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We present a simple quality assessment index for stereoscopic images based on 3D gradient magnitude. To be more specific, we
construct 3D volume from the stereoscopic images across different disparity spaces and calculate pointwise 3D gradient magnitude
similarity (3D-GMS) along three horizontal, vertical, and viewpoint directions. Then, the quality score is obtained by averaging
the 3D-GMS scores of all points in the 3D volume. Experimental results on four publicly available 3D image quality assessment
databases demonstrate that, in comparisonwith themost related existingmethods, the devised algorithm achieves high consistency
alignment with subjective assessment.

1. Introduction

In recent years, there has been great progress in developing
objective image quality assessment (IQA) metrics [1]. How-
ever, the development of 3D image/video quality index is still
in its early stage. Assessing the 3D image quality is a very
challenging issue because it is affected by 2D image quality,
depth perception, visual comfort, and other factors [2, 3]. It
is particularly challenging when the stereoscopic image pair
consists of two views with different quality levels. Therefore,
how to understand the binocular vision perception, for
example, binocular rivalry in stereosis [4], is still limited in
3D image quality assessment (3D-IQA).

Numerous approaches for full-reference 2D image quality
assessment (2D-IQA) have been widely researched over the
last several decades, such as structural similarity (SSIM) [5],
multiscale SSIM (MS-SSIM) [6], and UQI (universal quality
index) [7]. Among these 2D metrics, gradient information
has been employed in various ways. Chen et al. [8] proposed
a gradient SSIM (G-SSIM) metric based on the edge as the
structure information. Liu et al. [9] devised an IQA approach
by integrating gradient similarity and luminance similarity.
Zhu and Wang [10] proposed a multiscale visual gradient
similarity (VGS) model by adopting different properties of

gradient. Xue et al. [11] proposed a new effective gradient
magnitude similarity deviation (GMSD) model to predict
the overall image quality score. However, 3D-IQA is still a
less investigated problem due to lack of understanding of
3D visual perception. In this paper, we simply classify the
existing 3D-IQA into the following two categories: (1) eval-
uate stereoscopic images using 2D-IQA metrics; (2) evaluate
stereoscopic images considering 3D perceptual properties.

The most direct way of applying state-of-the-art 2D-IQA
methods to 3D-IQA is to evaluate the two views of the
stereoscopic images, disparity/depth image, separately by 2D
metrics, and then combine them into an overall score. Boev
et al. [12] combined monoscopic and stereoscopic quality
components from the “Cyclopean” image and disparity map,
respectively, for stereo-video evaluation. Campisi et al. [13]
computed quality scores of both stereo-pair and the disparity
map by 2D quality metrics and then combined them to
produce a final score. You et al. [14] investigated various
2D quality evaluators on a stereo-pair and its disparity map
and found the optimal combination which can yield the best
performance. Hewage et al. [15] investigated the effectiveness
of three 2D metrics (PSNR, VQM, and SSIM) to predict
the perceived quality of compressed color plus depth 3D
video. However, for effective 3D evaluation, we cannot assess
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the perceived quality directly using 2D-IQA metrics (factors
toward the perceived quality are different in 3D).

For measuring the perceived quality of stereoscopic
images, severalmetrics have been proposed by integrating 3D
perceptual properties. Hwang andWu [16] fused the impacts
of visual attention, depth variation, and stereo distortion in
the stereo image quality assessment. Bensalma and Larabi
[17] devised a binocular energy quality metric (BEQM) by
modeling the complex cells responsible for the construc-
tion of the binocular energy. Chen et al. [18] constructed
a “Cyclopean” image from the stereo-pair and evaluated
the quality of “Cyclopean” image by 2D-IQA metrics. De
Silva et al. [19] measured the quality of symmetrically and
asymmetrically compressed artifacts by quantifying struc-
tural distortion, asymmetric blur, and content complexity. In
our previous work [20], we proposed a perceptual quality
assessment metric by considering binocular visual charac-
teristics, in which the stereoscopic images are separated into
noncorresponding, binocular fusion, and binocular suppres-
sion regions. Other relevant works can be found in [21–24].

In this paper, we proposed a simple yet effective qual-
ity assessment index for stereoscopic images based on 3D
gradient magnitude. The main contributions of this paper
are as follows: (1) we construct 3D data from a stereoscopic
image pair to account for depth perception under different
disparity spaces; (2) we compute 3D gradient using different
kernels on horizontal, vertical, and viewpoint directions; (3)
we demonstrate that 3D gradient magnitude allows more
emphasis on distortions around edge regions in the proposed
3D-IQA scheme.The rest of the paper is organized as follows.
Section 2 presents 3D data construction. Section 3 presents
the proposed IQA for stereoscopic images. The experimental
results are given and discussed in Section 4, and, finally,
conclusions are drawn in Section 5.

2. 3D Data Construction

As known, the process of binocular visual perception is
regarded as responses of a pair of simple cells received from
the left and right eyes [25]. The output of a simple receptive
field at a position (𝑥, 𝑦) is formulated as convolution with a
filter function 𝑔() (e.g., Gabor filter):

𝐶V (𝑥, 𝑦) = ∬
+∞

−∞

𝑔V (𝑥 − 𝜉, 𝑦 − 𝜂) 𝐼 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂. (1)

Then, binocular energy response combines the output of
the receptive fields of both left and right images as [26]
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󵄩󵄩󵄩󵄩𝐶𝑙V + 𝐶𝑟V

󵄩󵄩󵄩󵄩
2

= (Re [𝐶
𝑙V] + Re [𝐶

𝑟V])
2

+ (Im [𝐶
𝑙V] + Im [𝐶

𝑟V])
2

,

(2)

where Re[] and Im[] are real and imaginary parts of the
response. With this understanding, the preferred disparity
can be estimated by 𝐷 = Δ𝜙

𝑙𝑟
/𝜔, where Δ𝜙

𝑙𝑟
= 𝜙
𝑙
− 𝜙
𝑟
is

the phase difference between the left and right images, 𝜙
𝑟
=

arctan(Im(𝐶
𝑟V)/Re(𝐶𝑟V)), 𝜙𝑙 = arctan(Im(𝐶

𝑙V)/Re(𝐶𝑙V)), and
𝜔 is the radial frequency of the cell.

Depth perception is the most important feature for
stereoscopic images, which occurs as a result of the horizontal
separation between the left and right eyes [27]. The different
locations on the two cells are crucial to detect variations in
depth. Given two input images, 𝐼

𝐿
(𝑥, 𝑦) and 𝐼

𝑅
(𝑥, 𝑦), the

goal of disparity estimation is to find an optimal binocular
disparity 𝑑

𝐿
(𝑥, 𝑦) so that the two images match as closely as

possible:

𝐼
𝐿
(𝑥, 𝑦) ≅ 𝐼

𝑅
(𝑥 − 𝑑

𝐿
(𝑥, 𝑦) , 𝑦) . (3)

An important issue for understanding the binocular
vision is how to characterize binocular disparity. However,
it is usually not easy to assess the quality of the estimated
disparity since ground truth disparity is generally not avail-
able. Numerous disparity estimation algorithms had been
proposed [28, 29].Therefore, we define disparity space image
(DSI) as the squared difference between the shifted left and
right images as follows [30]:

DSI (𝑥, 𝑦, 𝑑) = (𝐼
𝐿
(𝑥, 𝑦) − 𝐼

𝑅
(𝑥 − 𝑑, 𝑦))

2

. (4)

Thus, we can obtain a 3D volume of intensity differences
over the spatial positions and the disparity ranges. The
disparity can be obtained by searching the optimal path from
the 3D volume. In this paper, we advocate the 3D volume as
the basic processing unit. The local structured features in the
DSI can effectively reflect the impact of distortion on different
disparity ranges. Therefore, it is useful to think about the
quality assessment issue by adding some types of distortion
across different disparity spaces. Figure 1 shows the different
slice sampling of theDSI under different types of distortion. It
is obvious that quality degradation in the left and right views
will be directly reflected by the computed DSI; that is, the
disparity values with the minimum DSI values are not the
same before and after degradation; thus, depth perception
will be affected (i.e., it can be measured by the DSI).

3. Proposed Quality Assessment Index

3.1. Traditional SSIM Index. The SSIM index in [5] is defined
as the similarity of three components: luminance similarity,
contrast similarity, and structural similarity, and these three
components are mathematically described as
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where 𝜇
𝑥
, 𝜇
𝑦
, 𝜎2
𝑥
, 𝜎2
𝑦
, and 𝜎

𝑥𝑦
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𝑦, the variance of 𝑥, the variance of 𝑦, and the covariance of
𝑥 and 𝑦, respectively; 𝐶

1
, 𝐶
2
, and 𝐶

3
are constants to avoid

the denominator being zero.The above results range in [0, 1],
in which 0 indicates no similarity between two numbers and
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(b) y-d slice

Figure 1: The figure of x-d and y-d cross-sectional views under different types of distortion.

1 implies perfect similarity between two numbers. The SSIM
index is given as

SSIM (𝑥, 𝑦) = [𝑙 (𝑥, 𝑦)]
𝛼

[𝑐 (𝑥, 𝑦)]
𝛽

[𝑠 (𝑥, 𝑦)]
𝛾

, (6)

where 𝛼, 𝛽, and 𝛾 are parameters to adjust the relative
importance of three components. In this work, we generalize

the single-image SSIM index to a new 3D image pair quality
index by incorporating 3D gradient magnitude information.

3.2. 3D Gradient Computation. In 2D image, the gradient
is usually computed by convolving an image with a linear
filter, such as Roberts, Sobel. In this work, we use different
kernels to compute the 3D gradient on three directions.
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Figure 2: Kernels used for 3D gradient computation in three directions.

For simplicity, we use the kernels in [31] with first order of
derivative shown in Figure 2. Since the nonzero elements’
absolute values are 1, convolving the kernels with a 3D volume
yields the horizontal, vertical, and viewpoint gradients that
can be fast computed by

∇𝑓 (𝑥, 𝑦, 𝑑) =

[
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[
[
[
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where
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3.3. 3D Gradient Magnitude Similarity (3D-GMS) Based
Quality Metric. With the 3D gradient magnitude values of
the original and distorted 3D volumes, the 3D-GMS index is
defined as

3D-GMS = 1
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where the parameter 𝐶
4
is a constant to avoid the denomina-
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𝑜
(𝑥, 𝑦, 𝑑) and𝑚

𝑑
(𝑥, 𝑦, 𝑑) are the 3D gradient

magnitudes of the original and distorted 3D volumes, which
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Figure 3: Examples of quality degraded left images and the corresponding gradient maps of “Balloons” test sequence. (a)∼(d): (a) Gaussian
blurred image; (b) horizontal gradient map of (a); (c) vertical gradient map of (a); (d) viewpoint gradient map of (a). DMOS = 29.435, 3D-
GMS= 0.9720; (d)∼(g): (e) JPEG compressed image; (f) horizontal gradientmap of (e); (g) vertical gradientmap of (e); (h) viewpoint gradient
map of (e). DMOS = 30.609, 3D-GMS = 0.9803; (i)∼(l): (i) WN distorted image; (j) horizontal gradient map of (i); (k) vertical gradient map
of (i); (l) viewpoint gradient map of (i). DMOS = 30.130, 3D-GMS = 0.9793.

are defined as the root mean square of directional gradients
along three directions:

𝑚
𝑜
(𝑥, 𝑦, 𝑑) = √(∇𝑓𝑜

𝑥
)
2
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𝑥
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2
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𝑦
)
2

+ (∇𝑓𝑑
𝑑
)
2

.

(10)

The 3D-GMS value reflects the range of distortion degrees
in an image. The higher the 3D-GMS value, the larger the
distortion rang, and, thus, the lower the image perceptual
quality. Here, we present one example to illustrate this point
above. The first row of Figure 3 shows (a) Gaussian blurred
image of “Balloons” test sequences from NBU IQA database
and the corresponding horizontal, vertical, and viewpoint
gradient maps in (b)∼(d). The second row of Figure 3 shows
the JPEG compressed image in (e) and the corresponding
horizontal, vertical, and view gradient maps in (f)∼(h). The
third row of Figure 3 shows the white noise (WN) distorted
image in (i) and the corresponding horizontal, vertical, and
view gradient maps in (j)∼(l). Note that only one selected
viewpoint is selected for the viewpoint gradient maps in (d),
(h), and (l). The difference mean opinion scores (DMOS)
values for the Gaussian blurred, JPEG compressed, and
WN distorted stereoscopic images are 29.435, 30.609, and

30.130, respectively; that is, the subjective measures for these
distorted stereoscopic images are similar.The 3D-GMS scores
for these distorted stereoscopic images are 0.9720, 0.9803, and
0.9793, respectively. It is clearly demonstrated that the quality
scores are more consistent with the DMOS values.

4. Experimental Results and Analyses

4.1. Databases and PerformanceMeasures. In the experiment,
four publicly available 3D IQA databases: NBU 3D IQA
Database [20], LIVE 3D IQA Phase I Database [18], and
LIVE 3D IQA Phase II Database (including symmetric and
asymmetric databases) [32] are used to verify the perfor-
mance of the proposed metric for stereoscopic images. The
NBU 3D IQA Database consists of 312 distorted stereoscopic
pairs generated from 12 reference stereoscopic images. Five
types of distortions, JPEG, JP2K, Gblur, WN, and H.264,
are symmetrically applied to the left and right reference
stereoscopic images at various levels.The LIVE 3D IQAPhase
I Database consists of 365 distorted stereoscopic pairs gen-
erated from 20 reference stereoscopic images. The LIVE 3D
IQA Phase II-Symmetric Database and Phase II-Asymmetric
Database consist of 210 and 240 distorted stereoscopic pairs
generated from 8 reference stereoscopic images, respectively.
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Table 1: Performance of the proposed method and the other seven schemes in terms of PLCC, SRCC, and RMSE on the four databases (the
cases in bold: the best performance).

IQA model NBU (312 images) LIVE I (365 images) LIVE II-S (120 images) LIVE II-A (240 images)
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

PSNR 0.8255 0.8519 9.6960 0.8354 0.8339 9.0117 0.7651 0.7768 8.0389 0.6659 0.6752 7.5610
SSIM 0.8347 0.8575 9.4582 0.8887 0.8873 7.5155 0.7765 0.7488 7.8656 0.7676 0.7388 6.4949
MS-SSIM 0.8510 0.9295 9.0213 0.9287 0.9224 6.0771 0.8824 0.9077 5.8782 0.7329 0.7093 6.8947
Benoit [13] 0.7838 0.8118 10.6675 0.8786 0.8852 7.8281 0.8312 0.8412 6.9411 0.7622 0.7342 6.5613
You [14] 0.8205 0.8246 9.8196 0.9172 0.9248 6.5328 0.9190 0.9491 4.9206 0.7469 0.7184 6.7388
Bensalma [17] 0.9378 0.9381 5.9615 0.8902 0.8746 7.4683 0.8539 0.8418 6.4956 0.7663 0.7210 6.5111
Chen [18] 0.9388 0.9374 5.9153 0.9220 0.9078 6.3474 0.8511 0.8624 6.6044 0.6317 0.6301 7.9343
Shao [20] 0.9266 0.9271 6.4597 0.9270 0.9217 6.1497 0.9286 0.9153 4.6323 0.6098 0.6300 8.0329
Proposed 0.9240 0.9331 6.5711 0.9213 0.9158 6.3748 0.9515 0.9443 3.8411 0.7277 0.6951 6.9520

Five types of distortions, JPEG, JP2K, Gblur, WN, and FF,
are symmetrically applied to the left and right reference
stereoscopic images at various levels for the LIVE 3D IQA
Phase I Database and LIVE 3D IQA Phase II-Symmetric
Database and asymmetrically applied for the LIVE 3D IQA
Phase II-Asymmetric Database.

In the paper, three commonly used performance indi-
cators are used to benchmark the proposed metric against
the relevant state-of-the-art techniques: Pearson linear corre-
lation coefficient (PLCC), Spearman rank order correlation
coefficient (SRCC), and root mean squared error (RMSE),
between the objective and subjective scores. For a perfect
match between the objective and subjective scores, PLCC =
SRCC = 1 and RMSE = 0. For the nonlinear regression, we
use the following five-parameter logistic function [33]:

DMOS
𝑝
= 𝛽
1
⋅ (
1

2
−

1

1 + exp (𝛽
2
⋅ (𝑥 − 𝛽

3
))
) + 𝛽

4
⋅ 𝑥 + 𝛽

5
,

(11)

where 𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
, and 𝛽

5
are determined by using the

subjective scores and the objective scores.

4.2. Overall Assessment Performance. In Table 1, we compare
the competing 2D-IQA and 3D-IQA metrics’ performance
on the four databases in terms of PLCC, SRCC, and RMSE.
For the three 2D-IQA metrics, they directly estimate the
quality of each view separately and generate a weighted
average score. The proposed scheme outperforms the three
2D-IQA schemes in the databases. For You et al.’s and Benoit
et al.’s schemes, since they are the combination of 2D image
quality metrics for stereoscopic images and disparity maps,
the performance of the two schemes is highly dependent on
the estimated disparitymaps (stereomatching algorithm [29]
is used in this paper), and the proposed scheme performs
better than the two schemes on three databases (i.e., NBU
3D IQADatabase, LIVE 3D IQA Phase I Database, and LIVE
3D IQA Phase II-Symmetric Database with symmetrical
distortions). The performances of Bensalma et al.’s, Chen
et al.’s, and Shao et al.’s schemes are reasonably good on

most of the databases, but the proposed scheme can still get
comparable performance. Figure 4 shows the scatter plots
of predicted quality scores against subjective quality scores
(in terms of DMOS) of the proposed scheme on the three
databases. Overall, the proposed scheme has an impressive
consistency with human perception.

4.3. Performance Comparison on Individual Distortion Types.
To more comprehensively evaluate the prediction perfor-
mance of the proposed method, we compare the nine
schemes on each type of distortion. The PLCC and SRCC
results are listed in Tables 2 and 3, where the top two metrics
have been highlighted in boldface. One can see that the
proposed scheme is among the top 2metrics 13 times in terms
of PLCC, followed by You et al.’s scheme (among the top 2
metrics 9 times), Shao et al.’s scheme (among the top 2metrics
6 times). However, the overall performance of You et al.’s and
Shao et al.’s scheme is not the best on the four databases.
Since the proposed scheme is to measure the structure
degradation, it is especially for Gblur distortion type and is
an effective measure for WN distortion type on the NBU 3D
IQA Database, LIVE 3D IQA Phase I Database, and LIVE
3D IQAPhase II-Symmetric Database. Even though some 2D
metrics may have remarkable performances in evaluating the
qualities of 2D images, they may not be sufficient to predict
the perceptual quality of stereoscopic images. In general, the
proposed 3D gradient magnitude can serve as an excellent
feature for quality prediction.

4.4. Discussion of Computational Complexity. Computational
complexity is another important factor to evaluate the per-
formance of the proposed scheme. The DSIs are computed
offline in advance. The main operations in the proposed 3D-
GMS include calculating 3D gradients (by convolving three
different 5 × 5 × 5 templates), thereby producing gradient
magnitudemaps. Overall, the proposed 3D-GMS can provide
a low-complexity solution for 3D-IQA, compared with these
3D-IQA metrics (e.g., You et al.’s, Benoit et al.’s, Bensalma et
al.’s, Chen et al.’s, and Shao et al.’s schemes).
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Figure 4: Scatter plots of predicted quality scores against the subjective scores (DMOS) of the proposed method on four databases.

5. Conclusions

In this study, we devised a simple yet effective quality
assessment index, called 3D gradient magnitude similarity
(3D-GMS), for stereoscopic images. More specifically, we
construct 3D volume from the stereoscopic images across
different disparity spaces and calculate pointwise gradient
magnitude similarity along three directions. Then, average
3D-GMS score for all points in the 3D volume is computed
as the final quality index. Compared with state-of-the-art 2D
image quality assessment (2D-IQA) and 3D image quality

assessment (3D-IQA) metrics, the proposed 3D-GMSmetric
performs better in terms of both accuracy and efficiency on
four publicly available 3D IQA databases. In the future work,
we will further explore how to combine 3D visual perceptual
models, such as 3D visual attention, into the 3D-GMSmetric.
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