.023
(OR = 0.1; p =

0.002)**

NS
NS

NS
–

[30] 42 Late Mean 635 PTA – – (w vs others NS,
but at ≤ 4 kHz OR = 0.1; p = 0.02)

[31] 39 Late Mean 236 PTA NS NS NS

[12] 37 Late 600 PTA NS (NS)* – –

[32] 238 Late Median 397 Self-reported NS OR = 0.6; p = 0.025 (m vs others OR = 0.3; p =
0.008)**

[33] 69 Late Median 300 Hearing aid – – NS
(w vs others OR = 0.3; p = 0.021)

ABR auditory brainstem response, CHT chemotherapy, DPOAE distorsion product otoacoustic emission, h heterozygous genotype, m homozygous
mutant genotype, NS non-significant, PTA pure-tone audiometry, OR odds ratio, w homozygous wild genotype

*+/+ vs others

**Multivariant analysis
a Bilateral
b Unilateral
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no correlation between development or time to the develop-
ment of ototoxicity and the GST polymorphisms [25]. After
presenting these results, we can discuss those studies, which
investigated the association between GST gene variants and
late ototoxicity. Unfortunately, there are no investigations,
which examined the association of these polymorphisms and
the late-onset ototoxicity measured by DPOAEs. Olgun et al.
[26] reported the use of DPOAEs; but in addition to pure-tone
audiometry, unfortunately, the detailed results of DPOAEs
were not reported and ototoxicity was considered based only
on the audiogram. Peters et al. considered all cycles of cisplat-
in to define ototoxicity in 39 patients. However, even though
the pure-tone audiometry was performed after each cycle, the
rate of ototoxic cases was not reported separately after each
treatment cycle [31]. Aside from a consistently bilateral in-
volvement, no association was reported for GSTM1, GSTT1,
and GSTP1 polymorphisms. Similarly, Ross et al. [27] and
Khrunin et al. [23] did not find any significant association
between the above gene variants and late-onset ototoxicity.
Among others, the significantly higher rate (69% vs 46% in
non-affected patients) of concomitant treatments with ototoxic
side effects (aminoglycosides and cranial irradiation) of pa-
tients with hearing loss [27], or patients’ characteristics (wom-
en, median 52 years, ovarian cancer), and that cisplatin treat-
ment was stopped if a grade > 1 of ototoxicity occurred [23]
may mask the effect of GST polymorphisms. Talach et al.
measured ototoxicity by pure-tone audiometry at the end of
cisplatin treatment and found no association with any of the
above polymorphisms [12]. Interestingly, before and immedi-
ately after the 2nd cycle and before the 3rd cycle, they ob-
served a significantly higher rate of ototoxic cases in patients
with a wild type GSTT1 (+/+) genotype. If patients with at
least one wild type allele were considered (as in our study),
the association was not present. Unfortunately, unilateral and
bilateral ototoxicites were not assessed.

Based on our previous [34, 35] and present experiences and
on reports from the literature [36–38], we presume that molecular
processes that lead to acute or permanent (late) ototoxicity caused
by cisplatin can differ. Therefore, comparison of results from
studies on acute and chronic ototoxicity should be avoided as this
may account for contradictory results in the literature. For exam-
ple, Oldenburg et al. investigated hearing impairment after > 4
years from the start of cisplatin treatment; thus, their findings [32]
are not comparable with our results on acute ototoxicity. The
contradiction between the results (GSTM1 or GSTT1 null geno-
type as a protector or facilitator for ototoxicity) relies on different
physiological phenomena: early acute ototoxicity may be associ-
ated to damage of stria vascularis and supporting cells within the
cochlea that have the potential to recover, whereas the damage to
outer hair cells results in a permanent hearing loss [37]. In some
studies, ototoxicity was only assessed at the completion of che-
motherapeutic treatment. Ototoxicity at that stage cannot be com-
pared with acute ototoxicity, because the cumulated cisplatin

doses (4–6 × higher than those for acute events) are similar to
those presented for chronic events. The fact of incomparability
was mirrored by the findings of Choeyprasert et al. who mea-
sured ototoxicity by audiometry, just at the end of therapy, and
the GSTT1 null proved to be protective for hearing impairment
[13].

The difference between acute and late ototoxicity was also
presented in studies by Talach et al. [12] and Jurajda et al. [24]
where the early observed significant association of the GSTT1
genotype with ototoxicity disappeared at the end of treatment.
According to the data of Table 2, the association between late
ototoxicity and the GSTP1 polymorphism is very controver-
sial. Both the homozygous mutant [14, 26, 32] and the wild
genotype [28, 30, 33] were associated with ototoxicity [26,
28] or a protective effect [14, 30, 32, 33], or no effect was
found [23, 27, 29, 31].

Interestingly, theGSTT1 null was found to be associated with
hearing damage (presbycusis) at high frequencies, which was
determined by audiometry in 50 adults [39], while the presence
of the GSTM1 null genotype was associated with noise-induced
hearing loss as determined by pure-tone audiometry in 889
Chinese workers [40]. The latter result led us to hypothesize that
our patients with the GSTM1 null genotype were also prone to
noise-induced hearing loss, but a lower noise exposure threshold
may be present, because of cisplatin treatment. This presumption
should be investigated in further studies.

Regarding the high initial urea levels, acute dehydration can
be excluded because the hemoglobin, hematocrit, serum sodi-
um (Na+), and potassium (K+) levels of patients with further
bilateral involvement were within the reference ranges (i.e.,
they were in the middle of the respective normal intervals).
Impaired kidney function can also be excluded because the
creatinine and the estimated glomerular filtration rate levels
(calculated to check the normal kidney function; data not
shown) did not differ from those of other patients. Also, drugs
(steroids, cytokines, tetracyclines, etc.), which may increase the
urea levels of patients, were not initiated before chemotherapy.

Other factors, such as a high protein diet, presence of hidden
infection, inflammation or stress, or other cause(s), may raise the
urea levels [41]. In order to verify if a systemic inflammationwas
present or not, we calculated the systemic immune-inflammation
index (SII) (as the C-reactive protein was not available for our
patients). There was no significant difference between patients
with high vs. low urea level (data not shown), which suggested
that high urea levels were not caused by systemic inflammation,
or the SII was not a good marker for indicating cancer-caused
inflammation in this patient group. Moreover, the yet unidenti-
fied urea-increasing processes overcome the well-known urea-
increasing effect of cisplatin, which as a later process was ob-
served in our patients. Further investigations should be conduct-
ed to reveal the nature of competing processes. On the other
hand, a severe (bilateral) ototoxicity may be attributed to the
additively enhanced reactive oxygen species formation due to
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existing high urea levels [42] and cisplatin treatment [3]. None of
the studied polymorphisms have been associated with urea level;
however, our data shows that elevated level of urea at the initia-
tion of therapy in patients, who later developed severe ototoxicity
needs further prospective studies.

There are some limitations of this study. We have not inves-
tigated the combination of polymorphisms, as did other authors
[14, 25], because the number of cases in the study groupswould
not allow enough statistical power for drawing such conclu-
sions. There are several common laboratory parameters and
markers related to ototoxicity (e.g., [27, 43]), which were not
evaluated in our study, since these parameters were not avail-
able for all patients. On the other hand, the statistical power was
strong in our analysis.

The role of the studied (and not evaluated in our current work)
polymorphisms in predicting cisplatin-caused early ototoxicity is
far from being clarified. In the future, the most important task
would be to find a key to differentiate between those early oto-
toxic cases, which will recover, and those who are going to
develop a permanent hearing impairment. It needs to be empha-
sized that early ototoxicity is prone to recovery in some patients
[37]. In contrast, other patients presenting with early ototoxicity
will develop chronic hearing loss in spite of a dose reduction or
changing to other platinum-containing drug. Based on our pres-
ent results, we may hypothesize that there may be several and
different competing molecular mechanisms involving GST and
supposedly other reactive oxygen species scavenger enzymes
[3], for the development of unilateral and bilateral ototoxicities.

For the association of genotypes with unilateral and bilateral
ototoxicity, we have only hypothetical explanations. The asym-
metry and the genetic difference of the bilateral organs are also
well-known; thus, an association of a genotype with unilateral
ototoxicity is possible. Another option may be related to the
unilateral noise–induced effect during treatment, which may
result in hearing damage, because the ears during treatment
are more sensitive to intense noise. However, this sensitivity
may be related to some gene variants. Last, but not least, it is
hypothesized that two molecular mechanisms with different
speeds may cause ototoxicity. Due to the asymmetry of organs
(which includes the asymmetry in the expression of enzymes),
the slow toxicity becomes first unilateral and then bilateral. Our
patients were also tested more than 1 year after treatment.
According to our as yet unpublished preliminary results, in
cases where the acute unilateral ototoxicity became bilateral,
50% of patients had GSTM1 null and 0% had GSTT1 null
genotypes. So this could be a GSTM1-dependent slow process.
The rapid response is characteristic ofGSTT1 null patients, who
presented acute and also late (persistent) bilateral ototoxicity:
with 67% of them being GSTT1 null. The situation is further
complicated or explained by the fact that improvement is only
seen in 12% of patients and only in unilateral cases, who ex-
hibited 0%GSTT1 nulls and 67%GSTM1 nulls. Thus, the slow
process involves also reversible ototoxicity, and perhaps this is

why it seems slow in the development of bilateral damage.
Further research is needed to clarify these phenomena.

In conclusion,GSTM1 null andGSTT1 null genotypes proved
to be independent markers of unilateral and bilateral acute oto-
toxicities, respectively. The a priori identification of a high-risk
group can serve as a basis for a better definition of individualized
treatment and the targeted use of new otoprotective drugs.
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