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Abstract

Multiple studies have been conducted to properly elucidate the various tools available to help 

enhance the resection of tumor tissue, aneurysms, and arteriovenous malformations (AVM). 

Diffusion tensor imaging (DTI) tractography is useful in providing a map of the tumor borders, 

allowing the optimal preservation of function and structure of specific regions of the brain. 

During neurosurgery, especially craniotomies, the possibility of the brain shifting due to swelling 

or gravity is high. Thus, tools for intraoperative imaging such as high-frequency linear array 

ultrasound transducers and doppler ultrasonography are utilized for high resolution images and 

detecting frequency shifts. 4D-digital subtraction angiography (DSA) is another technique used 

to create spatial resolutions and 3D maps for aneurysms. These similar techniques can also be 

utilized to assess the integrity of white matter in AVM. By implementing effective evaluation 

strategies, healthcare professionals can make informed decisions regarding treatment options, 

preventive measures, and long-term care plans tailored to individual patients.
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1. Introduction

Primary brain tumors are very aggressive in nature and notoriously difficult to surgically 

resect. Most of these tumors grow rapidly, are aggressive in nature as well as widely 

infiltrative. This potentially hinders the marking of healthy versus tumor tissue and, in turn, 

makes the surgery very challenging. Thus, it is important to explore ways that can make the 

diagnosis and treatment of brain cancer more efficient. A few of the ways to tackle this point 

include using diffusion tensor imaging (DTI) tractography or three-dimensional rendering. 

As mentioned before, DTI tractography is a non-invasive and relatively fast approach to 

incorporate while delineating brain tumor margins. Furthermore, DTI tractography is one of 

the only ways to map out the white matter in vivo, thus, aiding as a preoperative modality in 

planning[1,2].

In the treatment of multiple different types of brain tumors, DTI has been used and proven 

to be a beneficial tool before surgery. Firstly, during cerebral glioma surgeries, DTI-based 

fiber tracking was associated with the safest and the most resection of the tumor[3,4]. 

Secondly, in low-grade gliomas, DTI tractography was used to map the extent and areas of 

resection during the surgery[5,6]. Thus, DTI tractography has been shown as a tool used to 

pre-surgically observe a three-dimensional mapping of the white matter and the fibers[7]. 

The various DTI tractography patterns seen in different types of brain tumors are shown in 

Figure 1.

However, using this technique has some drawbacks. Having a brain tumor increases the 

incidence of edema and compression of the tissue[8]. This impairs the selection of seed 

regions of interest (ROI) for the beginning of fiber tracking, based solely on anatomical 

landmarks. In such cases, research has shown that combining DTI tractography with 

functional Magnetic Resonance Imaging (fMRI) might be helpful. Two studies—Hendler 

et al. and Parmar et al.—used both DTI tractography and fMRI to map the white matter[9,10]. 

There are studies that also proposed using fMRI to define the seed ROI using DTI 

tractography for connectivity mapping[11,12]. Moreover, a study conducted by Schonberg 

et al. added to this by suggesting that the combined DTI-fMRI approach is successful in 

cases where the problem of edema is differentiated from the fiber displacement[9].

In addition to this, DTI tractography can also be combined with stereotactic treatment 

imaging planning. Stereotactic radiosurgery (SRS) couples radiation with a stereotactic 

guiding device[13]. SRS is also used to treat many different types of brain tumors. 

According to one study, combining DTI tractography with SRS planning has been shown to 

improve outcomes and reduce complications[14]. Another study analyzed that incorporating 

DTI tractography reduced morbidity in patients with arteriovenous malformations, who 

underwent radiosurgery[15]. The various benefits of DTI tractography have been described in 

Figure 2.

Lastly, DTI tractography can be combined with laser interstitial thermal therapy which is 

also used as an approach in many brain tumors. Laser interstitial thermal therapy is an 

ablation procedure that uses a laser fiber to heat up the tumor tissue. In surgeries that use 
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this, tractography is shown to be used both before and during the procedure as a guiding 

tool[16,17].

Thus, it can be concluded from this review that DTI tractography can provide relatively 

important information during the preoperative time of surgery for brain tumors. Studies that 

have incorporated this technique in their treatment regimen, including combined approaches, 

have shown positive outcomes. Thus, DTI tractography can be an extremely useful tool 

during surgical planning and improving the prognosis.

2. Impact of 3D rendering and applied trajectory for tumor patients

Brain tumors are one of the most lethal forms of cancer and are some of the most 

difficult types to treat[18]. Of the different forms of brain tumors, glioblastomas are the 

most common primary brain tumor in adults and have a median approximated survival 

expectancy of 15 months following diagnosis[19]. To treat these tumors, surgical resection 

has been shown to increase survival rate, improve symptom management, increase time 

to malignant transformation, and improve quality of life following surgery[20]. The goal 

of tumor resection surgery is not only to excise the tumor, but to do so in a way that 

does not compromise the function and integrity of other regions in the brain[21]. Different 

operative approaches offer unique strengths when targeting different forms of brain tumors, 

and considering these strengths have the potential to improve postoperative outcomes[20].

A craniotomy is the most common surgical approach for brain tumor resections and is 

performed by temporarily removing a section of the skull to access the tumor. A perforator 

is a surgical instrument used to drill small holes into the skull. Once the holes are drilled 

in, a craniotome is used to cut through the bone and connect the drill holes. This allows for 

the bone flap to be removed in one piece. Once the tumor is surgically removed, the bone 

flap is put back into place and held together by titanium screws[22]. Awake craniotomies 

are craniotomies performed while the patient is awake. This is common during surgical 

procedures where cortical and subcortical language centers are at risk. By keeping the 

patient awake, the surgical team can monitor and preserve brain function in order to preserve 

the patient’s motor function and speech[23].

Neurosurgery utilizes preoperative imaging, like MRI, ultrasound, and CT scans, to visualize 

pathology and provide useful information when considering the most effective surgical 

approach[19,24]. However, during surgeries like craniotomies, the brain may shift due to 

swelling, gravity, fluid drainage, and displacement due to tumor resection. Intraoperative 

ultrasound and MRI devices have advanced compared to previous decades and now allow 

for seamless intraoperative imaging[25]. High-frequency linear array ultrasound transducers 

are small handheld devices that provide intraoperative high-resolution images that can be 

used to better determine tumor margins. In addition to margin identification of tumors, 

Doppler ultrasonography can be used to intraoperatively assess the vasculature of tumors by 

observing frequency shifts that indicate the relative velocity of fluid flow[26]. Intraoperative 

MRI can be used to visualize residual amounts of tumor and has been shown to increase 

overall tumor resection in patients and improve postoperative outcomes[25,27,28]. In recent 

years, exploration of more minimally invasive forms of brain tumor resections has 
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implemented the use of intraoperative MRI. MRI-guided laser ablation is a brain tumor 

resection approach where MRI is used to visualize the tumor and lasers are used to destroy 

them. This is significantly useful when targeting brain tumors that are located in sensitive 

regions of the brain or in locations difficult to access with a traditional craniotomy[29–31].

Another approach for brain tumor resections includes neuroendoscopy. A neuroendoscopy 

is a minimally invasive surgery where a tumor is removed through small holes, the mouth, 

or the nose. This procedure is an optimal approach for cases that involve portions of the 

brain that need to be avoided during surgery[32,33]. An endoscope is a thin small tube with an 

attached light source and camera that allows the surgeon to visualize the inside of the body 

with minimal invasiveness. However, large tumors pose a challenge as the dissection tools 

needed to safely remove them during an endoscopic approach are lacking. More research is 

needed in regard to patient outcomes for endoscopic brain tumor removal[34].

Perforators are used to drain holes into the skull during a craniotomy. ARCA-CUT 

(Amherst, NY, USA) is currently the only company that produces and develops autonomic-

releasing cranial perforators[35]. ARCA-CUT is involved in the development of cranial 

perforators for various surgical uses, pediatric patients, and in cases where the skull is 

thin[35]. ARCA-CUT has several different types of automatic releasing cranial perforators, 

such as a disposable cranial perforator, reusable cranial perforator, and the “Smart Drill”[35]. 

The “Smart Drill” shares the same features as the disposable cranial perforator, but is 

also safe for a skull thickness as little as 1.5 mm while also featuring a thicker bone 

pad[35]. ARCA-CUT’s perforators are composed of non-skid tips to prevent sliding during 

insertion along with their patented Cammed-Lug release mechanism that reduces the risk of 

a problematic penetration[35]. A bone pad is then made from the inner drill to prevent cutting 

or nick of the dura[35].

Tumor treating fields (TTF) are low-intensity alternating electric fields used in a variety 

of tumor types[36]. TTF have been found to interrupt mitosis, arrest cells during the cell 

cycle, and stimulate apoptosis in various tumor types[37,38]. Optune® is an FDA-approved, 

transportable TTF that delivers 200 kHz to treat glioblastoma multiforme (GBM)[36]. 

Optune® contains two panels which contain nine insulated electrodes which can be placed 

on the patient’s shaved head in order to generate the electric current[36]. The low-intensity 

electrical fields are distributed through the brain tissues where they have been found to arrest 

the cell cycle, disrupt mitosis, and prevent the progression of tumor growth[36]. It’s proposed 

that Optune disrupts various components of cells such as the tubulin dimers and mitotic 

spindles to impair cell division[39]. Additionally, one study found that the use of Optune in 

combination with temozolomide, a standard chemotherapy, showed a significant benefit in 

improving survival compared to temozolomide alone[40]. Another study found that Optune 

has shown a 15% reduction in tumor volume over the course of 3 months[41]. Optune has 

been shown to increase medial survival by 0.6 months in recurrent glioblastomas and up to 

31% in newly diagnosed glioblastomas[42,43]. The most common side effect experienced due 

to Optune was contact dermatitis, but no brain function impairment or systemic toxicity was 

noted[36]. However, Optune is not recommended in patients with implanted medical devices, 

skull defects, or bullet fragments as studies have yet to be conducted in patients with these 

conditions[40].
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The Pratt School of Engineering at Duke has created a device termed the “Tumor Monorail” 

that mimics the brain’s white matter and causes the migration of tumor cells towards the 

exterior brain, where tumor cells can be collected and resected[44]. The device consists 

of a long, thin tube of flexible fibers which are inserted through an opening[45]. Initial 

success of the concept was demonstrated in rat models in 2014[46]. The study done in 

animal models used a polycaprolactone (PCL)-nanofiber film in a PCL/polyurethane conduit 

to cause the migration of tumor cells[46]. The study in rat models found a significant 

proportion of human glioblastoma cells moved towards the nanofiber films[46]. The study 

synthesized a cyclopamine-conjugated collagen hydrogel to serve as an apoptotic factor[46]. 

In the extracortical hydrogel, the tumor cells underwent apoptosis and ultimately resulted 

in a significant decrease in tumor volume[46]. The “Tumor Monorail” gained “Breakthrough 

Device” status by the U.S. Food and Drug Administration as it offers the possibility of 

extracting a tumor that was previously located in an inoperable location with a more 

minimalistic approach[44]. The “Monorail Device” is currently working on seeking FDA 

approval for human trials, but offers a promising alternative to managing neurologic 

tumors[44].

A new device, termed the Oncomagnetic device, works by producing oscillating magnetic 

fields (OMF) through the rotation of strong magnets[47,48]. In rat models, the device 

has shown anticancer effects in xenografted mice without causing any significant side 

effects[49,50]. The OMF generators are attached to a helmet which can be placed on a 

patient’s head without shaving and works by disrupting the electrical transport chain within 

the mitochondria to increase the number of reactive oxygen species[49]. The increase of 

reactive oxygen species results in cancer cell death[49]. One case report outlined the use 

of the Oncomagentic device in a patient presenting with a large tumor spreading from the 

left frontal lobe into the right frontal lobe[49]. The patient was diagnosed with end-stage 

recurrent glioblastoma and had very limited treatment options[49]. The patient was treated 

with OMF through the Oncomagnetic device for 36 days and found that the therapy was well 

tolerated and resulted in a reduction of tumor volume[49]. Although reducing tumor volume 

in one patient, further studies evaluating the efficacy of the Oncomagnetic device are needed 

to demonstrate its safety and efficacy.

3. Impact of 3D rendering and applied trajectory for aneurysm patients

An aneurysm is the abnormal dilatation of an arterial vessel resulting from an acquired 

lesion that weakens the vessel wall[51]. These vascular abnormalities can occur throughout 

the body, but in the context of intracranial aneurysms (IAs), they are predominantly found 

in the anterior circulation of the circle of Willis, particularly near bifurcation points[52]. 

The prevalence of IAs is a cause for concern as they carry a high risk of morbidity and 

mortality associated with rupture. Once an IA ruptures, the statistics are alarming, with 50% 

of patients dying within three months and half of these deaths occurring within the first 

24 hours[53]. For this reason, it is imperative to emphasize the importance of appropriate 

and timely evaluation of unruptured IAs, as it can have significant implications for clinical 

management, patient quality of life, and ultimately, survival rates. By implementing effective 

evaluation strategies, healthcare professionals can make informed decisions regarding 
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treatment options, preventive measures, and long-term care plans tailored to individual 

patients, thereby mitigating the potential devastating consequences of IA rupture.

In the past, the clinical detection of unruptured IAs was rare, as they were primarily 

discovered when a patient presented with symptoms indicative of rupture[54]. However, 

with a greater understanding of risk factors, such as family history, and the implementation 

of enhanced screening efforts, the diagnosis of unruptured aneurysms has witnessed a 

substantial increase[55]. Notably, the advancements in imaging technologies, particularly the 

growing utilization of magnetic resonance imaging (MRI) in the clinical setting, have played 

a pivotal role in identifying unruptured IAs as incidental findings[56]. This shift in diagnostic 

practices has led to a paradigmatic change, enabling proactive management strategies for 

these potentially life-threatening conditions. Moreover, as medical technology continues to 

evolve, various other modalities have emerged to evaluate IAs comprehensively, leading to 

a better assessment of their location, risk for rupture, and management options. One such 

technology that has evolved in recent years is digital subtraction angiography.

3.1. Digital subtraction angiography

Today, digital subtraction angiography (DSA) is the gold standard for evaluating IAs due 

to its high sensitivity and spatial resolution[57]. Due to accessibility, cost-effectiveness, 

and previous research, 2D angiography (2D-DSA) is conventionally used in clinical 

practice[58]. 2D-DSA, however, has limitations regarding its difficulty in use in neurological 

interventions[59]. For instance, it is difficult to visualize 3D anatomic details on a 2D-DSA; 

therefore, multiple 2D-DSA acquisitions are necessary to properly evaluate IAs[60]. The 

need for multiple acquisitions decreases the efficiency of this technology while increasing 

healthcare costs. It also increases the amount of exposure and contrast use in patients, which 

can leave them at a greater risk for kidney dysfunction[61].

In light of these limitations, 3D-DSA is being increasingly investigated for its ability 

to characterize IAs and guide their treatment. The formulation of a three-dimensional 

DSA image requires the use of a flat-panel angiographic system[59]. The system has a 

rotating motorized C-arm that can obtain a complete acquisition in two scans, with the 

first one collecting subtraction marks and the second acquiring images through a contrast 

medium[59]. In a clinical setting, 3D-DSA is typically used when the presence of an 

aneurysm is suggested, and it is indicated for use in follow-up if a coiling procedure is 

done[62].

3D-DSA has many advantages when compared to 2D-DSA. For instance, 3D-DSA has the 

ability to depict significantly smaller aneurysms of up to less than 3 mm[62]. The increased 

sensitivity of 3D-DSA to detect smaller aneurysms reduces the number of aneurysms 

that are overlooked, ultimately reducing the number of aneurysm-negative subarachnoid 

hemorrhages (SAH)[63]. 3D-DSA also has extensive utility in detecting aneurysm recurrence 

after treatment, as it provides a 3D measurement of the refilling area without requiring 

calibration[59]. It can detect residual flow if present, localize its origin, and evaluate adjacent 

vessel branches[59]. In the event that a stent is placed, 3D-DSA can also accurately localize 

the stent, which is otherwise difficult to visualize through fluoroscopy due to its design[64]. 
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The utility of 3D-DSA has been evaluated by many researchers, and these studies are 

summarized in Table 1.

One disadvantage of using 3D-DSA, however, is that it is more invasive and more expensive 

than DSA alone[65]. Despite the cost and invasive nature of 3D-DSA, however, undetected 

aneurysms have a high morbidity and mortality due to the risk of rupture. One alternative 

to 3D-DSA is 3D-CT Angiography (CTA), which is much cheaper and can be done without 

hospitalization[65]. 3D-CTA could be a better alternative for assessing asymptomatic patients 

with factors who may have a lower risk of IA rupture. One study by Li et al. assessed the 

applicability of 3D-CTA in IA evaluation for surgery through a virtual reality model[66]. 

He found the accuracy of 3D-CTA to be 90.81% across all aneurysm sizes, with higher 

accuracies for larger aneurysms[66]. Given this accuracy and the clinical utility of 3D-CTA, 

this technique could be the future of 3D rendering in IAs; however, more clinical research on 

the topic is needed.

Another disadvantage of 3D-DSA is that it lacks the temporal resolution provided by 

2D-DSA, which is lost at the expense of increased volume resolution[67]. One alternative 

to using 3D-DSA that is suggested by researchers is 4D-DSA. 4D-DSA utilizes C-arm 

conobeam CT systems to create time-resolved datasets of vascular volumes; furthermore, the 

flat detector angiographic systems used are commercially available, implying the feasibility 

of this technique[60,68]. 4D-DSA allows for 3D-DSA time-resolved volumes and therefore 

allows for better temporal and spatial resolution. One study by Lang et al. analyzed the 

utility of 4D-DSA in ten patients with IAs and found that 4D-DSA had nearly complete 

accordance with 2D-DSA with regard to its temporal resolution[68]. Another study by 

Sandoval-Garcia et al. found that the information provided by both 4D-DSA was equivalent 

to a combination of 2D-DSA and 3D-DSA and concluded that the use of 4D-DSA could 

decrease the need for 2D-DSA[69]. In order to assess the true extent of these benefits, 

however, more clinical research with greater sample sizes is needed.

3.2. Applied tractography in aneurysm imaging

In addition to 3D-DSA, 3T MRI is a form of tractography that can be utilized to improve 

the evaluation of IAs. One study by Khursheed et al. applied advanced 3T MRI to study 

aneurysm recovery following a SAH[70]. One form of treatment for SAH involves the 

placement of IA clips[71,72]. After clip placement, MRI is considered to be a routine follow-

up, but the magnetic fields produced interact with the clip impacts to produce a notable 

artifact in the images[73–76]. Khursheed and colleagues found that advanced 3T MRI can be 

used to successfully image aneurysms with titanium clips implanted in order to visualize and 

reconstruct white matter pathways[77]. Although preliminary, these findings have paved the 

way for more structural and functional imaging studies regarding aneurysms within the field 

of applied tractography.
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4. Impact of 3D rendering and applied trajectory for AVM resection 

surgery

Arteriovenous malformation (AVM) is an abnormally developed tangles of blood vessels 

(nidus) that directly connects arteries and veins together bypassing the capillary bed (https://

www.nature.com/articles/nrdp20158)[81]. Normally, oxygen rich blood travels from the heart 

to the rest of the body through high pressure fast flow systems called the arteries. As the 

blood passes through the small arteries and arterioles, the pressure substantially drops until 

it reaches a one cell thick blood vessels called the capillaries where exchange of nutrients 

and waste takes place between the blood and tissue. The deoxygenated blood then travels 

back to the heart through low pressure slow flow systems called the veins. However, in 

AVM, this normal blood flow is disrupted, and high-pressure arterial systems are abnormally 

connected with the low-pressure venous systems increasing the risk of ischemia, rupture of 

blood vessels, and hemorrhage[81,82].

Although the exact pathogenesis of AVM remains unclear, some cases are associate with 

some genetic mutations like hereditary hemorrhagic telangiectasia (HHT)[83]. AVM can 

occur in any part of the body and is commonly associated with the brain and spinal cord[84]. 

While brain AVM have a low estimated prevalence, it is considered a significant cause of 

intracranial hemorrhage (ICH) in children and young adults, which carry high morbidity and 

mortality[83].

The most common presentation of symptomatic patients with AVM is ICH due to ruptured 

vessels. However, symptoms can vary depending on the size and location of the AVM 

and can include other neurological complications such as headaches, strokes, seizures, 

and other neurological deficits[81,83,85]. However, in recent years, the increased use of 

non-invasive neurological imaging modalities like compound tomography (CT), magnetic 

resonance imaging (MRI) and angiography have led to an increase incidental diagnosis of 

brain AVM[85].

In asymptomatic patients with non-hemorrhagic AVM, the preferred medical management 

remain controversial within the medical community. It is important to take into account 

the accumulated lifetime hemorrhagic risk with the risk of the medical treatment itself 

when making decisions about interventions[85]. However, given the invasive nature of the 

procedural options, conservative treatment is recommended with observation, follow-up, and 

regular imaging for asymptomatic non-hemorrhagic brain AVM[81,86,87]. On the other hand, 

when it comes to treatment of symptomatic patients, the associate high risk of ruptured 

AVM warrants procedural approach with the goal of AVM elimination and prevention of 

future complications, while preserving brain function. The subsequent risk of complications 

increases five folds following a ruptured AVM or previously ruptured AVM[81]. Given the 

recent advances in medical treatments, the medical management of symptomatic AVM often 

include multimodal approach of different treatment like microsurgical removal, endovascular 

embolization, and stereotactic radiosurgery, which can be alone or in combination[81,86].

While microsurgical resection, stereotactic radiosurgery, and endovascular embolization 

have all been indicated in the setting of symptomatic intracranial AVM, each poses a 
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certain risk that should be taken into account when considering one treatment option 

over the other. For instance, surgical approach in the management of intracranial AVM 

is invasive, challenging, complex, and comes with increased risk of intra- and post-operative 

complications like bleeding and cerebral edema. Thus, age of the patient, the location of the 

lesion, and the associated risk for post-operative complications related to the adjacent brain 

tissue are crucial factors in determining surgical indication for intracranial AVM over other 

procedural approaches[81,88]. On the other hand, stereotactic radiosurgery is a treatment 

method that utilizes precision guided delivery of radiation to a specific target, using 

advanced imaging technology[20,81]. However, AVM obliteration is highly dependent on the 

radiation dose and the precise delivery to the lesion site and is coupled to harmful radiation 

exposure and the risk of damage to adjacent brain tissue[81]. Endovascular embolization 

is a non-invasive image-guided procedure that aim to block or reduce blood flow to the 

feeding artery of intracranial AVM through the introduction of intervascular catheter and 

embolic materials which decreases the risk of bleeding[81]. Endovascular embolization is 

usually used in combination with other therapies like microsurgery[81]. Therefore, it is 

essential to find ways to aid clinicians in preoperative assessment and planning for both 

symptomatic and asymptomatic intracranial AVM in order to balance the risks and benefits 

of the intervention. One such modality that has been proposed and discussed in patients 

with intracranial AVM is Diffusion tensor imaging (DTI) tractography or three-dimensional 

rendering[89–93].

DTI tractography or three-dimensional rendering, is a non-invasive MRI based technique 

that provides functional information about the microstructural integrity and directionality 

of white matter tracts in the brain. The use of this imaging modality has been previously 

described in primary brain tumors[94–96]. However, in the context of intracranial AVM, 

DTI serves as a valuable tool for assessing the impact of these vascular abnormalities on 

neighboring brain tissue[96]. DTI works by measuring the diffusion of water molecules 

along axonal pathways, enabling the study and characterization of the brain’s structural 

connectivity[95]. For intracranial AVM, DTI helps visualize the specific disruption of axonal 

white matter tracts caused by the presence of the vascular malformation in the setting of 

intracranial AVM. Additionally, DTI can detect changes in fractional anisotropy (FA), which 

reflects the directionality of water diffusion, and apparent diffusion coefficient (ADC), 

indicating the magnitude of water diffusion.

The incorporation of DTI tractography and three-dimensional rendering into the evaluation 

of intracranial AVMs offers a noninvasive method to investigate of the extent and impact 

of the intracranial AVM on the surrounding brain tissue, which in turn helps to guide 

the pre-operative clinical decision[88,93]. Also, given that the Microsurgical resection of 

Intracranial AVM is an “all or nothing” approach, the integration of DTI tractography and 

three-dimensional rendering with other imaging modalities to study the relationship and 

structure of the lesion to the tract to guide the surgical approach, prognosis, and outcome 

has been described[96,97]. In addition, DTI tractography and three-dimensional rendering has 

been shown to be a useful in dosage determination as well as decrease morbidity related 

to stereotactic radiosurgery management in patients with intracranial AVM[97,98]. A recent 

systemic review investigating the application of DTI tractography and three-dimensional 

rendering in the medical management of brain AVM demonstrated Research findings have 
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shown that the utilization of tractography data enables surgeons to effectively remove 

brain arteriovenous malformations (bAVMs) located in critical areas, while maintaining 

acceptable rates of complications. Moreover, the collected data facilitate precise analysis of 

radiation dosage, ensuring that these lesions can be targeted for stereotactic radiosurgery 

(SRS) with minimal radiation exposure to nearby essential white matter pathways[99]. DTI 

tractography and three-dimensional rendering is not only limited to pre-operative assessment 

but can also aid in the assessment of post-operative outcomes in patients with AVMs[88], as 

shown in Table 2.

All in all, DTI tractography or three-dimensional rendering plays a crucial role in enhancing 

the understanding and management of intracranial arteriovenous malformations by providing 

detailed insights into the structural alterations and connectivity changes associated with 

these vascular anomalies.

5. Conclusion and discussion

As previously mentioned, the severity of outcomes implicated in brain tumor and aneurysm 

patients cannot be understated. Thus, the topic of update considerations in the context of 

neuronavigation is of the utmost importance in the field of neurosurgery and warrants further 

investigation. Traditionally, DTI tractography is a ubiquitous diagnostic and treatment 

modality employed against aggressive brain neoplasms such as GBM—with the ability to 

be a stand-alone technology or concomitantly with fMRI, SRS, or laser interstitial thermal 

therapy[100–102]. As of late, however, with the dawn of novel 3D rendering technology, 

models of infiltrative brain tumors have helped assist physicians in identifying accurate 

margins for the most amount of tumor excision with the least amount of collateral damage to 

healthy surrounding brain parenchyma. Mainly, with the inability to identify these invasive 

margins of GBMs persistently hampering attempts to achieve local control, integrating 

3D MR spectroscopy into neuronavigation is a promising new development. Specifically, 

this novel application of 3D MR spectroscopy utilizes glioma metabolism data to perform 

image–guided resection with more extensive margins[103]. Although still in early clinical 

trials, this treatment option offers a more precise alternative to conventional structural 

imaging, while still preserving clinically efficacious resection methods such as craniotomy, 

neuroendoscopy, laser ablation, and the various conductive treatment options and devices.

Similarly, 3D rendering technology harbors especially useful clinical applications in 

the context of aneurysm patients. Prior to the advent of advancements in imaging 

technologies such as in MRI, aneurysms historically remained undetected until rupture, 

which significantly increased morbidity and mortality in these patients. Recently, however, 

improvements in early detection via the use of digital subtraction angiography has served 

as a vital tool in circumventing the aforementioned consequences. Particularly, by using 4D-

DSA technology, practitioners have the ability to combine the advantages of traditional 2D-

DSA and 3D-DSA, while omitting their shortcomings such as suboptimal small aneurysm 

identification and lack of temporal resolution, respectively[104]. Moreover, the use of 4D-

DSA technology allows for superior imaging of cerebral vasculature without the need 

for overexposure required while using the 2D and 3D modes, which traditionally require 
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a higher number of acquisitions. This unique characteristic of 4D-DSA also expands its 

application to the treatment and management of AVMs and dural arteriovenous fistulas[105].

Over the past couple of years, our vast information concerning the tumor resection tools 

in neurosurgery has grown immensely. From DTI tractography to 4D-DSA technology, our 

ability to properly evaluate pre and post operative planning and treatment measures has been 

enhanced.
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Figure 1. 
DTI tractography pattern seen in different types of brain tumors.
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Figure 2. 
Overview of brain tumor surgical resection approaches.
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Table 1.

Evaluating the utility of 3D-DSA in assessing IAs in comparison with other technologies.

Study Patients enrolled Outcome

Ishihara H et al.[63] 247 patients; 3D-DSA (n = 142), DSA (n 
= 105)

The use of 3D-DSA decreased the amount of angiogram-negative SAHs 
when compared to DSA, at 4.2% and 8.6% respectively.

van Rooij WJ et al.[62] 350 patients; 3D-DSA (n = 350), DSA (n 
= 350)

3D-DSA allows for improved detection of small aneurysms <3 mm than 
DSA alone.

Ishida F et al.[65] 15 patients; 3D-DSA (n = 15), 3D-CTA (n 
= 15)

3D-DSA is a more useful technique for endovascular treatment; whereas, 
3D-CTA is the optimal technique for aneurysm detection in patients 
indicated for surgery or postoperative evaluation.

Halter M et al.[78] 43 patients; 3D-DSA (n = 43), 2D-DSA 
(n = 43)

3D-DSA showed a higher level of interrater reliability and agreement for 
aneurysm evaluation than 2D-DSA when the results were scored by six 
independent raters.

Wong SC et al.[79] 31 patients; 3D-DSA (n = 31), 2D-DSA 
(n = 31)

3D-DSA required less contrast, radiation, and procedure time while 
improving the detection of IAs when compared to 2D-DSA.

Lang S et al.[80] 10 patients; 3D-DSA (n = 10), 4D-DSA 
(n = 10)

4D-DSA shows accordance with 3D-DSA in measuring fluid dynamics 
with the added aspect of temporal resolution.
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Table 2.

Summary of the various applications 3D Rendering and Applied Trajectory.

Application Description

Preoperative planning - Assessment of AVM location and its relationship to eloquent brain areas and critical white matter tracts.

- - Visualization of disrupted white matter tracts caused by the presence of the AVM.

- - Identification of the optimal surgical approach to minimize damage to essential brain regions.

- - Determination of the feasibility of complete resection and prediction of postoperative functional outcomes.

Radiation treatment - Precise targeting of AVM during stereotactic radiosurgery (SRS) based on DTI-derived white matter tractography.

- - Minimization of radiation doses to in-proximity critical white matter tracts to preserve brain function.

- - Accurate dosimetric analysis to ensure effective treatment while avoiding damage to surrounding healthy tissues.

Postoperative - Assessment of white matter tract integrity and connectivity after AVM resection.

- - Evaluation of the impact of surgical intervention on the structural connectivity of the brain.

- - Monitoring of long-term changes in white matter tracts and identification of potential complications.
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