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Abstract

Objective—Saccadic (fast) eye movements are a routine aspect of neurological examination and 

are a potential biomarker of mild traumatic brain injury (mTBI). Objective measurement of 

saccades has become a prominent focus of mTBI research, as eye movements may be a useful 

assessment tool for deficits in neural structures or processes. However, saccadic measurement 

within mobile infra-red (IR) eye-tracker raw data requires a valid algorithm.

The objective of this study was to validate a velocity-based algorithm for saccade detection in IR 

eye-tracking raw data during walking (straight ahead and while turning) in people with mTBI and 

healthy controls.

Approach—Eye-tracking via a mobile IR Tobii Pro Glasses 2 eye-tracker (100Hz) was 

performed in people with mTBI (n=10) and healthy controls (n=10). Participants completed two 

walking tasks: straight walking (walking back and forth for 1minute over a 10m distance), and 

walking and turning (turns course included 45°, 90° and 135° turns). Five trials per subject, for 

one-hundred total trials, were completed. A previously reported velocity-based saccade detection 

algorithm was adapted and validated by assessing agreement between algorithm saccade 

detections and the number of correct saccade detections determined from manual video inspection 

(ground truth reference).

Main results—Compared with video inspection, the IR algorithm detected ~97% (n=4888) and 

~95% (n=3699) of saccades made by people with mTBI and controls, respectively, with excellent 

agreement to the ground truth (Intra-class correlation coefficient2,1 = .979 to .999).
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Significance—This study provides a simple yet highly robust algorithm for the processing of 

mobile eye-tracker raw data in mTBI and controls. Future studies may consider validating this 

algorithm with other IR eye-trackers and populations.
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Introduction

Neurological clinical examinations routinely involve eye-movement assessments of patients 

that focus on saccadic (fast eye-movements) and fixation (pauses on area of interest) 

movements [1]. Eye-movements, particularly saccades, provide an understanding of the 

visual, cognitive and motor deficits that accompany ageing [2] and neurological injuries or 

illnesses [3–6] such as mild traumatic brain injury (mTBI). Indeed, the presence of eye 

movement deficits in acquired brain injury (of which mTBI is a sub-group) is reportedly as 

high as 90% [7, 8], and objective measurement of eye movements for the detection of 

deficits with mTBI has been a focus of many current research studies [9–12]. Hence, 

measurement of eye-movements in mTBI via non-invasive technology has become 

increasingly popular over recent years [13–15], likely due to the ease of application and the 

insight it may give into the extensive network of brain regions that are involved in eye-

movement control [16]. Individuals with mTBI may suffer deficits in a multitude of neural 

structures and processing centers that impact visual capabilities [17], such as deficits in 

visual attention, visual working memory, visual discrimination, and selective (or choice) 

attention [18, 19]. Understanding eye-movement abnormalities in mTBI compared with 

healthy controls using eye-tracking technology may therefore inform underlying 

mechanisms involved in patient symptoms and deficits. Examining eye movements in mTBI 

during complex dynamic tasks that involve real-word challenges, such as dual tasking (i.e. 

carrying out two tasks simultaneously) or turning, could be particularly useful to understand 

how mTBI-related deficits may affect functional capabilities in everyday life. This makes 

robust eye-tracking a possible biomarker of mTBI-related deficits [20] and a useful mTBI 

assessment tool [21] that could be deployed in a variety of environments including the clinic 

or field side assessments.

Eye-tracking is not novel to research, but recent advances in micro-technology have allowed 

a shift from high resolution static (200–1000Hz) to dynamic mobile (30–100Hz) eye-

tracking devices that facilitate the study of eye-movements during real-world tasks (i.e. 

walking, turning, obstacle crossing etc.) [3, 4, 22–24]. Mobile infra-red (IR) eye-trackers 

have been developed, and are the predominant method used within research to monitor eye-

movements [13]. During dynamic tasks, research is often focused on the analysis of 

saccades and fixations with common outcomes including; number and duration of fixations; 

and number, duration, velocity, and amplitude (i.e. distance) of saccades. Such outcomes are 

not typically available from the manufacturer provided “black-box” mobile eye-tracker 

software (i.e. Tobii Pro Analyzer, Dikablis D-Lab etc.) or open source software [25–27]. 

These “black-box” software packages do not allow researchers to access data processing 

methods and limit outcome use and understanding. Therefore, custom-made algorithms are 
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required to provide robust saccadic and fixation data from raw coordinate data provided by 

mobile eye-tracking devices. Developed algorithms are largely transferable across eye-

tracker hardware, but may need to be adapted with technological advancement of eye-

trackers or the output that they provide.

There are currently several different algorithm methods to extract desired eye movement 

outcomes (for an overview see; [28–30]). However, there is currently no gold-standard 

methodology for saccade detection [31]. Due to saccade and fixation speed profiles, 

velocity-based (i.e. pupil coordinate frame-to-frame velocities) identification of these eye-

movements is a simple method to understand and implement [31]. For example, saccades 

have high velocities (i.e. a 5° saccade typically has a velocity >240°/sec) and fixations 

consist of low velocities (i.e. <30–300°/sec depending on task), therefore discrimination 

between these features is relatively easy and robust [28, 29]. This process has been applied 

to dynamic eye-tracking data analysis to extract saccadic and fixation outcomes [3, 4, 32–

34].

Robust velocity-based algorithms for dynamic (i.e. walking) monocular eye-tracker 

(Dikablis, 50Hz, Ergoneers) data analysis have been developed and validated in older adults 

and people with Parkinson’s disease [33]. While, the application of such saccade detection 

algorithms to mobile eye-tracker data collected from people with mTBI has not yet been 

examined, it is a necessary step to ensure robust data analysis [29]. Similarly, technological 

advancements in mobile eye-tracking devices may require such algorithms to be adapted to 

appropriately derive metrics [35]. For example, new eye-trackers with higher sampling 

frequency (i.e. 100Hz) high definition cameras (e.g. 1080HD) may require different 

algorithm settings (e.g. pixel to degree conversion ratios etc.) [36], and may capture greater 

levels of noise that need to be accounted for to avoid temporal sampling errors [37].

The overall aim of this study was to validate a saccade detection algorithm for analyzing 

data from a binocular mobile eye-tracker during walking (straight and with increasing 

complexity via turning and dual-task) in individuals with mTBI and healthy controls. To 

achieve this aim we adapted a previously reported saccade detection algorithm [33] to 

analyze data from a Tobii Pro Glasses 2 (100Hz, 1080HD cameras, Tobii Inc.) mobile eye-

tracker and compared outcomes to manual video observation by an expert rater, in line with 

previous studies [33, 34].

Methods

Participants

Data were collected within an ongoing study ‘Rehabilitation of Complex TBI with Sensory 

Integration Balance Deficits; Can Early Initiation of Rehabilitation with Wearable Sensor 

Technology Improve Outcomes?’ (ClinicalTrials.gov identifier: NCT03479541). All 

experimental procedures were approved by an Oregon Health & Science University (OHSU) 

and Veterans Affairs Portland Health Care System (VAPORHCS) joint institutional review 

board, with written informed consent obtained from participants prior to all testing. This 

study involved recording eye-movement data while walking straight and while turning in 

people with an acute mTBI and healthy controls. Data from twenty subjects (n=10 mTBI 
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and n=10 controls) was analyzed, specific participant inclusion and exclusion criteria is 

detailed below. Participant demographic data are presented within Table 1; subjects were 

well matched for age, gender, height and mass. Visual acuity (LogMAR at 4m) and contrast 

sensitivity (Mars Perceptrix at 50cm) were assessed using standard eye charts.

Stage of mTBI was based upon previous work that has defined 0–7 days post-mTBI to be 

the immediate period, 1–6 weeks the acute period, 7–12 weeks the post-acute period, and 

>12 weeks to be the chronic period [38]. All mTBI diagnoses were confirmed by a physician 

and were defined with the following criteria: no CT scan (or a normal CT scan if obtained), 

no loss of consciousness exceeding 30 min, no alteration of consciousness/mental state up to 

24hrs post-injury, and no post-traumatic amnesia that exceeded one day [38, 39].

Inclusion criteria:

1. A diagnosis of mTBI within 12 weeks; the mechanism of injury was not be 

restricted, so may include whiplash if subjects passed a cervical screen.

2. Aged between 18–60 years old.

3. SCAT5 symptom evaluation sub-score ≥1 for balance, dizziness nausea, 

headache or vision AND a minimum total score of 15.

4. No or minimal cognitive impairment having ≤ 9 on the Short Blessed Test [40].

Exclusion criteria:

1. Other musculoskeletal, neurological, or sensory deficits that could explain 

dysfunction.

2. Moderate to severe substance-use disorder within the past month [41].

3. Severe pain during an initial clinical evaluation (≥7/10 subjective rating).

4. Current pregnancy.

5. Unable to abstain from medications that might impair balance 24 hours before 

testing.

6. Contraindications to rehabilitation such as unstable c-spine.

7. Active participation in physical therapy for their concussion, however 

participants could be undertaking other forms of treatment for their symptoms 

such as massage, acupuncture, and counseling.

Equipment

Infra-red (IR) mobile eye-tracker: A head-mounted infra-red Tobii Pro Glasses 2 

(100Hz, Tobii Technology Inc., VA, USA) mobile eye-tracking system was used to record 

participant eye-movements during the walking tasks. Importantly, a 100Hz eye-tracking 

system allows for detection of saccades and their characteristics [37]. Participant pupils were 

recorded binocularly by means of infrared illumination, which provided the gaze coordinates 

(x, y). The IR method allowed for the detection of the blackness of the pupil, which was 

recorded via four IR eye cameras for each eye.
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Video: The IR eye-tracker used a dual camera view system, with a video recording from an 

eye camera and a field of view camera (1080HD, 50Hz, Figure 2). The eye-tracker was 

calibrated prior to data collection using the manufacturer’s single point calibration method, 

which overlaid the eye and field video outputs with a cross-hair provided on the video to 

represent pupil location. Coordinate (x, y) data were derived from the cross-hair (red circle, 

Figure 2) location and were used to derive eye-movements.

Experimental Procedure

Participants were asked to walk down a 10m straight corridor back and forth for 1minute, 

under single and dual-task. Participants also completed a walking-while-turning course (8 

laps) over a similar course to our previously developed turning course (with repeated 45°, 

90° and 135° turns) [42], under single and dual-task, and while fast walking (4 laps) (Figure 

1). The dual-task involved walking while completing a secondary auditory Stroop task, 

which has been detailed elsewhere [43]. In brief, this test involved participants having to 

respond (speak the word high or low) as fast as possible to different pitches of the words 

‘HIGH’ or ‘LOW’ that were played over a digital recording via headphones. Both congruent 

(e.g. word High is said in a High pitch, or word Low is said in a Low pitch) and incongruent 

(e.g. word High is said in a Low pitch, or word Low is said in a High pitch) stimuli were 

used, where the pitch of the word was reported rather than the spoken word by the voice 

recording.

Feature Selection and Extraction

Video inspection: Videos were manually analyzed similar to previous work [33, 34, 44]. 

In order to compare eye-tracker algorithm results, all high-definition field camera videos 

(Figure 2) from each participant (n=20) during the dynamic walking trials were visually 

inspected by a single expert rater examiner (SS) frame-by-frame (100 videos in total). The 

visual inspection involved recording the number of saccades (fast eye-movements >5°) seen 

within each video, which was then compared to the IR eye-tracker algorithm output.

Detection of visual events via algorithm

In order to analyze data from the Tobii Pro Glasses 2 mobile eye-tracker, we adapted a 

previously validated algorithm [33]. It was not appropriate to directly apply the algorithm to 

this new technology since sampling rate, pixel conversion ratios and data output were not the 

same as the those used by older eye-tracking devices. The entire algorithm is presented in 

Figure 3 and the following details the algorithm stages.

Stage 1: Pre-processing

a) Moving median filter: Due to the eye-tracker sampling frequency (100Hz), we adapted 

the previous algorithm [33] by filtering the raw eye-tracker signal using a moving median 

filter to remove high frequency noise introduced by artifacts, such as head movement or 

device slippages. This filter was chosen to preserve the edge steepness of the saccades, retain 

signal amplitudes and not introduce any artificial signal changes [45].

Stuart et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b) Distance, velocity and acceleration: A velocity-based algorithm was used to derive all 

eye movement characteristics of interest. Following raw data filtering, the first step of this 

algorithm was to calculate the point-to-point position change of the x and y coordinates for 

each frame of the raw data.

Distance (1) was calculated in pixels, which was the difference in pixels from time point 1 

(t1) to time point 2 (t2), with Time equal to 10ms. Velocities (2) and accelerations (3) were 

calculated as the change in distance and change in velocity from one frame (or time point) to 

the next.

Distance = xt1 − xt2
2 + yt1 − yt2

2 (1)

Velocity = Distance
Time (2)

Acceleration = Velocityt1 − Velocityt2
Time (3)

Stage 2: Convert data from pixels to degrees

a) Conversion of pixels to degrees: Eye movements are typically measured and reported 

in degrees of movement, however raw eye tracker co-ordinate (x, y) data was obtained in 

pixels. Therefore eye-movement pixel data were converted to degrees, calculated using the 

pixel to degree conversion ratio of 1:0.05 (Table 1).

Stage 3: Event Detection

a) Velocity and Acceleration thresholds: Following calculation of the velocities and 

accelerations for each frame in the raw eye-tracker data the algorithm then classified each 

point based on fixed thresholds. Although in line with previous recommendations [35], these 

thresholds can be manually changed depending upon the task (i.e. lower thresholds could be 

used for static tasks). In order to remove irrelevant artifacts in eye-tracker data (i.e. blinks or 

flickers) and to standardize detected visual events (i.e. saccades or fixations) fixed velocity 

and acceleration thresholds were used, which are explained below.

b) Removal of data caused by blinks and flickers: Data were further filtered using set 

criteria for blinks and flickers, which were based upon the co-ordinate data and the frame-

by-frame velocity changes of the data. Blinks (closing the eye) were classified as any eye-

tracker data frames that had co-ordinates that had missing data (i.e. x, y = 0, 0 or blank 

space). Flickers were classified as any frame that had a velocity change of >1000°/s or 

acceleration >100,000°/s2, as it is not physiologically possible to move the eye faster than 

these thresholds [46, 47]. These artifacts or missing data were removed and gaps were 

linearly interpolated.
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c) Detection of a saccade: Each point in the raw eye-tracker data that had a velocity 

greater than 240°/s (~5° distance) and acceleration greater than 3000°/s² was classified as a 

saccade. In line with previous dynamic eye-tacker algorithms [33, 34], the current algorithm 

used a threshold above a 5° distance in order to avoid vestibular ocular reflexes (VOR) (due 

to VOR-related eye-movements typically being less than 5° during walking [48, 49]) and to 

ensure that only purposeful eye movement data was included.

We adapted the previous algorithm [33] by ensuring that saccades that were <10 frames 

(100ms) apart were joined, as they were likely part of the same eye-movement (i.e. catch-up 

saccades). Saccade distance and duration were calculated from the grouped saccades. 

Saccades had to have durations <10 frames (100ms) as saccades are not known to occur with 

durations longer than this threshold.

d) Detect of a fixation: Fixations were a secondary outcome of the algorithm, and were 

classified as points in the eye-tracker data that had a velocity less than 240°/s and 

acceleration less than 3000°/s2 in the same manner as the saccades. Following joining of 

adjacent fixation frames, fixations also had to have durations that were >10 frames (100ms) 

and frames not meeting this criteria were discarded.

Stage 4: Quantifying saccades and fixations—The final stage of the algorithm was 

to calculate the outcomes of the visual events (i.e. saccades and fixations). We extracted the 

following features from the data: Saccade number, frequency, velocity, acceleration, duration 

and distance; and Fixation number, frequency, duration and timing.

Data and Statistical Analysis

The mobile eye-tracker algorithm was implemented within MATLAB® (2017b, Mathworks, 

Natick, MA, USA). Mobile eye-tracker algorithm outcomes were compared to manual video 

analysis by an expert rater (gold-standard or ground truth reference) in line with previous 

research studies [33, 34, 44]. Between-group comparisons were not performed, as this was 

not the focus of the study. Saccade detection (number) was evaluated during dynamic 

walking tasks, including straight walking and walking with turns. Detection performance 

was performed with respect to the following criteria;

• Correct detection: IR algorithm saccade or fixation detection was marked as 

correct if it was found in the corresponding video.

• Undetected: IR algorithm saccade detection was marked as undetected if the 

saccade was found in the corresponding video, but not in the algorithm output.

• Spurious: IR algorithm saccade detection was marked as spurious if it was in the 

algorithm output but not in the corresponding video.

Data were analyzed using SPSS (v25, IBM Inc, IL, USA). Normal data distribution was 

determined using Kolomogrov-Smirnov tests. Absolute agreement between methodologies 

was assessed using intra-class correlations (ICC2,1). ICCs were interpreted as; poor <0.5, 

moderate 0.50–0.75, good 0.75–0.90 and excellent >0.90 [50]. Bland-Altman plot analysis 

provided mean differences and limits of agreement between methodologies.
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Results

Results from the video inspection and IR algorithm output during the various walking trials 

are displayed in Tables 3 and 4. Overall, the IR algorithm correctly detected ~97% (n=4888) 

and ~95% (n=3699) of the saccades detected via video inspection for the mTBI and control 

groups, respectively. There were generally low levels of undetected saccades (~2–3%) and 

spurious saccade detections (~2–3%) within the IR algorithm output compared to the video 

inspection.

Agreement results shown in Table 3 indicated that the IR algorithm detected saccades while 

walking with excellent (ICC2,1 .979 to .999) agreement to the video inspection across both 

mTBI and control groups. On average, there was also little difference between the IR 

algorithm output and video inspection (Mean difference −2.1 to 0.9), with no significant 

differences and relatively small limits of agreement (LoA% 4 to 14.5).

Discussion

To the best of our knowledge, this is the first study to adapt and validate an algorithm to 

detect saccades from raw mobile IR eye-tracking data obtained during walking and turning 

in people with acute mTBI and controls. This is fundamental for accurate and automated 

evaluation of mobile eye-tracking data. Similar to previous work [33, 34, 44], we compared 

the IR algorithm output to frame-by-frame manual video inspection by an expert rater to 

establish the validity of the adapted algorithm.

Evaluation of automated algorithms for eye movement examination is vital to ensure that 

clinical decisions based on outputs are accurate and based upon robust methods. In line with 

previous eye-tracking algorithms [33, 34], a velocity-based threshold method was used to 

detect saccades within the IR eye-tracker signal. Velocity-based algorithms for saccade 

detection are relatively easy to implement and can therefore be used by those unfamiliar 

with algorithm development (e.g. clinicians or novice researchers). This study suggests that 

despite its relative simplicity the algorithm was robust in its ability to detect saccades from 

mobile IR eye-tracker data.

Robustness of algorithm

To determine IR algorithm robustness, participants with mTBI and healthy control 

participants performed the same walking tasks, and data were analyzed using the same fixed 

algorithm settings that were then compared to visual inspection. Under these conditions the 

IR algorithm proved to be robust, overall correctly detecting 8587 (~96%) saccades made by 

the mTBI and control participants during the walks (100 trials in total), with relatively small 

(~2–3%) undetected or spurious saccades. This level of accuracy via a velocity-based 

algorithm is similar to previous dispersion-based approaches [51–53]. Agreement between 

the ground truth video inspection and IR algorithm methodologies was also excellent across 

groups and walking conditions. This demonstrated that the IR algorithm was capable of 

robustly detecting saccades during walking in people with mTBi and controls, with similar 

performance for both groups.
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The algorithm presented in this study performed better than the previously validated mobile 

algorithm [33]. Specifically, correct saccade detection performance of the previous 

algorithm was 85%, but the current adapted algorithm improved performance to ~96% 

correct saccade detection. This improved performance may be due to a number of factors 

including algorithm adaption and advancement of eye-tracker technology.

Adaption of the previous algorithm [33] was performed to develop the current IR algorithm 

(Figure 3) that was implemented within this study to analyze the raw data from the latest 

mobile eye-tracking technology (Tobii Pro Glasses 2, 100Hz, binocular 1080HD camera). 

Specifically, a moving median filter was applied to the raw data to remove any noise before 

further analysis [45] and saccades were grouped if they were <10 frames (100ms) apart (i.e. 

if saccades were not separated by a fixation then they were grouped), which allowed more 

accurate saccade classification.

Technological advancements have allowed mobile eye-trackers to progress to devices with 

higher sampling rates (100Hz, with a 50Hz eye-camera) and better resolution (1080HD field 

camera) than previous studies that have been limited to sampling rates that may only just 

detect saccades (50Hz) [33, 34]. It is plausible that these advancements have allowed greater 

accuracy in determining eye movement velocities [37] and have provided better material for 

visual inspection, resulting in improved algorithm and ground truth video inspection 

outcomes. For example, ~14% of saccades were undetected and ~3% were spurious in the 

previous hardware/algorithm combination [33], whereas the current hardware/IR algorithm 

combination reduced this to ~2–3% undetected or spurious saccade detections. Spurious 

saccade detection was similar to the previous methods [33, 34], which is likely due to the 

use of video inspection as a ground truth [44], as video inspection may have missed some 

saccades that were present within the IR algorithm output. For example; video inspection is 

limited by issues with incorrect saccade detection due to poor pupil tracking that is caused 

by eye-lashes, eye-lids or dark/light lighting conditions which cause flickers or absent pupil 

(cross-hair) location. Such anomalies are automatically ruled out in the IR algorithm, 

however they can be difficult to spot upon video inspection unless they are particularly fast 

or large [44].

Future Algorithm Applications

The robust algorithm that this article presents and validates could be used with current or 

future mobile eye-tracking technology, such as the Tobii Pro Glasses 2 system, to examine 

laboratory or real-world eye-movements in mTBI compared to controls. It is vital that 

algorithms to derive saccadic features are robust and valid, as the outcomes may be used to 

inform future clinical practice or interventions for mTBI. With our comprehensive algorithm 

validation and description, both novice and expert researchers could apply this methodology 

within future studies, which may allow some standardization of the methodology used to 

derive saccadic characteristics across studies. Future work is needed that uses robust 

algorithms to examine saccadic eye movement features during walking and turning in mTBI 

compared to controls, which may provide an understanding of mTBI-related deficits and 

their influence on daily function.
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Limitations

In line with previous work [33, 34] this study was limited by the fixed velocity threshold 

(>240°/s, ~5° distance) that may rule out smaller eye movements within the IR eye-tracker 

signal. We used this threshold as previously validated algorithms (both IR and EOG eye-

trackers) have used the same setting in order to rule out interference from vestibular ocular 

reflexes (VOR). However, this is an adaptable threshold so future studies could change this 

based on the task undertaken (i.e. smaller for static tasks). Additionally, this study only 

examined saccadic detection validity, and we did not specifically assess other saccadic 

outcomes (e.g. saccade durations, amplitude etc.) which future studies could examine with 

validated methodologies [32].

Conclusions

This study adapted a velocity-based algorithm for saccade detection and measurement in IR 

eye-tracker data, and validated the algorithm during walking tasks in people with a previous 

mTBI and healthy controls. The algorithm can accurately detect saccades in IR eye-tracker 

data and was found to be valid against the ground truth manual video inspection during the 

various walking conditions in both groups.

Acknowledgements

This work was supported by the Assistant Secretary of Defense for Health Affairs under Award No. 
W81XWH-17-1-0424. Opinions, interpretations, conclusions and recommendations are those of the author and are 
not necessarily endorsed by the Department of Defense. Samuel Stuart is supported in part by a Postdoctoral 
Fellowship (Grant No. PF-FBS-1898 from the Parkinson’s Foundation).

References

1. DiCesare CA, Kiefer AW, Nalepka P, and Myer GD, Quantification and analysis of saccadic and 
smooth pursuit eye movements and fixations to detect oculomotor deficits. Behavior research 
methods, 2017 49(1): p. 258–266. [PubMed: 26705117] 

2. Munoz D, Broughton J, Goldring J, and Armstrong I, Age-related performance of human subjects 
on saccadic eye movement tasks. Experimental brain research, 1998 121(4): p. 391–400. [PubMed: 
9746145] 

3. Stuart S, Galna B, Delicato LS, Lord S, and Rochester L, Direct and indirect effects of attention and 
visual function on gait impairment in Parkinson’s disease: influence of task and turning. European 
Journal of Neuroscience, 2017.

4. Stuart S, Lord S, Galna B, and Rochester L, Saccade frequency response to visual cues during gait 
in Parkinson’s disease: the selective role of attention. European journal of neuroscience, 2018 47(7): 
p. 769–778. [PubMed: 29431890] 

5. Stuart S, Lord S, Hill E, and Rochester L, Gait in Parkinson’s disease: a visuo-cognitive challenge. 
Neuroscience & Biobehavioral Reviews, 2016 62: p. 76–88. [PubMed: 26773722] 

6. Vidal M, Turner J, Bulling A, and Gellersen H, Wearable eye tracking for mental health monitoring. 
Computer Communications, 2012 35(11): p. 1306–1311.

7. Hunt AW, Mah K, Reed N, Engel L, and Keightley M, Oculomotor-Based Vision Assessment in 
Mild Traumatic Brain Injury: A Systematic Review. Head Trauma Rehabil, 2016 31(4): p. 252–61.

8. Ciuffreda KJ, Kapoor N, Rutner D, Suchoff IB, Han M, and Craig S, Occurrence of oculomotor 
dysfunctions in acquired brain injury: a retrospective analysis. Optometry-Journal of the American 
Optometric Association, 2007 78(4): p. 155–161.

Stuart et al. Page 10

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Snegireva N, Derman W, Patricios J, and Welman KE, Eye tracking technology in sports-related 
concussion: a systematic review and meta-analysis. Physiological Measurement, 2018 39(12): p. 
12TR01.

10. Pearson B, Armitage K, Horner C, and Carpenter R, Saccadometry: the possible application of 
latency distribution measurement for monitoring concussion. British journal of sports medicine, 
2007 41(9): p. 610–612. [PubMed: 17496064] 

11. Maruta J, Suh M, Niogi SN, Mukherjee P, and Ghajar J, Visual tracking synchronization as a 
metric for concussion screening. The Journal of head trauma rehabilitation, 2010 25(4): p. 293–
305. [PubMed: 20611047] 

12. Johnson B, Hallett M, and Slobounov S, Follow-up evaluation of oculomotor performance with 
fMRI in the subacute phase of concussion. Neurology, 2015 85(13): p. 1163–1166. [PubMed: 
26320202] 

13. Stuart S, Alcock L, Galna B, Lord S, and Rochester L, The measurement of visual sampling during 
real-world activity in Parkinson’s disease and healthy controls: A structured literature review. 
Journal of neuroscience methods, 2014 222: p. 175–188. [PubMed: 24291711] 

14. Ventura RE, Balcer LJ, Galetta SL, and Rucker JC, Ocular motor assessment in concussion: current 
status and future directions. Journal of the neurological sciences, 2016 361: p. 79–86. [PubMed: 
26810521] 

15. Maruta J and Ghajar J, Detecting eye movement abnormalities from concussion, in Concussion. 
2014, Karger Publishers p. 226–233.

16. Baluch F and Itti L, Mechanisms of top-down attention. Trends in neurosciences, 2011 34(4): p. 
210–224. [PubMed: 21439656] 

17. Master CL, Scheiman M, Gallaway M, Goodman A, Robinson RL, Master SR, and Grady MF, 
Vision diagnoses are common after concussion in adolescents. Clinical pediatrics, 2016 55(3): p. 
260–267. [PubMed: 26156977] 

18. Cripps A, Livingston SC, Yang J, Mattacola C, Van Meter E, Kitzman P, and McKeon P, Visuo-
Motor Processing Impairments Following Concussion in Athletes. J Athl Enhancement, 2015 4(3).

19. Drew AS, Langan J, Halterman C, Osternig LR, Chou L-S, and van Donkelaar P, Attentional 
disengagement dysfunction following mTBI assessed with the gap saccade task. Neuroscience 
letters, 2007 417(1): p. 61–65. [PubMed: 17363165] 

20. Ventura RE, Jancuska JM, Balcer LJ, and Galetta SL, Diagnostic tests for concussion: is vision part 
of the puzzle? Journal of Neuro-ophthalmology, 2015 35(1): p. 73–81. [PubMed: 25675308] 

21. Marinides Z, Galetta KM, Andrews CN, Wilson JA, Herman DC, Robinson CD, Smith MS, 
Bentley BC, Galetta SL, and Balcer LJ, Vision testing is additive to the sideline assessment of 
sports-related concussion. Neurology: Clinical Practice, 2015 5(1): p. 25–34. [PubMed: 29443175] 

22. Franchak JM and Adolph KE, Visually guided navigation: Head-mounted eye-tracking of natural 
locomotion in children and adults. Vision research, 2010 50(24): p. 2766–2774. [PubMed: 
20932993] 

23. Hayhoe M and Ballard D, Eye movements in natural behavior. Trends in cognitive sciences, 2005 
9(4): p. 188–194. [PubMed: 15808501] 

24. Tong MH, Zohar O, and Hayhoe MM, Control of gaze while walking: Task structure, reward, and 
uncertainty. Journal of vision, 2017 17(1): p. 28-28. [PubMed: 28114501] 

25. Li D, Babcock J, and Parkhurst DJ openEyes: a low-cost head-mounted eye-tracking solution. in 
Proceedings of the 2006 symposium on Eye tracking research & applications 2006 ACM.

26. Cornelissen FW, Peters EM, and Palmer J, The Eyelink Toolbox: eye tracking with MATLAB and 
the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers, 2002 34(4): 
p. 613–617.

27. Li D, Winfield D, and Parkhurst DJ Starburst: A hybrid algorithm for video-based eye tracking 
combining feature-based and model-based approaches. in IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR’05) - Workshops 2005 San Diego, CA, USA: 
IEEE.

28. Duchowski AT, Eye tracking methodology: Theory and practice. 3rd ed. 2007, London: Springer.

29. Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, and Van de Weijer J, Eye 
tracking: A comprehensive guide to methods and measures. 2011: OUP Oxford.

Stuart et al. Page 11

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Salvucci DD and Goldberg JH Identifying fixations and saccades in eye-tracking protocols. in 
Proceedings of the Eye Tracking Research and Applications Symposium 2000 2000 Palm Beach 
Gardens, FL.

31. Stuart S, Hickey A, Vitorio R, Welman K, Foo S, Keen D, and Godfrey A, Eye-tracker algorithms 
to detect saccades during static and dynamic tasks: a structured review. Physiological 
Measurement, 2019 40(2): p. 02TR01.

32. Stuart S, Alcock L, Godfrey A, Lord S, Rochester L, and Galna B, Accuracy and re-test reliability 
of mobile eye-tracking in Parkinson’s disease and older adults. Medical Engineering and Physics, 
2016 38(3): p. 308–315. [PubMed: 26786676] 

33. Stuart S, Galna B, Lord S, Rochester L, and Godfrey A Quantifying saccades while walking: 
validity of a novel velocity-based algorithm for mobile eye tracking. in Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 
Medicine and Biology Society. Annual Conference . 2014 Chicago, Il., USA.: IEEE.

34. Stuart S, Hickey A, Galna B, Lord S, Rochester L, and Godfrey A, iTrack: instrumented mobile 
electrooculography (EOG) eye-tracking in older adults and Parkinson’s disease. Physiological 
measurement, 2016 38(1): p. N16. [PubMed: 27941232] 

35. Nystrom M and Holmqvist K, An adaptive algorithm for fixation, saccade, and glissade detection 
in eyetracking data. Behavior Research Methods, 2010 42(1): p. 188–204. [PubMed: 20160299] 

36. Weigle C and Banks DC Analysis of eye-tracking experiments performed on a Tobii T60. in 
Electronic Imaging. 2008 SPIE.

37. Andersson R, Nyström M, and Holmqvist K, Sampling frequency and eye-tracking measures: how 
speed affects durations, latencies, and more. Journal of Eye Movement Research, 2010 3(3).

38. The Management of Concussion Mild Traumatic Brain Injury Working Group, VA/DoD Clincal 
Practice Guidelines for the Management of Concussion-Mild Traumatic Brain Injury. Journal, 
2016 Version 2.0: p. 1–133.

39. Woodson J, Traumatic brain injury: Updated definition and reporting. Journal, 2015.

40. Fuld PA, Psychological testing in the differential diagnosis of the dementias, in Alzheimer’s 
disease: senile dementia and related disorders, Katzman R, Terry R, and Bick K, Editors. 1978, 
Raven Press: New York, NY, USA p. 185–93.

41. American Psychiatric Association, Diagnostic and statistical manual of mental disorders. Fifth ed. 
Arlington: American Psychiatric Publishing. 2013, Arlington, VA, USA: American Psychiatric 
Association.

42. Fino PC, Parrington L, Walls M, Sippel E, Hullar TE, Chesnutt JC, and King LA, Abnormal 
Turning and Its Association with Self-Reported Symptoms in Chronic Mild Traumatic Brain 
Injury. Journal of neurotrauma, 2018 35(10): p. 1167–1177. [PubMed: 29078732] 

43. Morgan AL and Brandt JF, An auditory Stroop effect for pitch, loudness, and time. Brain Lang, 
1989 36(4): p. 592–603. [PubMed: 2720372] 

44. Pedrotti M, Lei S, Dzaack J, and Rötting M, A data-driven algorithm for offline pupil signal 
preprocessing and eyeblink detection in low-speed eye-tracking protocols. Behavior Research 
Methods, 2011 43(2): p. 372–383. [PubMed: 21302023] 

45. Juhola M, Median filtering is appropriate to signals of saccadic eye movements. Computers in 
biology and medicine, 1991 21(1–2): p. 43–49. [PubMed: 2044360] 

46. Boghen D, Troost B, Daroff R, Dell’Osso L, and Birkett J, Velocity characteristics of normal 
human saccades. Investigative Ophthalmology & Visual Science, 1974 13(8): p. 619–623.

47. Bahill A, Brockenbrough A, and Troost B, Variability and development of a normative data base 
for saccadic eye movements. Investigative ophthalmology and visual science, 1981 21(1): p. 116–
125. [PubMed: 7251295] 

48. Demer JL and Viirre ES, Visual-vestibular interaction during standing, walking, and running. 
Journal of Vestibular Research, 1996 6(4): p. 295–313. [PubMed: 8839825] 

49. Pozzo T, Berthoz A, and Lefort L, Head stabilization during various locomotor tasks in humans. 
Experimental brain research, 1990 82(1): p. 97–106. [PubMed: 2257917] 

50. Field A, Discopering Statistics Using SPSS. Thrid Edition ed. 2009, London: Sage.

Stuart et al. Page 12

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Andersson R, Larsson L, Holmqvist K, Stridh M, and Nyström M, One algorithm to rule them all? 
An evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research 
Methods, 2016: p. 1–22. [PubMed: 25761390] 

52. Komogortsev OV, Gobert DV, Jayarathna S, Koh DH, and Gowda SM, Standardization of 
Automated Analyses of Oculomotor Fixation and Saccadic Behaviors. IEEE Transactions on 
Biomedical Engineering, 2010 57(11): p. 2635–2645.

53. Tafaj E, Kasneci G, Rosenstiel W, and Bogdan M Bayesian online clustering of eye movement 
data. in 7th Eye Tracking Research and Applications Symposium, ETRA 2012 2012 Santa 
Barbara, CA.

Stuart et al. Page 13

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 - 
Turning course
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Figure 2 - Field-camera alignment and co-ordinates
[The red circle is the pupil location]
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Figure 3 - 
Algorithm Flow Chart

Stuart et al. Page 16

Physiol Meas. Author manuscript; available in PMC 2020 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stuart et al. Page 17

Table 1 -

Participant Demographics

mTBI (n=10) Control (n=10)

Mean (SD) Mean (SD) p

Age (years) 30.1 (12.8) 26.3 (5.2) 0.402

Sex 2 M / 8 F 2 M / 8 F 1.000

Height (m) 1.7 (0.1) 1.7 (0.1) 0.680

Visual Acuity (LogMar) −0.1 (0.1) 0.0 (0.1) 0.290

Contrast Sensitivity (Mars Perceptrix) 1.8 (0.1) 1.8 (0.1) 0.554

Mass (kg) 68.1 (10.2) 70.1 (14.0) 0.720

Days since injury 39.5 (21.7) - -
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Table 2 –

Field Camera Co-ordinate Conversion

Field view max pixels (px) Field view max degrees (°) Scene view conversion (°/px)

X (horizontal) 1920 82 0.04

Y (vertical) 1080 52 0.05

X + Y 3000 134 0.05
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