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We present fastGLOBETROTTER, an efficient new haplotype-based technique to identify, date, and describe admixture
events using genome-wide autosomal data. With simulations, we show how fastGLOBETROTTER reduces computation
time by an order of magnitude relative to the related technique GLOBETROTTER without suffering loss of accuracy.
We apply fastGLOBETROTTER to a cohort of more than 6000 Europeans from 10 countries, revealing previously unre-
ported admixture signals. In particular, we infer multiple periods of admixture related to East Asian or Siberian-like sources,
starting >2000 yr ago, in people living in countries north of the Baltic Sea. In contrast, we infer admixture related to West
Asian, North African, and/or Southern European sources in populations south of the Baltic Sea, including admixture dated
to ~300-700 CE, overlapping the fall of the Roman Empire, in people from Belgium, France, and parts of Germany. Our
new approach scales to analyzing hundreds to thousands of individuals from a putatively admixed population and, hence, is
applicable to emerging large-scale cohorts of genetically homogeneous populations.

[Supplemental material is available for this article.]

In recent years, numerous techniques have emerged that exploit
expected patterns of linkage disequilibrium (LD) among single-nu-
cleotide-polymorphisms (SNPs) in admixed populations that
descend from the intermixing of multiple ancestral sources in or-
der to identify, describe, and date these admixture events. Many
of these techniques assume a pulse(s) of instantaneous admixture
between two or more sources, followed by random mating in the
admixed population (Falush et al. 2003). Under this model, the
probability of inheriting two DNA segments from the same ances-
tral source along the genome of an admixed individual decays ex-
ponentially, with a rate proportional to the date of admixture (in
generations ago) and genetic distance between the segments
(Hellenthal et al. 2014). This relationship is exploited by software,
including ROLLOFF (Moorjani et al. 2011; Patterson et al. 2012),
ALDER (Loh et al. 2013), MALDER (Pickrell et al. 2014),
GLOBETROTTER (Hellenthal et al. 2014), and MOSAIC (Salter-
Townshend and Myers 2019). These approaches can date such ad-
mixture events, as well as estimate the proportions of DNA con-
tributed by each admixing source. In contrast to other admixture
inference techniques (e.g., Pool and Nielsen 2009), an additional
advantage is that they do not require accurately assigning each lo-
cal segment of an admixed person’s genome to one of the admix-
ing sources, which can be challenging in cases in which admixing
sources are genetically similar. These techniques and others have
shown admixture occurring in the past ~4000 yr to be ubiquitous
among modern human populations (Loh et al. 2013; Hellenthal
et al. 2014).

To infer admixture, each technique uses a set of sampled ref-
erence populations that act as surrogates to the admixing sources.
Although ROLLOFF and ALDER identify a single best surrogate for
each admixing source by finding the best model fit out of pairings
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of available surrogates, GLOBETROTTER and MOSAIC infer the ge-
netic make-up of each source as a mixture of DNA from all surro-
gate groups, that is, without requiring one prespecified surrogate
per source, giving these approaches more flexibility. Furthermore,
although ROLLOFF, ALDER, and MALDER do not model fine-scale
haplotype information, GLOBETROTTER and MOSAIC leverage
this information when inferring the probabilities of descending
from each admixing source for segments along an admixed indi-
vidual’s genome. Using such haplotype information can be more
powerful for characterizing admixture signals when using densely
genotyped or sequenced individuals (Hellenthal et al. 2014; Wang-
kumhang and Hellenthal 2018). Also, although MALDER, MOSA-
IC, and GLOBETROTTER can each infer multiple dates of
admixture, presently among these, only GLOBETROTTER can in-
fer multiple pulses of admixture involving the same surrogate
groups.

However, a key drawback of GLOBETROTTER is its computa-
tional complexity. In particular, inferring and dating admixture in
a target population of more than 100 individuals might take
GLOBETROTTER over a month on a single computing node.
Here, we present fastGLOBETROTTER, a new method that increas-
es the speed of inferring admixture events, for example, perform-
ing the same analysis in less than a day, without sacrificing
accuracy relative to GLOBETROTTER. We compare both methods
using simulations of admixture events with a wide range of dates,
admixture proportions, and varying degrees of genetic similarity
among the admixing sources. We also assess fastGLOBETROT-
TER’s sensitivity to demographic effects like strong bottlenecks. Fi-
nally, we apply fastGLOBETROTTER to a cohort of 6209 Europeans
from 10 countries genotyped at 477,417 SNPs (Sawcer et al. 2011),
inferring previously unreported admixture signals spanning
Europe.
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Results

Overview of the fastGLOBETROTTER approach

GLOBETROTTER attempts to identify, date, and describe admix-
ture in a target population of putatively admixed individuals using
a set of reference populations. To do so, first the genomes of all tar-
get and reference individuals are phased using available software
(e.g., Browning and Browning 2009; Delaneau et al. 2012). Next,
at each SNP of the phased haploid genome X of a given target or
reference individual, ChromoPainter (Lawson et al. 2012) infers
which of a set of “donor” haploids shares ancestry most recently
with X, with the most recently related donor typically the same
over a string of contiguous SNPs. In this way, ChromoPainter de-
scribes the two phased haploids of each target individual as a mo-
saic of DNA segments, with each segment matching to a single
donor haploid. In practice, the set of “donor” haploids is often
all phased haploids from the reference populations, but they can
also be only partially overlapping or entirely distinct. GLOBE-
TROTTER then uses the ChromoPainter results for all target and
reference individuals to infer and date admixture in the target pop-
ulation while describing the genetic make-up of each admixing
source as some mixture of the reference groups.

To do so, given the ChromoPainter-inferred donor assignment
of a given DNA segment in the haploid genome of a target individ-
ual, GLOBETROTTER infers the probability that the segment is most
recently related to each reference population by modeling the aver-
age proportion of genome-wide data for which each reference pop-
ulation shares an inferred most recent ancestor with that donor’s
group label (Hellenthal et al. 2014). Then, for each pair of reference
populations Y and Z, GLOBETROTTER infers the probability that
two DNA segments separated by genetic distance g have one seg-
ment most recently related to Y and the other segment most recent-
ly related to Z. After some scaling, this generates an “admixture
probability curve” (also referred to as a “coancestry curve”) for Y

and Z (Fig. 1, black line). GLOBETROTTER jointly analyzes the ad-
mixture probability curves for all pairwise combinations of refer-
ence populations, with the rate of change over g in all curves
informative for the date of admixture, and the structure of the
curves informative for the admixture proportions and genetic
make-up of each of the admixing sources (Hellenthal et al. 2014).

By default, GLOBETROTTER considers all pairs of DNA seg-
ments separated by, for example, <50 cM when generating the
admixture probability curve for Y and Z. However, for admixture
events occurring more than 10 generations ago, the patterns in
these curves that are attributable to admixture rapidly decline as
g increases (Fig. 1, maroon and orange lines). Therefore, fastGLO-
BETROTTER uses a stochastic algorithm that preferentially selects
DNA segments separated by short distances when generating ad-
mixture probability curves. Figure 1 illustrates this for a simulated
example, with barplots comparing the relative proportions of seg-
ment pairs, separated by various distances, g's, that fastGLOBE-
TROTTER uses for inference relative to what GLOBETROTTER
uses. Focusing on the most informative segment pairs enables fast-
GLOBETROTTER to ignore other less informative pairs when con-
structing probability curves. We show in our simulations how this
increases computational speed without sacrificing accuracy.

Our new program fastGLOBETROTTER further improves
upon GLOBETROTTER in a number of additional ways. First, fast-
GLOBETROTTER implements a technique analogous to that used
in ALDER (Loh et al. 2013) to account for strong bottleneck effects
in the target population potentially distorting the admixture prob-
ability curves. Second, fastGLOBETROTTER allows users to in-
crease the memory used, by approximately the square of the
number of donor populations, in order to further increase compu-
tational speed by approximately the number of chromosomes an-
alyzed. Third, we have implemented an option to construct
confidence intervals (CIs) for inferred dates by using a jackknifing
approach (Busing et al. 1999), analogous to that used in ROLLOFF
(Patterson et al. 2012), which thus generates CIs even when testing

for admixture in single individuals. For
more details of the fastGLOBETROTTER

algorithm and features, see the Methods
section.

Simulations show fastGLOBETROTTER
decreases computation time without
sacrificing precision

We compared the performances of the
GLOBETROTTER and fastGLOBETROT-
TER using admixed populations from Hel-
lenthal et al. (2014) consisting of seven to
100 individuals simulated as mixtures of
real or coalescent-simulated populations

1.00021 — datg =7 =30 150 generations |12.5%
1.00014
1.00008
1.00001
0.99995
genetic distance (cM)
Figure 1. Sampling of DNA segment pairs in fastGLOBETROTTER relative to GLOBETROTTER. Scaled

probability (black line), estimating Equation 4 in the Methods, that two segments separated by the given
genetic distance are both inferred to share a most recent ancestor with an Irish reference individual, with
a key at left. These probabilities are averaged across 20 simulated individuals with European (French) and
South Asian (Brahui) admixture occurring 30 generations ago. Blue barplots give the proportion of seg-
ment pairs analyzed by fastGLOBETROTTER relative to those analyzed by GLOBETROTTER at each dis-
tance bin, with a key at right. To increase computation speed, fastGLOBETROTTER analyzes fewer
segment pairs at each distance bin compared with GLOBETROTTER, but it preserves accuracy by analyz-
ing a higher relative proportion of the more informative segment pairs separated by smaller distances.
Expected scaled probabilities for three different admixture dates are shown for comparison (legend at

top).

representing Africa, America, Central
Asia, East Asia, and Europe (Fig. 2; Supple-
mental Fig. S1; Supplemental Tables S1,
S2). As expected, typically performance
in both is better when the admixing
sources are more genetically different,
when the admixture is more recent, and
when the fraction of ancestry from the
minority contributing source is higher.
The accuracy and precision are similar be-
tween GLOBETROTTER and fastGLOBE-
TROTTER in all scenarios. Inference with
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tion-old event involving North Africans.

We also simulated an admixture
event occurring 70 generations ago be-
tween European and East Asian sources,
with and without an additional pulse of
admixture 10 generations ago involving

Figure 2. Simulations comparing

the three different admixture dates where applicable.

fastGLOBETROTTER is equally robust to GLOBETROTTER in the
presence of strong bottlenecks in the target population (Supplemen-
tal Table S2). The decrease in computation time for fastGLOBE-
TROTTER depends on the number of donors and reference
populations inferred to contribute to the target. Across these simu-
lations, fastGLOBETROTTER is about four to 12 times faster than
GLOBETROTTER when inferring date point estimates and the
sources and genetic make-up of each admixing population (Fig.
2), if using identical memory for each approach. However, it was
about 20 times faster, with identical accuracy, if allocating more
memory (in this case 1 GB) to speed up calculations (see Methods).

Simulations illustrate limitations when inferring complicated
admixture

To better understand our observed results when applying fastGLO-
BETROTTER to a large-scale European cohort, we also performed

inferred date accuracy and computational
fastGLOBETROTTER and GLOBETROTTER. (Top) Inferred admixture dates (+95% Cl) for simulations mix-
ing two groups (listed in middle), with the proportion of admixture from the second group given in the x-
axis. For each combination of population and admixture proportion, results are given for GLOBETROTTER
(GT) and fastGLOBETROTTER (fastGT) for true dates of seven, 30, and 150 generations ago (gray dashed
horizontal lines). Sample size (n) for each simulation is given at top. Cases that conclude “no admixture”
are depicted with an open square placed at the true date of admixture. Asterisks denote the use of a dif-
ferent grid for binning haplotype segments (see Methods). (Bottom) Computation times (in minutes, ex-
cluding bootstrapping used to generate Cls) of each approach for the scenarios above, averaging across

another European source (primarily con-
sisting of people sampled from Germa-
ny) (Supplemental Fig. S2). However,
fastGLOBETROTTER only detects a single
admixture event in the case of two simu-
lated pulses of admixture. This is not sur-
prising, as two admixture pulses that
occur relatively close in time are difficult
in theory to disentangle from a single ad-
mixture event with a date between these
two pulses or continuous admixture be-
tween the same sources (Hellenthal et al. 2014), with such scenar-
ios somewhat analogous to isolation by distance models. However,
the fit to the data when assuming two pulses of admixture increas-
es by approximately threefold when we have simulated two pulses
relative to only one pulse (R} in Table 1), which provides a poten-
tially useful indicator of more than one admixture pulse. In addi-
tion, in the case of an additional pulse of recent admixture, the
inferred date is more recent (61 generations ago; 95% CI: 56-66)
relative to when there is no additional recent admixture (71 gener-
ations ago; 95% CI: 66-76). This suggests that, in the case of two
pulses of admixture, the inferred event assuming one pulse lies
somewhere between the initial and most recent admixture event.

speed of

Admixture events in Europe spanning 50 BCE-1400 CE

We applied fastGLOBETROTTER to 6209 Europeans from 10 coun-
tries as previously described (Sawcer et al. 2011; Leslie et al. 2015).

Table 1. fastGLOBETROTTER inference for simulations mimicking admixture events inferred in Europeans
Simulation description Ry R Date (95% ClI) % Source 1 Source 2
Denmark 80% + Morocco 20%
100 generations ago 0.9 0.03 106 (98-123) 8 Ethiopiana French
200 generations ago 0.4 0.05 157 (84-246) 13 Egyptian French
Denmark 80% + Evenk 20%
100 generations ago 0.94 0.04 104 (96-112) 21 Dolgan French
200 generations ago 0.56 0.08 221 (180-292) 22 Dolgan German/Austrian
70 generations ago 0.97 0.08 71 (66-76) 25 Yukagir German/Austrian
+German 20%, 10 generations ago 0.97 0.23 61 (56-66) 20 Yukagir German/Austrian

In each case, fastGLOBETROTTER concluded a single date of admixture between two sources. Inferred dates are given in generations. Source 1 and
source 2 indicate the inferred surrogate group that best genetically represents the minority and majority contributing sources, respectively, with per-
centage of the inferred proportion of admixture from source 1. Ry is the r-squared fit of a single date (i.e., measuring fit of green line to black lines in

Supplemental Fig. S7), with R, the equivalent when fitting two dates. Ry = ]

— Ry
—R

is the additional r-squared explained by adding a second date.
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To account for putative structure within this cohort, we first used
fineSTRUCTURE (Lawson et al. 2012) to cluster these Europeans
into 86 genetically homogeneous groups, which ranged in sample
size from nine to 212 individuals (Supplemental Table S3; Supple-
mental Fig. S3). We then applied fastGLOBETROTTER to each clus-
ter separately, using 162 reference populations as potential
surrogates for putative admixture events (Supplemental Table S4;
Li et al. 2008; Behar et al. 2010; The International HapMap 3 Con-
sortium 2010; Rasmussen et al. 2010; Chaubey et al. 2011; Henn
et al. 2011; Metspalu et al. 2011; Sawcer et al. 2011; Hodoglugil
and Mahley 2012; Yunusbayev et al. 2012; Hellenthal et al.
2014; Busby et al. 2015). fastGLOBETROTTER detected admixture
in 81 of the 86 clusters, inferring a simple event between two
sources at a single date in 58 clusters, more than two sources ad-
mixing at around the same time in 18 clusters, multiple dates of ad-
mixture in three clusters, and an uncertain signal in two clusters
(Supplemental Table S5). For populations with only one inferred
date, estimated dates range from 18 to roughly 100 generations
ago, which is ~600-3000 yr ago assuming 28 yr per generation
(Fenner 2005).

Inferred sources of ancestry can be categorized broadly into
two classes that are highly correlated with geography (Fig. 3; Sup-
plemental Figs. S4, S5, S7-517). The first involves ancestry related
to West/Central Asia, North Africa, and/or sub-Saharan Africa,
which is found to varying degrees (3%-36%), along with southern
European-like ancestry, in most clusters predominantly composed
of people from Belgium, Denmark, France, Germany, Spain, and
Italy. The second is ancestry related to East Asians and Siberians
(primarily Dolgan, Koryak, Nganasan, Orogen, Selkup) (Supple-
mental Table S5), of which 2%-17% ancestry is found in nearly
all clusters containing people from Finland, Norway, and Sweden,
plus the cluster (C37) containing the ma-
jority of sampled Polish individuals.

Thirty-six clusters had more than 50

ters, inferred dates are typically older in the predominantly
Finnish clusters (C25, C30-C32) and are significantly more recent
in nine of the 13 clusters primarily containing Swedes and
Norwegians. Furthermore, 10 of these 18 clusters have some evi-
dence of multiple pulses of admixture (ie., R;>02 in
Supplemental Table SS5).

Discussion

The fastGLOBETROTTER software

Here we introduce fastGLOBETROTTER, a new program to identi-
fy, date, and describe admixture events with four to 20 times or
greater increased computational efficiency over GLOBETROTTER.
Our simulation results suggest that this computational increase
comes without a loss of accuracy and precision. Indeed, we see ev-
idence of fastGLOBETROTTER outperforming GLOBETROTTER in
some of the more challenging scenarios, such as when simulating
admixture occurring 150 generations ago between the relatively
genetically similar French and Brahui. In this scenario, fastGLOBE-
TROTTER’s point estimates are closer to the truth relative to
GLOBETROTTER’s when simulating 50 or 100 admixed individu-
als (Fig. 2). In principle, fastGLOBETROTTER’s subsampling
scheme, which down-weights pairs of distantly separated DNA
segments when constructing the admixture probability curves,
could increase accuracy over GLOBETROTTER'’s approach that
does not down-weight such segments, particularly for older
events. This is because distantly separated segments provide little
to no information about the admixture event (Fig. 1) while being
more susceptible to random noise owing to the smaller number of
segments separated by such large distances. Although a potential

C25(58) c25
individuals, a single inferred admixture €32(82) c30(62) c&,
date, and >2% inferred ancestry from C29(89) ca1(63) | * c29 c31
the above sources (Fig. 3). Among these €60(77) co7(154) % ‘ C60 7
36, the highest degrees (>20%) of in- €63(90) ce1(73) g5 et
ferred ancestry related to West Asians -
and North/sub-Saharan Africans are
found in three clusters that predomi-
nantly consist of Italians, with inferred
dates covering a broad.range spanning C49(162) " e
~1000-1500 yr ago (Fig. 3). Seven of C45(96) C48(157) ——ca
these 36 clusters, consisting of Belgians, C46(118) C44(55) =G
French, and Germans (clusters C44, C55(107) ca7(122) @ E.Asia/Siberia == %L
C46, C47, C52-C55), have similar in- C53(189) C54(204) W Africa/W.Asia T &
ferred amounts (5%-12%) of ancestry re- C52(206) €35(77) —C52 c3s
lated to the North African and West Cc20(142) €2(%6) —-Cz 630
Asian  (Armenia, Morocco, Turkey) C9(110) C18(%8) - C 116
sources and similar admixture dates of C7(96) C16116) -=CT
~300-700 CE (Fig. 3; Supplemental Fig. EEEEEELEEE \ \ \ \ \
55). cluster 0 1000 2000 3000 3600
In contrast, 18 of these 36 clusters composition time (years from present)

primarily consisting of individuals from
countries north of the Baltic (although
with cluster C77 containing three
Danish individuals) have inferred admix-
ture events dated to ~900-2800 yr ago in-
volving a source related predominantly
to present-day Russians and/or various
groups living in Siberia. Of these 18 clus-

Figure 3.

Inferred admixture events in 36 European clusters. (Right) Inferred admixture dates (+95%

Cls) for the 36 European clusters that contain more than 50 individuals, have a single inferred date,
and have a >2% inferred contribution from reference groups in East Asia/Siberia (orange Cls) or in
Africa/West Asia (teal Cls). The thickness of the lines indicates the relative inferred contributions from these
two regions: “Africa/W. Asia” = {West Africa, West Asia, South Middle East, North Africa, San, Central
Africa, East Africa, Bantu, Ethiopian} and “E. Asia/Siberia” = {Siberia, Northeast Asia, Southeast Asia} as de-
fined in Supplemental Table S4. (Left) The proportion of individuals in each cluster (row) from each coun-
try (column), with the clusters’ sample sizes in parentheses and the countries’ colors in the map. Each
cluster’s label at left and at right is colored according to the country most represented in that cluster.
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concern is that this procedure may affect fastGLOBETROTTER’s ac-
curacy for dating recent admixture, for which segments separated
by large distances are more informative, this does not appear to be
the case in our simulations, which consider admixture as recent as
seven generations ago (Fig. 2).

Caveats that apply to GLOBETROTTER apply also to fastGLO-
BETROTTER. For example, if inferred dates are more than 55 gen-
erations ago when using the default fastGLOBETROTTER settings
that fit all DNA segment pairs separated by 30 cM, we found in sim-
ulations that better inference is achieved if rerunning to fit all DNA
segment pairs separated by only 5 cM (see Methods). This is
because for older events, most of the admixture signal has decayed
by 5 cM, and thus, fitting segment pairs separated by larger dis-
tances can only increase noise in estimation.

As in other admixture detection methods, how well the surro-
gate populations reflect the true admixing sources can affect infer-
ence. In particular, using modern-day surrogates to older admixing
source groups may not be ideal, because these present-day groups
may have experienced drift and/or admixture not inherent in the
original admixing source. Incorporating ancient DNA (aDNA)
samples as surrogates could help in this regard, although it remains
to be seen how much relevant aDNA can be acquired. Our simula-
tions here (Fig. 2; Table 1; Supplemental Table S1) mimic a realistic
scenario in which the true admixing source is not sampled. In
these settings, fastGLOBETROTTER typically selects a close genetic
match to the true admixing source as the most representative sur-
rogate to that source. For example, the French and German/
Austrian surrogates are chosen by fastGLOBETROTTER to repre-
sent the true Denmark admixing source in our European-like sim-
ulations (Table 1). These two surrogate populations have Fsr<
0.0052 with the true Denmark admixing source, which is among
the lowest 10 Fsy values out of all 162 possible surrogates. These
two surrogate groups have very different sample sizes, with 28
French and four German/Austrian samples, reflecting how surro-
gate sample size does not play a major role in inference. An excep-
tion is that sometimes surrogates with very small sample sizes (e.g.,
fewer than five individuals) may be favored in the model because
population-specific drift may be inadequately captured by our ap-
proach (Lopez et al. 2021).

The computational speed-ups described here are a step chan-
ge over GLOBETROTTER. For example, when using its fastest op-
tion on a single computing node, fastGLOBETROTTER took just
under 21 h, using ~9 GB of RAM, to perform date/source inference
and 100 bootstrap resamples using default values on European
cluster C9 containing 110 individuals. In contrast, using the
same input parameters, GLOBETROTTER completed the date/
source inference step and only 30 bootstrap resamples after 30
d. These speed-ups enable a far more efficient analysis of larger
data sets and, hence, detection of more subtle admixture signals.
Nonetheless, future improvements are necessary to scale to, for ex-
ample, many thousands of individuals. Furthermore, the compu-
tational gains described here apply only to the GLOBETROTTER
inference step and not to the phasing and chromosome painting
steps before applying GLOBETROTTER. However, we note that
phasing algorithms are relatively fast, with current software able
to phase tens to hundreds of thousands of individuals in a few
hours on a computational cluster. ChromoPainter typically is com-
putationally much slower than phasing but is parallelizable
by both target individual and chromosome in a manner
GLOBETROTTER and fastGLOBETROTTER are not, with alterna-
tive “chromosome painting” software existing that is considerably
faster than ChromoPainter (e.g., Durbin 2014). Given the increas-

ing ubiquity of large-scale genotype resources from relatively
genetically homogenous populations (e.g., Chen et al. 2011;
Bycroft et al. 2018), such computational speed-ups will become in-
creasingly necessary to cope with present-day sample collections.

Application to the European cohort

The 86 fineSTRUCTURE-inferred clusters of 6209 Europeans were
largely consistent with country label (Supplemental Table S3)
and likely reflect the high degree of geographic clustering previ-
ously observed in these data (Leslie et al. 2015) and using other
data from these countries (Novembre et al. 2008; Humphreys
et al. 2011; Kerminen et al. 2017; Van den Eynden et al. 2018;
Bycroft et al. 2019; Raveane et al. 2019; Saint Pierre et al. 2020;
Mattingsdal et al. 2021). However, we do not have access to any
fine-scale geographic information beyond the country level, so
we cannot assess whether our clusters have fine-scale geographic
interpretability. Instead, we view them as convenient units meant
to capture relatively genetically homogeneous groupings, al-
though we acknowledge that cluster assignments are sometimes
uncertain (Supplemental Fig. S3). Despite this, we observe broad
geographic trends in inferred ancestry across these European clus-
ters. In particular, clusters nearly exclusively containing people
from countries north of the Baltic Sea (i.e., Finland, Norway,
Sweden) show 2%-17% inferred ancestry from a source most close-
ly related to East Asian and Siberian groups. In contrast, clusters
containing primarily individuals from south of the Baltic (i.e.,
Belgium, Denmark, France, Germany, Italy, Spain), except the
cluster containing the majority of Polish individuals, have <1% in-
ferred ancestry related to East Asians and Siberians, instead show-
ing 3%-36% inferred ancestry from sources related to Central/
West Asia, North Africa, and/or sub-Saharan Africa, along with in-
ferred ancestry related to southern Europe (Fig. 3; Supplemental
Fig. S5; Supplemental Table SS5).

The signals in Finland are consistent with Finns descending
from an early intermixing between European and East Asian/Sibe-
rian-like sources. Plausibly related intermixing was previously re-
ported by Saag et al. (2019), who found evidence of Siberian-like
admixture appearing in aDNA samples from nearby Estonia in
Late Bronze Age graves ~2500 yr ago, in line with fastGLOBETROT-
TER’s estimated dates. However, we note that our results do not
preclude multiple episodes of intermixing involving an East
Asian-like source present in the region by the Iron Age. In partic-
ular, our simulations illustrate how multiple dates of admixture be-
tween two sources, where a group genetically similar to one of the
original admixing sources subsequently intermixes with the previ-
ously admixed group, may be inaccurately described by fastGLO-
BETROTTER as a single admixture event, sometimes with an
inferred date somewhere between the dates of the two admixture
events (Supplemental Fig. S2; Table 1). Supporting this, three Finn-
ish clusters with a mean inferred date older than 200 BCE (C25,
C30, C32) show some evidence of multiple pulses of admixture
(R3 > 0.2 in Supplemental Table S5) consistent with what we see
in simulations with multiple admixture pulses (Table 1).

When moving geographically from Finland to Sweden and
Norway, that is, east to west, clusters of people north of the
Baltic show more recent inferred dates and decreasing proportions
of inferred ancestry related to East Asia/Siberia (Fig. 3). These obser-
vations are consistent with a scenario in which a source related to
northwest Europeans initially intermixed with a source related to
East Asians around (or plausibly older than) 200 BCE, with this ini-
tial intermixing occurring geographically nearer to Finland than to
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Norway or Sweden. Subsequently, this admixed group could have
intermixed with other unadmixed Europeans through migrations
westward, a process that could lead to the decreased date estimates
and decreased East Asian/Siberian proportions of ancestry we infer
in Norway and Sweden (Fig. 3) mimicked by our simulations
(Supplemental Fig. S2; Table 1). Larger sample sizes from these ar-
eas, which may allow fastGLOBETROTTER to correctly identify
and date multiple pulses of admixture, and/or additional data
from ancient human remains may shed light on whether this is in-
deed the case.

The wide range of inferred dates and ancestry proportions in
Italy is consistent with multiple episodes of intermixing with
sources related to present-day peoples from West/Central Asia,
North Africa, and/or sub-Saharan Africa, as has been previously re-
ported (Hellenthal et al. 2014; Busby et al. 2015; Raveane et al.
2019). In the one cluster (C2) consisting primarily of Spanish in
Figure 3, the inferred date of ~1200 yr ago involving sources
with sub-Saharan African DNA matches previous reports of inter-
mixing potentially related to the Muslim conquest of Spain
(Bycroft et al. 2019).

The majority of clusters consisting of Belgians, French, and
Germans (C43-C48, C51-C55) are inferred to have one date of ad-
mixture between two sources, with one genetically related to the
modern-day British and Norwegians and the other genetically re-
lated to modern-day southern Europeans (Greeks, Italians),
Cypriots, Moroccans, and/or Armenians (Supplemental Figs. S4,
S5; Supplemental Table S5). The inferred point estimate dates of
these events span a relatively small range of 400-650 CE
(Supplemental Table S5), although slightly later (750-800 CE) in
clusters C45 and C48. Although the historical events driving these
signals are unclear, a plausible explanation is that it relates to the
Roman Empire, which covered all of present-day Belgium,
Germany, France, Turkey, North Africa, and elsewhere before its
decline and eventual fall in 476 CE (Bengtsson 2014). In particular,
individuals carrying ancestry recently related to that found in pre-
sent-day people from North Africa, West Asia, and southern
Europe could have moved across the empire during this time. A re-
cent study of aDNA samples found in or near Rome spanning the
time of the empire (27 BCE-300 CE) reported signals of ancestry
from disparate sources genetically related to present-day people
from the Near Fast, eastern Mediterranean, and North Africa
(Antonio et al. 2019), suggesting the Empire facilitated migrants
into Rome during this time. Our results, based on analyzing genet-
ic variation data from present-day individuals, are consistent with
this migration extending across the empire, with individuals carry-
ing such ancestry intermixing with people living in or around pre-
sent-day Belgium, France, and Germany either during or soon after
the fall of the Roman Empire.

Our simulations suggest our inferred dates are biased to detect
recent admixture (Table 1), indicating admixture we detect in
these northwest Europeans may have begun before our inferred
dates of ~400-650 CE. However, a previous study reported genetic
patterns in aDNA from Bavarians dated to ~500 CE showed no
clear genetic affinities to present-day southern Europeans, consis-
tent with a lack of widespread intermixing between local and
southern sources in Germany before our inferred admixture dates
(Veeramah et al. 2018). This was despite that study reporting the
presence of a presumed Roman soldier in Munich dated to ~300
CE, which had strong genetic affinities to present-day southern
Europeans (Veeramah et al. 2018). Additional aDNA samples
from these northwest European regions may help clarify these
signals.

Other German clusters (C38, C39, C41, C42) do not appear to
have this South Europe/West Asian/African signal, instead show-
ing inferred signals of ancestry sources related to eastern
European groups such as Poland (Supplemental Table S5) and sig-
nificantly more recent dates around 1100-1400 CE, perhaps re-
flecting geography.

Overall, these findings further illustrate the ability of genetic
data to shed light on intermixing among genetically different
groups that may relate to well-attested historical events.

Methods

Brief overview of GLOBETROTTER /fastGLOBETROTTER
methodology

The theory behind fastGLOBETROTTER is analogous to that in
GLOBETROTTER, which has been previously described
(Hellenthal et al. 2014). In brief, consider an admixed population
that descends from the mixture of two source groups, A and B, that
contributed o and 1 — o of the DNA, respectively, and intermixed A
generations ago. Assuming random mating among admixed indi-
viduals since the time of admixture and the crossovers between
any two loci occur at random (i.e., no crossover interference)
(Falush et al. 2003), the probability P4_ (g2, o) that two loci sep-
arated by genetic distance g (in Morgans) along a chromosome
within a haploid genome of an admixed individual, with one locus
descending from an individual from A and the other from an indi-
vidual in B, is

Papglrh, ) =a(l —a@) — a(l — @) exp’g)‘. (1)

The probability Ps_4(g[2, o) that the two loci both descend from
individuals from A is

Paa(glh, @) = o® + a(l — a)exp 5*. 2

(Analogous formulas can be derived for more than two ad-
mixing sources [Hellenthal et al. 2014].) Note that o?isthe margin-
al probability that two independent loci (e.g., separated by a large
distance g) both derive from source A, with a(1 — @) similarly the
marginal probability that two independent segments derive from
A and B. Dividing Equations 1 and 2 by a(1 — ) and o?, respective-
ly, gives

PA*)B(gl)\l a) _ —gA — —gA
m_l—exp =1+ dapexp*, 3)
and
PiA_)A(gZI/\’ @) =1+ -9 exp ¥ =1+ 840 exp$*. 4)
% a

Importantly, §45<0 and 8,4 >0, ensuring that Equation 3 is
monotonically increasing with g, whereas Equation 4 is monoton-
ically decreasing with g. As the true admixing sources A and B are
unknown, we instead consider the probability that two segments
separated by distance g are inferred to share most recent ancestry
with reference populations Uand V. If U and V are good surrogates
for the same source (e.g., source A), then this scaled probability
curve will be decreasing. In contrast, if U is a good surrogate for
source A and V a good surrogate for B, this curve will be increasing.
GLOBETROTTER and fastGLOBETROTTER exploit these relation-
ships to infer o and the genetic make-up of each source group as
mixtures of the reference populations, with the shape of the scaled
probability curves used to infer 2, as described by Hellenthal et al.
(2014). Briefly, for each {U, V}, we construct IA’U%V(g\)\, ), which
we refer to as “admixture probability curves,” that are meant to re-
flect the left-hand side of Equations 3 and 4. We then find the
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values of A, t,,,, and §,,,, for all u, v that minimize the following sum
of squared errors:

Z Z (PUHV(gl)\: Dt) - Tu,y — 6ZI,V eXP_g)\ )2~ (5)

wyv g

Note that 1, , is estimated here, rather than set to one as in the the-
oretical results 3 and 4, although it often is inferred to be close to
one in practice. An example of IA’UﬁV(gM, a) that reflects Equation
4 is given for simulations in Figure 1, with examples of
Py_v(glA, @) reflecting Equation 3 for real data given in
Supplemental Figures S7 through S17.

Details of DNA segment pair selection algorithm
in fastGLOBETROTTER

These admixture probability curves are constructed as follows. We
first use ChromoPainter (Lawson et al. 2012) to compose each
phased haploid of individuals from a putatively admixed popula-
tion as a sequence of nonoverlapping DNA segments, where
each segment is inferred to share most recent ancestry with a
donor individual (e.g., an individual from one of the reference
populations). Technically, a DNA segment is defined as a contigu-
ous set of SNPs in the target haploid that is inferred by
ChromoPainter to share the most recent ancestor with the same
donor haploid. In practice, ChromoPainter generates s (typically
s=10) inferred genome-wide sequences of these segments for
each target haploid, giving 2s inferred sequences across an individ-
uals’ two haploid genomes. Assume that these 2s sequences con-
tain C DNA segments in total for the individual.

To construct admixture probability curves that reflect

Equations 3 and 4, GLOBETROTTER uses all <g) pairings of

DNA segments within an individual that are (1) on the same chro-
mosome and (2) separated by <K centimorgans (e.g., K=30). This
is among the most computationally intensive steps of
GLOBETROTTER, with complexity squared in the maximum num-
ber of DNA segments matched to the same donor population
across chromosomes. In contrast, fastGLOBETROTTER only uses
a subset of all possible pairings of the C DNA segments.

The subsampling algorithm of fastGLOBETROTTER is as
follows:

1. Divide the genome into B nonoverlapping bins of size X cM. X
is the bin.width specified by the user; here, we use X =0.1 unless
otherwise noted.

2. Find which of the C total segments fall into bin G; for all
iell, ..., B]l. A segment will be put into bin G; if the midpoint
of the segment falls within the range of bin G;. Let N; be the
number of segments within bin G;, where Z?:l N; =C.

3. For each bin Gj, the program will compare the segments in this
bin to those in bin G;,;, where the distance D;_,;,; between G;
and Gy, is X ¢cM. The program then compares G; with G,
(i.e., with distance D;_,;,» =2X between them) and so on, until
reaching the last bin n with D;_,,, <K, where K is the maximum
allowed distance between segments. Here we use K=30cM,
noting that segments on different chromosomes are never com-
pared. Also note that segments within the same bin G;, which
by definition have distance between them <X cM, will not be
compared to each other. However, this seems desirable as seg-
ments at such short distances can be confounded by back-
ground LD unrelated to the admixture signal. The user can
also specify to avoid fitting segments separated by less than
some distance; here, we use the default value of not fitting seg-
ments separated by <1 cM.

4. To do the comparison in step 3, we do the following:

A. For each i and j, where i <j, calculate Y;;=N; x N; x Mj;, which
is the number of samplings of segment pairs from bins G;
and G; to be performed, that is, with one segment sampled
from bin G; and the other sampled from bin G;. M;; is a scalar
that is derived from a distribution that allows us to sample a
different proportion of the total segment pairs in bins G;and
G;j. For example, if M;;=1, a roughly equivalent number of
segment pairs will be sampled as in the original GLOBE-
TROTTER. Alternatively, one could make M;;<1 and set a
higher value of Mj; for segment pairs with smaller D;_;,
meaning closer pairs are preferentially sampled over more
distant pairs. Here we use M; = exp~?~i /¢, with y=0.05
and c=8, which performs well in simulations in terms of
computation decrease while maintaining precision (Fig. 2).
With these values, the number of segment pairs sampled
is ~6.5% of the total possible pairs separated by <30 cM.

B. To compare segments in G; and Gj, the program randomly
samples Y; segment pairs without replacement, with one
segment from G; and the other from G;.

5. Repeat step 4 for all pairs of bins (G, G;) across the chromosome
separated by <K cM.

In addition, Hellenthal et al. (2014) described a “null individ-
ual” analysis that aims to eliminate LD decay signals in the admix-
ture probability curves that are not attributable to admixture,
hence providing more reliable date estimates. This is performed
by building a “null” probability curve using segment pairs in
which each segment is from the painting sample of a different tar-
get individual (using at most 100 individuals from the target pop-
ulation, for computational efficiency). This “null” probability
curve should be unrelated to the admixture event because segment
pairs on different individuals cannot fall within a single block of
DNA inherited intact from an admixing source individual.
GLOBETROTTER scales each admixture probability curve by this
“null” probability curve before inferring dates and proportions
of admixture, which can lead to more accurate inference, particu-
larly in cases in which the target population has experienced a
strong bottleneck (e.g., see Supplemental Table S2; Hellenthal
et al. 2014). To implement this “null” individual protocol into
fastGLOBETROTTER, we replace the following two steps in the
above algorithm:

e Step 2. For T admixed target individuals, let P,,; be a vector of
size Z,Tzl C;, with C; as the total number of segments for target
individual j, and where P,,;(c) stores the index of the admixed
target individual to which segment ¢ belongs.

e Step 4B. To compare segments in G; and Gj, the program ran-
domly samples segment pairs, with one from G; (call this seg-
ment a;) and the other from G; (call this segment b;). When
building the “null” probability curve, we only consider segment
pairs where P,,,;(a;) # Prun(bj), with segments randomly chosen
until Y;; pairs meet this criterion.

After constructing the “admixture probability curves” as described
above, the inference steps in fastGLOBETROTTER are the same as
those previously described (Hellenthal et al. 2014) for
GLOBETROTTER, except the few changes detailed below. As in
GLOBETROTTER, we use bootstrap resampling of individuals’
chromosomes to construct Cls around inferred dates. Also, as pre-
viously described (Hellenthal et al. 2014), if any of these bootstrap-
inferred dates contains one or is >400, we conclude no evidence of
admixture, because such inference is consistent with no signal in
the admixture probability curves.
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As a comparison, the computational time of the original
GLOBETROTTER algorithm can be described as

O[TZ(R+ Q)(sL + H2I + H*I2 + BH?F?) + C[min (T, 100)*(L + I2)],

where T'is the number of the target population individuals, Z is the
number of chromosomes, R is the number of bootstrap resamples,
Q is the number iterations of inferring dates and inferring source
groups and admixture contributions, s is the number of painting
samples, L is the maximum number of SNPs across chromosomes,
H is the number of donor populations, I is the maximum number
of chunks across chromosomes and individuals, I}, is the maximum
number of chunks across chromosomes and individuals that are
copied from a single donor population h, B is the number of
bins, and F is the number of surrogates.

In contrast, the computational time of fastGLOBETROTTER is

O[(R + Q)(TZ(SL + H?I + I?) + TBH?F?) + C[min T, 100]*(L + I?)].

Details of approach to adjust for extensive LD within the target
population in fastGLOBETROTTER

In admixed groups affected by strong bottlenecks, DNA segments
matched to donors using ChromoPainter may be atypically long,
reflecting high levels of within-population LD. To cope with this,
GLOBETROTTER ignores any chunk pairs separated by <1 cM
when generating admixture probability curves, implicitly assum-
ing such within-population LD is unlikely to extend beyond 1
cM. However, this threshold is arbitrary; other methods like
ALDER (Loh et al. 2013) attempt to automatically identify the
threshold of minimal distance between segments to use when
capturing admixture LD. A particular concern is that the presence
of many atypically long chunks >1 cM can mimic patterns in the
admixture probability curves that are similar to those expected
under multiple distinct pulses of admixture involving different
groups admixing at different times (see Hellenthal et al. 2014),
hence leading to inaccurate admixture inference.

To cope with this issue, before model fitting, fastGLOBE-
TROTTER automatically removes the left-end portions of the ad-
mixture probability curves that are believed to be affected by
within-population LD. To do so, we first analyze the admixture
probability curve of the surrogate group inferred to contribute
the highest proportion of ancestry, which is likely to be the
most informative and clear curve. This curve provides the scaled
probability that two segments separated by distance g both
match to this surrogate group, with ¢ binned to the nearest
(e.g.,) 0.1 cM. In the absence of within-population LD, this curve
should be monotonically decreasing. Therefore, starting at the
left-most distance grid-point x, we fit a simple linear regression
of the scaled probability versus distance for a window of W adja-
cent distance bins, that is, fitting a linear regression from distance
grid-points x to x+ W. The value of x is user-supplied; in all anal-
yses here, we use the grid-point corresponding to 1 cM, meaning
that two segments separated by <1 cM are ignored. If the fitted
slope of this regression is greater or equal to zero, we shift the
window one distance bin to the right, that is, now fitting a linear
regression from distance grid-points x+1 to x+ W+ 1. We repeat
this process until the fitted slope is less than zero. Letting x; be
the left-most distance grid-point in this W-length window where
the regression slope was less than zero for the first time, we re-
cord x,,=x;+ ceiling(W/2) as the right endpoint of the region to
remove. We repeat this protocol for windows of size W={3, §,
7,9, 11, 13}, and use the maximum value of x,, across all W as
the left-end portion we eliminate from all admixture probability
curves before inferring admixture. In its current implementation,
at most half of the total fitted distance specified by the user can

be removed. We note that considering only the admixture prob-
ability curve of the maximally contributing surrogate group may
not be sufficient to adjust for within-population LD effects in all
admixture probability curves, although this approach worked
well in practice. In this paper, we used this default LD-removal
step for the analysis of all European populations and the simulat-
ed European populations.

Details of memory and speed trade-offs in fastGLOBETROTTER

One of the steps of GLOBETROTTER, unaffected by the speed-ups
mentioned above, has computational cost that is squared in the
number of donor groups included in the ChromoPainter analysis.
This calculation is performed once per individual per chromo-
some in GLOBETROTTER. In contrast, fastGLOBETROTTER gives
the option of performing this calculation once per individual for
all chromosomes, which in practice we found to be about two
times faster than the standard fastGLOBETROTTER while giving
the same results. However, this approach incurs a memory in-
crease equal to the square in the number of donor groups divided
by the square of the number of surrogate groups that contribute
more than a user-specified minimum amount of ancestry. Here
we only include surrogate groups that contribute >0.5% of ances-
try. We have implemented an option in fastGLOBETROTTER that
does a quick estimate of the amount of memory increase neces-
sary to perform this new step, enabling users to decide whether
the speed-up is worth the memory increase.

Because of the above, reducing the number of donor groups
used by fastGLOBETROTTER can alleviate both the computational
and memory constraints. Here we have also implemented an op-
tion to combine donor groups that share a similar genetic back-
ground. To do so, we first find the average proportion of
genome-wide DNA that individuals from each surrogate group
match to haploids from each donor group, standardizing this to
sum to 1.0 in each surrogate. Thus, we describe each surrogate
by a vector of length equal to the number of donor groups.
Conversely, each donor group can be defined by a vector contain-
ing the amount they contribute to each surrogate group. For all
pairs of donor groups, we find the Pearson’s correlation of these
donor vectors. For donor vectors with a correlation >0.95, we
merged their values within each surrogate group by averaging
those donors’ contributions to that surrogate group. However,
for the applications considered here, we found little additional re-
duction in computation time or memory when using this ap-
proach relative to that described in the previous paragraph,
cautioning that it may not be worth the potential loss in power
from joining donor groups.

Details of jackknifing procedure to infer Cls for dates
in fastGLOBETROTTER

The algorithm GLOBETROTTER uses bootstrap resampling of indi-
viduals’ chromosomes to construct Cls for inferred admixture
dates. However, bootstrap resampling is not possible when
inferring admixture in a single individual. Therefore, following a
method previously described (Patterson et al. 2012), fastGLOBE-
TROTTER also includes an alternative jackknifing procedure that
instead drops one chromosome at a time and estimates the dates
using data from the other 21 chromosomes. This process provides
22 estimated date values, which can then be used to give CIs for the
inferred admixture date using previously derived weighted jack-
knifing formulas (e.g., Busing et al. 1999). Following the method
of Busing et al. (1999), for Z=22 chromosomes, here we calculate
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the jackknife standard error (ojx) as
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where A is the inferred date using all SNPs, A; is the inferred date af-
ter removing chromosome i, w; is the number of SNPs in chromo-
some i, and h; = Z?:l w;|/wi.

We provide a compdrison of standard deviations calculated
from bootstrapping versus jackknifing in Supplemental Figure S6
for the European clusters. The values are notably correlated, al-
though jackknifing gives larger values overall as expected (Efron
and Gong 1983), suggesting this should only be used when testing
for admixture in populations with small sample sizes. In particular,
this will be useful in cases in which there is only a single target
sample, in which case bootstrapping is not possible.

Simulations from Hellenthal et al. (2014)

To compare fastGLOBETROTTER to GLOBETROTTER, we used two
sets of simulated data sets described by Hellenthal et al. (2014). In
the first case, each simulated haploid genome of the admixed indi-
viduals was generated as a mosaic of DNA segments from the
phased genomes of individuals from the two admixing source pop-
ulations, using the technique described by Price et al. (2009) and
real sampled individuals for the source populations. The following
combinations of populations were used as the two admixing sourc-
es: Yoruba (Africa) versus French (Europe), French versus Brahui
(West Asia), Brahui versus Han (East Asia), Brahui versus Yoruba,
and Colombian (America) versus Han. For each of these popula-
tion pairs, seven (Colombian vs Han) or 20 (all others) individuals
were simulated for each combination of admixture date at seven,
30, and 150 generations ago and fraction of admixture from the
second source of 0.05, 0.2, and 0.5 (Fig. 2; Supplemental Table
S1). In particular, the size (in Morgans) of each DNA segment for
an admixed haploid was sampled randomly from an exponential
distribution with rate equal to the date of admixture, and this seg-
ment was copied intact from a source haploid chosen randomly
from an admixing source population with probability equal to
the desired admixture fraction from that source population.
Here, we also created new simulations of 100 admixed individuals
in this manner for the case of admixture between French and
Brahui at 150 generations ago and an admixture fraction of 0.5.
In each case, we inferred admixture using the 91 other sampled
populations from Hellenthal et al. (2014) as reference populations
and using the ChromoPainter procedure described in that paper.

The other set of simulations from Hellenthal et al. (2014) first
used the program MaCS (Chen et al. 2009) to simulate 11 popula-
tions meant to mimic the demographic history of Africa (Pops 1-
4), West Eurasia (Pops 5-7), and East Asia (Pops 8-11) (see
Supplemental Fig. S1). Next, an admixed population was generat-
ed by randomly sampling 100 haploid genomes from a population
composed of 150 and 100 simulated haploid genomes from popu-
lations 2 and 8, respectively. Thus, this admixed population mim-
ics a scenario with 60% and 40% ancestry inherited from Africa
and East Asia, respectively, with its small population size (50 indi-
viduals) mimicking the effects of a strong bottleneck. This ad-
mixed population was then simulated forward-in-time by
randomly selecting parents in the current generation to construct
each offspring’s two haploid genomes in the next generation, mix-
ing the parental genomes according to recombination probabili-
ties from the HapMap Phase 2 genetic map and generating S0
offspring in total. Separate simulations ran this forward-in-time
procedure for 10, 20, and 45 nonoverlapping generations, mimick-

ing different dates of admixture. To infer the admixture, we used
populations 2, 4, 9-11, and six other admixed populations
(PopA-PopF in Hellenthal et al. 2014) as reference populations us-
ing the procedure described in that paper.

Simulations mimicking European admixture results

Using the approach of Price et al. (2009), we also generated new
simulated populations to mimic scenarios that might explain pat-
terns observed in our new analysis of European populations. We
used four populations as admixing sources.

A. “Danish”: 200 individuals generated using European cluster
C49, where C49 contains 162 Europeans, primarily Danish
(Supplemental Table S3; Sawcer et al. 2011).

B. “German”: the 134 individuals, primarily German, from
European cluster C38 (Sawcer et al. 2011).

C. “Moroccans”: 25 individuals from Morocco (Behar et al. 2010;
Hellenthal et al. 2014).

D. “Evenk”: 12 Evenks from northern Asia (Rasmussen et al.
2010).

The “Danish” source consisted of a population of 200 individ-
uals generated by intermixing C49 individuals using the approach
of Price et al. (2009), with segment sizes (in Morgans) determined
by an exponential distribution with rate equal to 200. This was per-
formed to mitigate the signal of genuine admixture in C49 (e.g.,
see Fig. 3) from the simulated individuals.

We simulated four different scenarios, each consisting of 50
admixed individuals.

1. “EuroSim1”: 80%/20% of ancestry from Danish/Moroccans, in-
termixing 100 or 200 generations ago.

2. “EuroSim2”: 80%/20% of ancestry from Danish/Evenk, inter-
mixing 100 or 200 generations ago.

3. “EuroSim3”: admixture 70 generations ago between Danish/
Evenk at 80%/20%, with no subsequent admixture.

4. “EuroSim4”: admixture 70 generations ago between Danish/
Evenk at 80%/20%, followed by this admixed population inter-
mixing with Germans that contribute 20% of ancestry 10 gen-
erations ago (as in Supplemental Fig. S2).

The first of these new European-based simulations is designed
to mimic the intermixing of groups related to North Africa (repre-
sented by Morocco) and Europe that we observe for several
European clusters consisting of Belgians, French, and Germans.
The remaining three simulations assess our model’s ability to char-
acterize gene flow between Siberian-related groups and
Scandinavian populations, which we observe for clusters contain-
ing Finns, Norwegians, and Swedes, at one or multiple dates. We
applied ChromoPainter and fastGLOBETROTTER to each simula-
tion using the same protocol as our real data analysis, although ex-
cluding as references for EuroSim1 the Moroccan population used
to simulate and excluding as references for EuroSim2-EuroSim4
the Evenk population used to simulate. This reflects a realistic sce-
nario in which none of the admixing populations were sampled.
For computational simplicity, we used the same paintings of refer-
ence populations against each other as was used in the real data
analysis, by setting the amount that each other reference popula-
tion matched to Evenk or Morocco (using either as appropriate)
to zero and rescaling. This may result in a slight loss in accuracy
in these simulations. Results are given in Table 1.

Analysis of simulations

For the simulations from Hellenthal et al. (2014), we applied
GLOBETROTTER and fastGLOBETROTTER to ChromoPainter
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output generated as previously described (Hellenthal et al. 2014).
When analyzing each simulation with GLOBETROTTER and
fastGLOBETROTTER, we used the default value of five iterations
of inferring dates versus inferring admixture proportions and
sources, at each iteration removing reference populations inferred
to contribute <0.5% of ancestry. In most cases, we constructed ad-
mixture probability curves by only considering pairs of DNA seg-
ments 1-30 cM apart, rounding the distances between pairs to
the nearest 0.1 cM. An exception is our analysis of the
Colombian-Han and French-Brahui simulations with admixture
150 generations ago and 20 or fewer admixed individuals, where
we instead only considered DNA segments 1-5 ¢cM apart rounded
to the nearest 0.05 cM, as recommended by Hellenthal et al. (2014)
when inferred admixture dates are more than 55 generations ago
when using the default values. In all cases, we used 100 bootstrap
resamples of simulated target population individuals to construct
ClIs for inferred dates. Following the method of Hellenthal et al.
(2014), a simulation was considered to have no admixture if the
floor of the minimum bootstrap date was one or if the maximum
bootstrap date was 400 or greater, as the former case is consistent
with no admixture and the latter is older than what we can reliably
infer with these sample sizes.

Application to the European cohort

We explored admixture in 6209 European individuals sampled
from Belgium, Denmark, Finland, France, Germany, Italy, Norway,
Poland, Spain, and Sweden genotyped on the I[llumina Human
660-Quad SNP array (Sawcer et al. 2011). These individuals were
multiple sclerosis cases. As reference populations, we used 4309 in-
dividuals sampled from 162 worldwide populations genotyped on
a similar platform (Supplemental Table S4; Li et al. 2008; Behar
et al. 2010; The International HapMap 3 Consortium 2010; Ras-
mussen et al. 2010; Chaubey et al. 2011; Henn et al. 2011; Met-
spalu et al. 2011; Sawcer et al. 2011; Hodoglugil and Mahley
2012; Yunusbayev et al. 2012; Hellenthal et al. 2014; Busby et al.
2015). Different data sets were merged using PLINK (Purcell et al.
2007), after which SNPs with minor-allele frequency <1% or miss-
ingness >10% were removed, resulting in 477,417 autosomal SNPs
for analysis.

As the precise origins of the 6209 Europeans were unknown be-
yond the country level, we clustered them into genetically homoge-
neous groups before inferring admixture. To do so, we first phased
individuals jointly using SHAPEIT (Delaneau et al. 2013) with the
build 36 genetic map. Next, we ran ChromoPainter to form
(“paint”) the two phased haploids from each of the 10,522 total in-
dividuals as a mosaic of those from all other 10,521 individuals. In
particular, we estimated the genome-wide average switch (-n flag)
and global emission rate (-M flag) by applying 10 iterations of the
ChromoPainter expectation-maximization algorithm to paint the
phased haploids of 1052 individuals across chromosomes {4, 10,
15, 22}, painting only one-tenth of individuals and four chromo-
somes for computational simplicity. We then averaged the estimat-
ed values of switch and emission rates across these chromosomes
and individuals, giving 52.82727348 and 0.000134461, respective-
ly, and ran ChromoPainter on each of the 10,522 individuals using
these fixed values. We applied fineSTRUCTURE (Lawson et al. 2012)
to this ChromoPainter output, clustering the 6209 Europeans and
people from the Abhkasian, Greek, and Maya reference populations
using 5 million Markov chain Monte Carlo (MCMC) iterations
while fixing the other 159 reference populations as “superpopula-
tions” (-f switch). FineSTRUCTURE sampled one MCMC iteration
out of every 10,000, selected the sample from among these with
the highest posterior probability, and used 10,000 additional opti-
mization steps under a greedy approach to find a clustering solution

with higher posterior probability (Lawson et al. 2012). This proce-
dure assigned the Europeans and reference populations into 319
clusters, which fineSTRUCTURE then merged hierarchically, two
at a time, under a greedy approach until only two clusters remained.
We moved up this fineSSTRUCTURE tree and stopped at a level of the
tree where no cluster containing the 6209 target Europeans had few-
er than nine individuals. This gave 86 clusters with European indi-
viduals that we analyzed in subsequent analyses. Cluster names,
sample sizes, and population descriptions are provided in Supple-
mental Table S3.

To detect admixture events, we applied fastGLOBETROTTER
separately to each of these 86 European clusters, using the 162 ref-
erence populations as surrogates to the putative admixing sources.
To do so, we used ChromoPainter to form the phased haploids of
individuals in all 86 clusters and 162 surrogate (reference) popula-
tions as mosaics of those from the 162 reference populations.
When doing so, we used the same fixed switch and emission pa-
rameters in the fineSTRUCTURE analysis for computational con-
venience. For each of the 86 + 162 populations, we tabulated the
average proportion of genome-wide DNA that individuals from
that population match to any haploid in each of the 162 reference
populations. Note that an individual is not allowed to match to
themselves, so each person in a surrogate population matches to
one fewer member from their own population than is the case
with individuals in all other surrogate populations and the 86
European clusters. This asymmetry may influence inference of
the sources involved in the admixture event, although previous
analyses have not found this to have a noticeable effect when us-
ing similar sample sizes (Hellenthal et al. 2014; L6épez et al. 2021).
An exception is surrogate populations with small sample sizes
(e.g., two or fewer individuals), which may be upweighted as an
ancestry contributor relative to surrogate populations with larger
sample sizes (Lopez et al. 2021).

For each haploid from the 86 European clusters, we also used
ChromoPainter to generate 10 stochastic samples of their mosaic
matching to haploids from the 162 reference populations. As in
GLOBETROTTER, fastGLOBETROTTER takes as input both the mo-
saic painting samples of all target population individuals and the
average proportion of DNA that the target and 162 surrogate pop-
ulations matches to each of the 162 reference populations, using
these to infer dates and infer admixture sources/proportions (Hel-
lenthal et al. 2014), respectively, in an iterative manner. We used
five iterations of alternating between inferring dates and inferring
admixture proportions and sources, while removing reference
populations inferred to contribute <0.5% of ancestry at each itera-
tion. We also used the “null individual” analysis (i.e., null.ind=1)
that adjusts date inference for the effects of a postadmixture bottle-
neck in the target population. Following our simulations, we con-
structed admixture probability curves by only considering pairs of
DNA segments 1-30 cM apart, rounding the distances between
pairs to the nearest 0.1 cM. In cases in which this gave an inferred
admixture date more than 55 generations ago, we reinferred ad-
mixture dates and proportions, using five iterations as above,
while only considering DNA segments 1-5 cM apart rounded to
the nearest 0.05 cM, as recommended by Hellenthal et al.
(2014). We used 100 bootstrap resamples of individuals’ chromo-
somes to construct 95% ClIs for the inferred admixture date(s).
Dates are inferred in generations (g), which were converted to years
(») using the formula y=1960 — 28 x (g+ 1), which assumes a gen-
eration time of 28 yr (Fenner 2005) and an average birthdate of
1960 for sampled individuals. One cluster, C23, inferred multiple
admixture dates but with a very large inferred older date (more
than 700 generations ago) beyond that which we expect to be
able to reliably infer admixture; we therefore excluded this cluster
from our results.
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Data sets

All data used in this paper are previously published, from https://
ega-archive.org/datasets/EGAD0O0000000120 (Sawcer et al. 2011),
https://hagsc.org/hgdp/files.html (Li et al. 2008), https://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37342 (Yunusbayev
et al. 2012), https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE22494 (Rasmussen et al. 2010), https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE21478 (Behar et al. 2010), https://
www.sanger.ac.uk/resources/downloads/human/hapmap3.html
(The International HapMap 3 Consortium 2010), https:/www
.omicsdi.org/dataset/arrayexpress-repository/E-GEOD-33489 (Met-
spalu et al. 2011), https://www.pnas.org/doi/full/10.1073/pnas
.1017511108 (Henn et al. 2011), https://academic.oup.com/mbe/
article/28/2/1013/1220271 (Chaubey et al. 2011), https://
onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.2011.00701
.X (Hodoglugil and Mahley 2012), and https://data.mendeley.com/
datasets/ckz9mtgrjj/3 (Hellenthal et al. 2014).

Software availability

The software fastGLOBETROTTER is available at GitHub (https://
github.com/hellenthal-group-UCL/fastGLOBETROTTER), includ-
ing a detailed tutorial with example files, and as Supplemental
Code.
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