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Abstract  
Environmental influences on brain structure and function during early development have been 
well-characterized. In pre-registered analyses, we test the theory that socioeconomic status 
(SES) is associated with differences in trajectories of intrinsic brain network development from 
birth to three years (n = 261). Prenatal SES is associated with developmental increases in 
cortical network segregation, with neonates and toddlers from lower-SES backgrounds showing 
a steeper increase in cortical network segregation with age, consistent with accelerated network 
development. Associations between SES and cortical network segregation occur at the local 
scale and conform to a sensorimotor-association hierarchy of cortical organization. SES-
associated differences in cortical network segregation are associated with language abilities at 
two years, such that lower segregation is associated with improved language abilities. These 
results yield key insight into the timing and directionality of associations between the early 
environment and trajectories of cortical development. 
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Introduction  
The first years of life are a time of rapid brain development, with intrinsic cortical 

organization becoming refined and large-scale brain systems developing into their adultlike 
configuration1,2. As children mature, intrinsic cortical networks become more segregated3,4, with 
sets of brain regions displaying more densely interconnected patterns of connectivity and large-
scale systems becoming increasingly distinct2,5–7. This refinement of cortical organization occurs 
in a spatiotemporally patterned manner, with maturation occurring earlier in primary sensory 
regions than transmodal association regions8.The development of cortical network segregation 
also has implications for cognition, with higher levels of cortical network segregation associated 
with better cognitive abilities in adolescents and adults6,9–12. One environmental factor that is 
associated with the development of cortical network segregation — as well as many later life 
outcomes, including physical wellbeing13,14, cognitive ability15, and mental health16 — is 
socioeconomic status (SES). 

Effects of SES on the development of cortical network segregation have been 
predominantly examined in older children and adolescents. In youth ages 8-22 years, SES 
moderated age-associated increases in cortical network segregation, such that youth from 
higher-SES backgrounds started with lower cortical network segregation but showed a steeper 
increase in cortical network segregation during adolescence than youth from lower-SES 
backgrounds, thus ending with higher levels of cortical network segregation at 22 years17. 
Effects of SES on cortical network segregation were also found in youth ages 6-17 years living 
in low-SES neighborhoods18. Collectively, these studies suggest that low SES may accelerate 
the pace of cortical network segregation earlier in development, setting the stage for 
associations observed in older children and adolescents19. More broadly, associations between 
SES and intrinsic brain organization are visible as early as the first month of life20,21, but as of 
yet no longitudinal studies have examined how SES influences the development of cortical 
network segregation during the critical first years of life. 

The pace of early brain development has been associated with important risk factors and 
behavioral outcomes. Changes in the pace of brain development have been linked to psychiatric 
disorders22–24, and accelerated pubertal development is associated with poorer mental health 
during adolescence25–27. An accelerated pace might also result in earlier declines in brain 
plasticity, curtailing the development of cortical circuitry optimally suited to the environment28,29.  
We have specifically posited that effects of SES on the pace of structural brain development 
might be reflected in the trajectory of functional brain development: more protracted structural 
brain development observed in children from higher-SES backgrounds may give rise to a 
longer, slower trajectory of intrinsic cortical network segregation19. If so, children from high-SES 
backgrounds should show more widespread connectivity and lower cortical network segregation 
early in development before the rapid development of a more segregated network architecture 
in later childhood and adolescence, leading to more effective cortical networks in adulthood19. 
Models drawn from evolutionary developmental frameworks also suggest that the early 
environment might affect the pace of maturation. These models posit that early experiences 
tailor organisms to anticipated conditions in the future and suggest that harsh and unpredictable 
environments may lead to life-history strategies resulting in accelerated development, while safe 
and nurturing environments may result in prolonged developmental strategies30–32. Relatedly, 
the recent “change of tempo” model contends that in situations of deprivation, such as 
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inadequate nutrition or parental care, delaying maturation lowers children's physiological 
requirements, while in the context of threat or abuse accelerated development may boost 
children's ability to provide for immediate unmet safety needs33. At the same time, a recent 
review concluded that SES may simply be associated with alterations in brain development 
trajectories, not specific to pace, though this review noted the dearth of studies on intrinsic brain 
network development34. However, limited empirical work has employed the longitudinal data 
necessary to model effects of SES on trajectories of cortical network segregation, particularly in 
the earliest stages of life. 

In this work, we explicitly test whether early SES is associated with differences in the 
pace of intrinsic cortical network segregation during the first three years of life. We capitalize on 
a unique cohort of neonates and toddlers with longitudinal neuroimaging data and extensively 
characterized early environments35. In this cohort, prenatal SES is associated with brain 
structure at birth36,37, however, associations between prenatal SES and brain function or 
longitudinal brain development have not yet been examined. Here, we test the theory that 
prenatal SES is associated with differences in the pace of functional brain network 
development, and that neonates and toddlers from higher-SES backgrounds might show a more 
protracted trajectory of cortical network segregation. In a set of pre-registered analyses, we 
examine the development of cortical network segregation during the first three years of life, and 
the moderating effects of prenatal SES on trajectories of cortical network segregation. We take 
a hierarchical approach to the question, first examining measures of cortical network 
segregation at the whole brain resolution, then analyzing at the level of functional brain systems, 
and finally at the level of individual brain regions. Next, we explore whether environmental 
effects are cortical-hierarchy-dependent based on the hypothesis that age-dependent changes 
in cortical plasticity might result in regional variability in associations between early SES and 
cortical network segregation. Finally, we examine whether differences in measures of cortical 
network segregation at two years of age are associated with language and cognitive abilities at 
the same age.  

Results 
Cortical network segregation increases from birth to three years 

We first investigated the maturation of cortical functional network architecture between 
birth and three years of age by examining measures of cortical network segregation. Cortical 
network segregation can be measured at different scales, ranging from the local, or regional, 
scale to the global, or whole-brain, scale (Figure 1a-c). Global segregation captures the extent 
to which sets of systems in a cortical network are distinctly partitioned, while meso-scale 
segregation captures the extent to which a network can be divided into distinct subnetworks, 
and local segregation quantifies clustered connectivity at the regional or parcel level. We fit 
generalized additive mixed models (GAMMs) to measures of network segregation at each of 
these three levels, controlling for sex, amount of uncensored data included, in-scanner motion, 
and average network connectivity, and including a smooth term for age, where the smooth 
function (model fit for age) describes the relationship between cortical network segregation and 
age. Across scales, cortical network segregation increases with age. Global segregation, 
calculated from system segregation, increased with age (Figure 1, Fs(age) = 6.26, p = 0.001, pFDR 
= 0.001), as did meso-scale segregation (Fs(age) = 3.93, p = 0.01, pFDR = 0.01), and local 
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segregation (Fs(age) = 43.23, p < 0.0001, pFDR < 0.0001), indicating increasing refinement of 
network architecture during early development.  

Next, we probed the variation in the rate of change of cortical network segregation 
during the first three years of development. Here, the first derivative of the smooth function of 
age represents the rate of change in network segregation at a given developmental time point. 
Analysis of the derivatives of the age trajectories showed that measures of network segregation 
are increasing most strongly during the first two years of life. Global segregation increased 
between 0-1.93 years, meso-scale segregation increased between 0-1.70 years, and local 
segregation increased between 0-2.13 years, consistent with the most rapid change in cortical 
network segregation occurring early in development. 

 
Figure 1. Cortical network segregation increases with age during the first three years of life. a, 
System segregation is a whole-brain measure of functional network segregation that quantifies 
the difference between mean within-system connectivity and mean between-system connectivity 
as a proportion of mean within-system connectivity. b, Modularity is a measure of network 
segregation that estimates the extent to which the nodes of a network, or in this case brain 
regions, can be subdivided into modules characterized by strong, dense intramodular 
connectivity and weak, sparse intermodular connectivity. Note that the modules are data driven, 
not a priori defined as functional systems. c, The clustering coefficient is a measure of local 
segregation that quantifies the amount of connectivity between a node and its neighbors. A 
node has a high clustering coefficient when a high proportion of its neighbors are also strongly 
connected to one another. In a weighted network, the clustering coefficient measures the 
strength of triangles around a node. d, Global segregation increases significantly with age. e, 
Meso-scale segregation increases significantly with age. f, Local segregation increases 
significantly with age. Individual points represent individual scans, with lines indicating scans 
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from the same participant. Bars below the x-axis depict the derivative of the fitted smooth 
function of age. The filled portion of the bar indicates periods where the magnitude of the 
derivative of the fitted curve is significant, with the saturation of the fill representing the value of 
the derivative. Panels a-c reprinted with permission from 7. 
 
Prenatal SES moderates trajectories of cortical network segregation 

As described above, theoretical models posit that environmental influences on brain 
development might arise by way of effects on the pace of brain development, such that brain 
development proceeds faster in neonates and toddlers from lower-SES backgrounds. To test 
this hypothesis, we examined associations between the early environment and developmental 
increases in cortical network segregation. We used GAMMs to formally model age-by-SES 
interactions, which estimate how relationships between prenatal SES, our measure of early 
environment, and network segregation vary continuously with age. We observed significant and 
similar patterns of interactions between prenatal SES and age across multiple scales, such that 
infants and toddlers from lower-SES backgrounds show a faster increase in cortical network 
segregation than infants and toddlers from higher-SES backgrounds, ending up at a higher level 
of network segregation. This pattern held true for global segregation (Figure 2a, Fs(agexSES) = 
6.38, p = 0.001, pFDR = 0.003), meso-scale segregation (Figure 2b, Fs(agexSES) = 9.86, p < 
0.0001, pFDR = 0.0001), and local segregation (Figure 2c, Fs(agexSES) = 13.40, p < 0.0001, pFDR < 
0.0001). 

Intuitively, measures of network segregation at different scales will be related: 
segregation at the global scale will encompass segregation at both the meso (intermediate) 
scale and the local scale. Correspondingly, we observe that measures of segregation are 
correlated with each other (|r|’s = 0.33-0.70, p’s < 1 x 10-15). To determine which effect drives 
the observed age-by-SES effects on cortical network segregation, we conducted a series of 
analyses examining age-by-SES effects on network segregation at each scale, controlling for 
network segregation at other scales. When we included average local segregation in the model 
for global segregation, age x SES no longer significantly predicts global segregation, suggesting 
that the SES-associated variance in age trajectories is contained in our measure of local 
segregation (p > 0.05). The same is true when we included average local segregation in our 
model for meso-scale segregation: the age-by-SES effect is no longer significant (p > 0.05). The 
inverse is not the case — including meso-scale or global segregation in our model of local 
segregation does not affect the significance of the age-by-SES interaction (p’s < 0.01). 
Therefore, we concluded that the fundamental driver of the age-by-SES effects is variation in 
local network topology, as indexed by our measure of local segregation. Thus, in the analyses 
that follow we focus specifically on local segregation and associated variation in local network 
architecture. 
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Figure 2. Associations between the early environment and developmental increases in cortical 
network segregation. a, Prenatal SES moderates trajectories of global cortical network 
segregation. b, Prenatal SES moderates trajectories of meso-scale cortical network 
segregation. c, Prenatal SES moderates trajectories of local cortical network segregation. Plots 
display fitted network segregation trajectories from GAMM models plotted by age for 
participants from high SES backgrounds (orange) and low SES backgrounds (blue). SES was 
modeled continuously, for visualization purposes here we show model trajectories from lowest 
and highest deciles of SES. Individual points represent individual scans, with lines indicating 
scans from the same participant.  
 
SES effects are strongest in somatomotor and dorsal attention systems 

To characterize environmental effects on cortical network development in individual 
cortical regions, we conducted a series of exploratory (not pre-registered) analyses. We fit 
region-specific GAMM models to regional measures of local segregation, including a smooth 
term for age, and allowing age to interact with prenatal SES. A total of 56% of regions showed 
significant age-by-SES effects on local segregation, indicating that moderating effects of the 
environment on cortical network development are widespread across the cortex (pFDR < 0.05, 
Figure 3a). To provide insight into the magnitude of moderating effects of SES across cortical 
regions, we calculated the magnitude of variance explained by the addition of the age-by-SES 
interaction (F-statistic). The magnitude of SES effects on developmental increases in local 
segregation differed across the cortex, signifying that there is variability in the effect of the early 
environment on cortical network maturation across the developing cortex.  

To better understand the pattern of variability in environmental effects across the cortex, 
we asked whether moderating effects of prenatal SES on age-related increases in local 
segregation might be more pronounced in specific functional systems. The magnitude of SES 
effects on developmental increases in local segregation differed across functional systems 
(H(12) = 90.413, p < 1 x 10-13), with the strongest effects found in somatomotor-hand, 
somatomotor-mouth, dorsal attention, visual, and frontoparietal systems (Figure 3b), consistent 
with environmental influences on cortical network development being most pronounced in early-
developing sensorimotor regions during the first years of life. We wondered whether this was an 
overall principle of associations between the early environment and cortical network 
development, so we examined the correspondence between SES effects on developmental 
increases in local segregation and a canonical axis of sensorimotor-association cortical 
organization8. Age-by-SES effects on local segregation were negatively correlated with 
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sensorimotor-association axis ranks across regions (Figure 3c, r = -0.33, pspin = 0.0018), with 
larger environmental effects on developmental increases in local segregation characterizing the 
S-A axis’s sensorimotor pole, and smaller, near zero effects at the association pole. 

 
Figure 3. Environmental effects on developmental increases in local segregation are enriched 
in somatomotor systems. a, The heterogenous patterning of the magnitude of age-by-SES 
effects (F-statistic) on local segregation is shown on the cortical surface. Regions that show 
significant age-by-SES effects passing FDR correction at pFDR < 0.05 are outlined in black. b, 
SES effects on developmental increases in local segregation are enriched in somatomotor 
systems. Boxplots show median and interquartile range of the magnitude of age-by-SES effects; 
each point is an individual parcel. c, The magnitude of age-by-SES effects is related to a 
canonical sensorimotor-to-association axis of cortical organization. Each point is an individual 
parcel, the color of the points represents the magnitude of age-by-SES effects. A Spearman’s 
correlation between these two measures assessed by a conservative spin-based rotation test 
was significant (r = -0.33, pspin = 0.0018). The negative linear relationship between these two 
measures is plotted with a 95% confidence interval, colors of the points correspond to the 
magnitude of age-by-SES effects on regional local segregation.  
 
Cognitive consequences of SES-associated differences in local segregation 

Finally, we sought to understand whether environmental influences on the development 
of cortical network segregation relate to differences in language and cognition that we observe 
later in development. SES-associated differences in language (Fig 4a, Fs(agexSES) = 7.54, p < 
0.0001, pFDR < 0.0001) and cognitive (Fs(agexSES) = 12.65, p < 0.0001, pFDR < 0.0001) composite 
scores are evident from two years of age. Thus, we examined whether differences in local 
segregation at two years, when we first observe diverging trajectories of cortical network 
segregation associated with SES, were associated with language or cognition composite scores 
at the same time point. Average whole-cortex local segregation was not associated with 
cognition scores (β = -0.03, p = 0.766, pFDR = 0.766), but was negatively associated with 
language scores (Figure 4b, β = -0.23, p = 0.017, pFDR = 0.033), indicating that lower levels of 
cortical network segregation seen in higher-SES toddlers are associated with better language 
abilities at two years of age. Importantly, when examining year two language ability and 
additionally controlling for prenatal SES, we find that both prenatal SES (β = -0.23, p = 0.027) 
and average local segregation (β = -0.25, p = 0.017) are significantly associated with language 
scores, indicating that cortical network segregation is independently associated with language 
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ability at two years, above and beyond the association between early SES and later language 
abilities. 

We examined whether associations between local segregation and language abilities 
were driven by the receptive or expressive language subscales of the language composite, and 
found that local segregation was negatively associated with both expressive (β = -0.21, p = 
0.032) and receptive language abilities (β = -0.21, p = 0.032). When controlling for prenatal 
SES, local segregation was associated with receptive language (β = -0.25, p = 0.022), but not 
expressive language (β = -0.21, p = 0.053), suggesting a domain-specific association of local 
segregation with receptive language abilities independent of the effect of SES at two years of 
age (Fig 4c). 

While our sample size was reduced at the three-year timepoint due to COVID-related 
limitations in data collection (n = 90 at year two, n = 66 at year three), we additionally examined 
whether differences in local segregation at age three years were associated with language or 
cognition composite scores. We found a similar pattern of effect sizes at the three-year 
timepoint, with average local segregation negatively associated with language scores (β = -0.33, 
p = 0.006, pFDR = 0.01), but not cognitive scores (β = -0.20, p = 0.10, pFDR = 0.10). Local 
segregation was negatively associated with both receptive (β = -0.29, p = 0.015) and expressive 
language abilities (β = -0.35, p = 0.005). When controlling for prenatal SES at the three-year 
timepoint, we find similar effect sizes for associations between local segregation and language 
scores as at age 2, but neither associations with the language composite (β = -0.19, p = 0.14), 
or the expressive (β = -0.17, p = 0.17) or receptive (β = -0.19, p = 0.14) language scales are 
significant (Fig 4c). 

 
Figure 4. Associations between local cortical network segregation and language abilities at age 
two years. a, Effects of prenatal SES on trajectories of age-standardized Bayley language 
composite scores. SES was modeled continuously, for visualization purposes here we show 
model trajectories from lowest and highest deciles of SES. Individual points represent scores 
from individual participants, with lines indicating data collected from the same participant. b, 
Local segregation at two years of age was negatively associated with scores on both expressive 
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and receptive language subscales. Scores on the receptive and expressive language subscales 
had different ranges, with children scoring slightly higher on the expressive language scale (x-
axis). c, The directionality of this association is such that higher levels of local segregation, 
which are found in toddlers from lower-SES backgrounds, are associated with worse 
performance on measures of language ability.  
 
SES effects on developmental increases in cortical network segregation are robust to 
methodological variation 

To ensure that the environmental effects on changes in cortical network segregation 
observed were robust to methodological variation and potential confounds, we performed five 
sensitivity analyses. We first conducted one of our pre-registered follow-up analyses, and 
evaluated whether effects of prenatal SES on developmental increases in cortical network 
segregation were accounted for by an alternate measure of the early environment. In this 
analysis, GAMMs were rerun with a composite measure of income-to-needs ratio (INR) and 
maternal education at birth rather than the disadvantage factor score (i.e., excluding 
neighborhood disadvantage, diet, and insurance status). When using this composite measure of 
SES, global segregation (Fs(agexSES) = 3.74, p = 0.024, pFDR = 0.03), meso-scale segregation 
(Fs(agexSES) = 7.78, p = 0.0005, pFDR = 0.0009), and local segregation (Figure 5a, Fs(agexSES) = 
11.61, p < 0.0001, pFDR < 0.0001) all show significant and similar patterns of interactions, such 
that infants and toddlers from lower-SES backgrounds show a faster increase in cortical network 
segregation than infants and toddlers from higher-SES backgrounds. The magnitude of SES 
effects on developmental increases in local segregation continued to vary across the cortex 
(Figure 5b), with the strongest effects found in somatomotor-hand, visual, dorsal attention, and 
somatomotor-mouth systems (Figure 5c).  

We also evaluated whether effects of prenatal SES on developmental increases in 
cortical network segregation were accounted for by differences in sample composition over the 
study period, alterations in functional network architecture associated with head motion, or 
changes in SES over the study period. In each sensitivity analysis, environmental effects on 
developmental increases in cortical network segregation closely mirrored those observed in the 
main analysis, with neonates and toddlers from lower SES backgrounds showing a steeper 
increase in cortical functional network segregation than those from higher SES backgrounds, 
and environmental effects on developmental increases in cortical network segregation enriched 
in sensorimotor systems (see Supplementary Results & Figures 1-3). These analyses verify 
that findings concerning the nature and patterning of environmental effects on developmental 
changes in cortical functional network segregation are robust to methodological variation. 
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Figure 5. Associations between a composite measure of SES (maternal education and income-
to-needs ratio) and developmental increases in cortical network segregation. a, Prenatal SES 
moderates trajectories of local cortical network segregation. b, The heterogenous patterning of 
the magnitude of age-by-SES effects (F-statistic) on local segregation is shown on the cortical 
surface. Regions that show significant age-by-SES effects passing FDR correction at pFDR < 
0.05 are outlined in black. c, SES effects on developmental increases in local segregation are 
enriched in sensorimotor systems. Boxplots show median and interquartile range of the 
magnitude of age-by-SES effects; each point is an individual parcel.  
 
No evidence for environmental effects on age-associated changes in network integration  

The previous analyses focused on developmental trajectories of network segregation, 
but another property of cortical network architecture that changes markedly as children develop 
is cortical work integration. Cortical network integration refers to the extent to which information 
can be integrated across multiple brain systems, and high levels of both network integration and 
network segregation together constitute the unique property of small-worldness found in adult 
brain networks38. Thus, we also pre-registered examining developmental changes in and age-
by-SES effects on cortical network integration, as assessed by the average whole-brain 
participation coefficient. The participation coefficient is a measure of network integration that 
quantifies the diversity of the connections of a node across systems39, and has been linked in 
older children and adolescents to developmental changes in network segregation7,40,41 (Figure 
6a). 

As previously, we fit a GAMM to average whole-cortex network integration with a smooth 
term for age, where the smooth function (model fit for age) describes the relationship between 
network integration and age. Average network integration increased with age (Figure 6b, Fs(age) 
= 14.11, p < 0.0001, pFDR < 0.0001), with the period of significant change occurring from birth to 
2.27 years, consistent with the most rapid change occurring early in development. We found no 
evidence for moderating effects of prenatal SES on developmental changes in network 
integration (Figure 6c, Fs(agexSES) = 1.71, p = 0.18, pFDR = 0.18) in these primary analyses nor in 
supplemental analyses examining the alternative composite measure of SES described above 
(Fs(agexSES) = 1.53, p = 0.12, pFDR = 0.12, see Supplemental Information).  
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Figure 6. No evidence for environmental effects on age-associated changes in network 
integration. a, The participation coefficient is a measure of network integration that quantifies the 
diversity of the connections of a node. A node has a high participation coefficient when it is 
evenly connected to many different systems. Reprinted with permission from 7. b, Network 
integration increases significantly with age. Individual points represent individual scans, with 
lines indicating scans from the same participant. Bars below the x-axis depict the derivative of 
the fitted smooth function of age. The filled portion of the bar indicates periods where the 
magnitude of the derivative is significant, with the saturation of the fill representing the value of 
the derivative. c, Prenatal SES does not significantly moderate age-related increases in network 
integration.  

Discussion 
The first years of life are a critical window during which the development of the cortex 

proceeds in a heterochronous manner: sensory and motor cortices mature earlier than 
association cortices, and hierarchical refinement of plasticity-regulating features produces 
declines in the malleability of the cortex to environmental input, suggesting that the early 
environment may have a disproportionate effect on the pace of cortical development. In the 
current work, we show that the development of cortical brain networks during the first three 
years of life is strongly associated with features of the early environment, suggesting these 
influences may play a key role in shaping this trajectory. Specifically, we observe that 
developmental increases in cortical functional network segregation are accelerated in neonates 
and toddlers from disadvantaged backgrounds. Environmental effects on the development of 
cortical network segregation conform to a sensorimotor-association hierarchy of cortical 
organization, with the strongest effects visible on early-developing somatosensory systems that 
have high plasticity during this period. Differences in cortical functional network segregation 
associated with the early environment are also associated with language abilities at age two 
years when controlling for early SES. 
 We find that being born into a more advantaged (higher SES) environment is associated 
with a more protracted trajectory of cortical functional network development in toddlerhood and 
early childhood. Prior work has found that differences in intrinsic functional connectivity 
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associated with SES are evident at 6 months of age21. Lower levels of cortical network 
segregation in children from more advantaged backgrounds at three years of age are also 
consistent with our earlier work in adolescents, where children from more advantaged 
backgrounds had lower levels of cortical network segregation at age 8 years17. This 
underscores the possibility that being born into a higher SES household may be associated with 
more protracted cortical functional network development throughout childhood, with children 
from high SES backgrounds showing more widespread connectivity and thus lower segregation 
early in development before the rapid development of a more segregated network architecture 
occurring during adolescence and into adulthood19. Experiences associated with low SES may 
result in earlier declines in plasticity in a heterogenous and spatially patterned manner across 
the cortex. For example, one study using a putative measure of plasticity to probe how 
developmental variation in intrinsic cortical activity is associated with the environment finds that 
lower SES is associated with reduced intrinsic activity, suggestive of decreased plasticity, in 
association cortex during adolescence8. Earlier reductions in plasticity associated with SES 
might thereby result in decreased synaptic proliferation42,43 or alterations in the development of 
inhibitory interneurons44,45, as has been found in animal models of early environmental stress, 
resulting in decreased range for optimal synaptic pruning and wiring of segregated cortical 
networks. In our cohort, neonates from more advantaged backgrounds show increased mean 
diffusivity, a measure of white matter microstructure, at birth compared to neonates from less 
advantaged backgrounds46. As this measure of white matter microstructure typically decreases 
with age47, we speculate that this pattern could be indicative of more protracted white matter 
development in neonates from more advantaged backgrounds; accelerated development 
associated with low SES might be observable in both intrinsic cortical network segregation and 
also the white matter connectivity that supports intrinsic brain activity, questions that can be 
explored in future work.   

We find that alterations in cortical network segregation associated with SES are driven 
fundamentally by effects at the local scale. Associations between cortical network segregation 
and SES in older children and adolescents are also driven by alterations in local network 
architecture17. In youth and adolescents, effects of household SES on local segregation are 
evident in the prefrontal cortex specifically among youth living in low-SES neighborhoods, more 
evidence for environmental influences at the local scale during development18. However, 
adulthood SES affects aging-associated declines in global segregation48,49, thus one possibility 
is that effects of SES on cortical network segregation follow a progression from local to global 
across the lifespan. However, the authors did not examine local or meso-scale measures of 
segregation, so this possibility has not yet been directly addressed; more work is needed to 
clarify the scale of environmental effects on measures of cortical network segregation. 

We find that environmental effects on the development of cortical functional network 
segregation conform to a sensorimotor-association hierarchy of cortical organization, with the 
strongest effects of the early environment visible in early-developing somatosensory systems, 
specifically, somatomotor, dorsal attention, and visual systems, with the frontoparietal system 
also showing strong environmental effects. While the dorsal attention system may not 
canonically be considered an early-developing system, dorsal attention regions mature 
dramatically between birth and two years of age5, are structurally and functionally connected to 
visual cortex50,51, and fall at the unimodal end of the primary gradient of macroscale cortical 
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organization52. Environmental effects on cortical network segregation aligning with the 
sensorimotor-association hierarchy is consistent with a model where age-dependent changes in 
cortical plasticity allow environment effects to exert differential inputs on the human brain, 
depending on developmental timing, such that early plasticity in primary sensory regions allows 
for the largest environmental influences on intrinsic cortical activity in these regions during the 
first years of life. 

Accumulating evidence from large-scale studies of older children and adolescents also 
suggests another possibility: environmental effects may be transduced through lower-level 
sensory systems, such that regardless of developmental stage, the strongest effects of the 
environment on intrinsic cortical activity are visible in somatosensory systems53. Across multiple 
indicators of SES, strong associations between SES and measures of functional connectivity 
are consistently found in somatomotor systems in children ages 9-11 years of age54–57. In youth 
and adolescents ages 8-21 years, SES associations with age-associated increases in cortical 
network segregation are also evident in somatomotor cortex17. It is also possible that due to the 
low level of social mobility in the United States population from which these studies were 
drawn58,59, SES later in development measured in these studies is nearly identical to 
participant’s SES at birth, and thus the effects measured are simply long-lasting instantiations of 
the effects of the birth environment on early-developing functional brain systems. Alternatively, 
brain areas at the sensorimotor pole of the S-A axis show the lowest variability between 
individuals60,61, and thus may enable the detection of effects above and beyond interindividual 
variability. While environmental associations were most prominent in the somatomotor system, 
we also observe associations between the early environment and cortical network development 
in the frontoparietal system. Interestingly, the environmental associations observed in the 
frontoparietal system are driven by strong age-by-SES interaction effects in regions in the 
intraparietal sulcus and middle temporal gyrus, rather than in lateral prefrontal regions, 
suggestive of alignment with an anterior-to-posterior developmental axis.  

We find that SES-associated differences in cortical functional network segregation are 
also associated with language abilities at age two years, suggesting that environmental 
influences on the development of cortical network segregation might underlie SES-associated 
differences in language abilities observed later in development. The association between 
cortical network segregation and language abilities holds even when controlling for prenatal  
SES, suggesting that cortical network segregation is associated with language ability 
independent of the well-documented association between early SES and later language ability. 
While to our knowledge no other studies have specifically examined associations between 
cortical network segregation and language during early development, one study of toddlers and 
children ages 0-6 years found that increased between-system connectivity was associated with 
better language performance62, and infants with more language interactions had lower within-
system connectivity in the language system63. Both of these findings potentially indicate that 
better language performance and more language exposure may be associated with lower levels 
of network segregation. The directionality of associations between cortical network segregation 
and language ability we find in toddlers is broadly reversed compared with associations found in 
adolescents and adults, where higher levels of cortical network segregation have been found to 
be advantageous for language and cognition9,11,12. During late childhood, children from higher-
SES backgrounds show lower levels of cortical network segregation, but by early adulthood, 
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higher SES is associated with higher cortical network segregation17, suggesting that initially low 
cortical network segregation might be beneficial for the development of cognitive and language 
abilities associated with higher SES15. However, the directionality of associations between 
cortical network segregation and behavior in adults also varies based on life stage and 
behavioral domain examined6,10,64, underscoring the importance of understanding 
developmental trajectories and domain specificity when interpreting the directionality of 
associations. 

Several limitations and possible direct extensions of this work should be highlighted. 
First, it is important to acknowledge that socioeconomic disadvantage is but one form of 
disadvantage, and other forms not examined here, such as discrimination and systemic racism, 
may also be associated with brain development65,66. Different environmental exposures 
associated with SES — such as stress, cognitive stimulation, and unpredictability — also affect 
brain development differently67–70, and differentiating the relative contributions of these 
associated exposures to the effects that we observe is another critical and urgent future 
direction. Second, due to the impact of the COVID-19 pandemic, sample sizes at the toddler 
timepoints were smaller than originally intended, and thus our analyses of behavior at the two- 
and three-year time points should be considered exploratory; we share them as grounds for 
future work on the topic. Finally, while we observed associations between cortical intrinsic 
network development and language during toddlerhood, accelerated cortical network 
development may also have implications for the development of cognition and psychopathology 
that only become evident later in childhood. Longitudinal data from birth to middle childhood on 
both brain and behavioral development will be necessary to answer this question, data which 
will fortunately soon be available in the HEALthy Brain and Child Development (HBCD) study71. 

The present study demonstrates that the development of intrinsic cortical brain networks 
during the first three years of life is associated with features of the early environment. The 
observed effects are consistent with an interpretation of accelerated cortical functional network 
development during the first years of life in neonates and toddlers from more disadvantaged 
backgrounds. Insight into the timing and directionality of environmental influences on trajectories 
of cortical brain development are crucial elements for understanding the optimal timing for 
interventions, to prevent cascading consequences of early maturation. Our results suggest that 
infancy and toddlerhood may be an important period for promoting healthy brain development, 
and emphasize the first years of life as a target for policies aimed at supporting optimal child 
development. 

Citation diversity statement 
Recent work in several fields of science has identified a bias in citation practices such that 
papers from women and other minority scholars are undercited relative to the number of such 
papers in the field72–78. We used prior methods76,79 to measure that our references contain 
18.75% woman(first)/woman(last), 22.47% man/woman, 30.28% woman/man, and 28.51% 
man/man authors. This method is limited in that a) names, pronouns, and social media profiles 
used to construct the databases may not, in every case, be indicative of gender identity and b) it 
cannot account for intersex, non-binary, or transgender people. We used additional methods80,81 
to measure that our references contain 13.32% author of color (first)/author of color(last), 
14.58% white author/author of color, 21.41% author of color/white author, and 50.69% white 
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author/white author. This method is limited in that a) names, Census entries, and Wikipedia 
profiles used to predict racial/ethnic categories may not be indicative of racial/ethnic identity, 
and b) it cannot account for Indigenous and mixed-race authors, or those who may face 
differential biases due to the ambiguous racialization or ethnicization of their names. We look 
forward to future work that could help us to better understand how to support equitable practices 
in science. 
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Methods 
Participants. Neonates were recruited as a part of the Early Life Adversity, Biological 
Embedding, and Risk for Developmental Precursors of Mental Health Disorders (eLABE) 
cohort35, whose participants were recruited under the parent March of Dimes study82. Pregnant 
mothers were recruited and enrolled between the second and third trimesters. Recruitment 
oversampled mother-infant pairs facing adversity (e.g. poverty and stress).Inclusion criteria for 
the study included speaking English, mother age 18 years or older, and singleton birth (see 
Supplemental Table 1 for detailed participant information). Women with alcohol or other 
substance abuse were excluded. Anatomic MR images were reviewed by a neuroradiologist 
(J.S.S.) and pediatric neurologist (C.D.S.). Subjects were excluded from the current analyses if 
they had evidence of brain injury or were born preterm (<37 weeks gestational age, GA). 
Additional exclusion criteria included pregnancy complications (but not gestational diabetes or 
hypertension) and known fetal abnormalities including intrauterine growth restriction. This study 
was approved by the Human Studies Committees at Washington University in St. Louis and 
informed consent was obtained from a parent of all participants.  

At each timepoint, all participants with usable functional magnetic resonance imaging 
(fMRI) and demographic data were included. At the neonatal timepoint, 385 neonates were 
scanned, and participants were excluded from all timepoints for the following reasons: <37 
weeks GA at birth (n = 54), brain injury (n = 17), neonatal intensive care unit stay for > 7 days, 
required intubation or chest tube, antibiotics for > 3 days, cardiac disease or metabolic disorder 
(n = 36), birthweight < 2,000 g (n = 1), and IRB exclusion (n = 1). There were 306 participants 
who did not meet any of these exclusion criteria (note that some met multiple exclusion criteria). 
Of these participants, 261 participants (age range = 38-45 post-menstrual weeks, M = 41.3 
months) were included in the current analyses at the neonatal timepoint, neonates were 
excluded for no usable T2 for registration (n = 27), no functional magnetic resonance imaging 
(fMRI) data collected or < 10 min of usable fMRI data after motion censoring (n = 12), or visible 
artifacts in FC data (n = 7).  

At the two-year time point, 202 participants were scanned, of which 162 were healthy 
full-term neonates not subject to the exclusions above. Participants were additionally excluded 
for no usable T1 for registration (n = 68) or no functional magnetic resonance imaging (fMRI) 
data collected (n = 2), resulting in 92 participants (range = 1.91-2.61 years, M = 2.11 years) 
included at year two. At the three-year point, 132 participants were scanned, of which 98 were 
healthy full-term neonates. Participants were additionally excluded for no usable T1 for 
registration (n = 31) or < 5 min of usable fMRI data after motion censoring (n = 1) resulting in 66 
participants included in the current analyses from year 3. 
 
MRI data acquisition. Imaging was performed without sedating medications at all three time 
points using a 3T Prisma scanner (Siemens Corp.) and 64-channel head coil. During the scan 
session, structural images were collected: a T2-weighted image at the neonatal timepoint 
(sagittal, 208 slices, 0.8-mm isotropic resolution, echo time, TE = 563 ms, repetition time, TR = 
3200 ms) and a T1-weighted image at the two- and three-year timepoints (sagittal, 208 slices, 
0.8-mm isotropic resolution, repetition time = 2400 ms, echo time = 2.22 ms). Resting-state 
functional imaging data (fMRI) were collected using a blood oxygen level–dependent (BOLD) 
gradient-recalled echo-planar multiband sequence (72 slices, 2.0-mm isotropic resolution, echo 
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time = 37 ms, repetition time = 800 ms, multiband factor = 8, 420 volumes). Spin-echo field 
maps were obtained (at least 1 anterior–posterior and 1 posterior-anterior) during each session 
with the same parameters. Between 2 and 9 5.6 minute fMRI BOLD scans were acquired, 
depending on how the child tolerated the scan (range = 7.5 - 44.8 min). Framewise Integrated 
Real-time MRI Monitoring (FIRMM83,84) was used during scanning to monitor real time 
participant movement.  
 
MRI data preprocessing. fMRI preprocessing included correction of intensity differences 
attributable to interleaved acquisition, bias field correction, intensity normalization of each run to 
a whole-brain mode value of 1,000, linear realignment within and across runs to compensate for 
rigid body motion, and linear registration of BOLD images to the adult Talairach isotropic atlas 
performed in a single step. Neonates were registered: BOLD to individual T2 to group-average 
T2 from this cohort to 711-2N Talairach atlas. Toddlers were registered: BOLD to individual T1 
to group-average T1 from this cohort to 711-2N Talairach atlas. Field distortion correction was 
performed, using the FSL TOPUP toolbox (http://fsl.fmrib.ox.ac.uk/fsl/ fslwiki/TOPUP).  
Following initial processing, the surface-based neonatal parcellation approach, Melbourne 
Children’s Regional Brain Atlases (MCRIB), was used to generate surfaces for each neonatal 
subject and the volumetric resting-state BOLD timeseries were mapped to subject-specific 
surfaces using established procedures adapted from the Human Connectome Project as 
implemented in Connectome Workbench 1.2.3. Freesurfer 7.2 was used to generate surfaces 
for each toddler subject, and the volumetric resting-state BOLD timeseries were mapped to 
subject-specific surfaces using established procedures adapted from the Human Connectome 
Project as implemented in Connectome Workbench 1.2.3. 

After mapping to the surface, each dataset underwent resting-state fMRI preprocessing. 
In the initial iteration, the data were processed with the following steps: (i) demean and detrend 
within run, (ii) nuisance regression including white matter, ventricles, extra-axial cerebrospinal 
fluid, and whole brain, as well as 24-parameter Friston expansion regressors derived from head 
motion. Next, frames contaminated by motion were censored as described below. Finally, the 
initial rs–fc preprocessing stream was repeated on the output of the initial preprocessing using 
only the frames that had passed motion criteria, with the addition of interpolating censored 
frames and band-pass filtering (0.005 Hz < f < 0.1 Hz).  

Neonatal fMRI data were censored at FD > 0.25 mm, with the additional restriction that 
only epochs of at least 3 consecutive frames FD < 0.25 mm were included. This FD threshold 
was selected after taking into account the smaller radius of infants’ heads85 and reviewing 
motion traces in several subjects86,87; respiratory filtering is unsuitable for neonatal fMRI data 
due to the higher respiratory rate of neonates. Toddler (two-year and three-year) fMRI data 
were censored based on a threshold of FDfilt > 0.2 mm, using a filtered framewise displacement 
trace corrected for the effect of respiration (FIRMM filtered FD88,89), with the additional restriction 
that only epochs of at least 3 consecutive frames FD < 0.2 mm were included.  

In order to be included in the study, a minimum of 5 minutes (375 frames) of data 
retained after censoring was required, though 99% of scans across timepoints had > 10 min of 
data retained after censoring (M =  17.4 min (1308 frames), range = 7.1-41.9 min). To account 
for any potential patterns of FC related to head motion or amount of data included in analyses, 
we calculated (i) the number of frames retained after censoring and (ii) the average FD across 
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uncensored frames for each individual subject and included these values as subject-level 
covariates in in all analyses. We additionally calculated (iii) the average FD across all frames for 
each individual subject, used as subject-level covariates in sensitivity analyses. Neither average 
uncensored FD nor total number of frames retained after censoring were related to prenatal 
disadvantage (uncensored FD: r = 0.014, p = 0.77; total number of frames: r = 0.06, p = 0.22). 

fMRI data were aligned across subjects into the “fs_LR32k” surface space using 
spherical registration. Timecourses for surface data were smoothed with geodesic 2D Gaussian 
kernels (σ = 2.25 mm). 
 
Network analysis. Residual mean BOLD time series from each participant at each timepoint 
were extracted from a 333-region cortical parcellation90. The functional connectivity matrix was 
represented as a graph or network91. Network edges between nodes (brain regions) were 
represented by the Fisher z-transformed Pearson correlation between time courses from pairs 
of surface regions92. Because there is not yet consensus on the spatial layout of neonatal 
functional networks85,93–98, we assigned nodes to 13 large-scale functional systems (also 
sometimes called “networks”) based on the definitions of functional systems derived in healthy 
adults90.  

Across the cortex, we calculated three summary measures of functional network 
segregation, which quantify the extent to which groups or subnetworks of nodes, or brain 
regions, display densely interconnected patterns of connectivity (see Figure 1). System 
segregation, our measure of global segregation, quantifies the difference between mean within-
system connectivity and mean between-system connectivity as a proportion of mean within-
system connectivity4,9, given an a priori partition of nodes into systems, in this case the 13 large-
scale functional systems90. Modularity, quantified by the modularity quality index (Q), is a 
measure of meso-scale network segregation that estimates the extent to which the nodes of a 
network can be subdivided into groups or modules characterized by strong, dense intramodular 
connectivity and weak, sparse intermodular connectivity. Local segregation was measured 
using the clustering coefficient, which quantifies the amount of connectivity between a node and 
its strongest neighbors99–102. A node has a high clustering coefficient when a high proportion of 
its neighbors are also strong neighbors of each other. Local segregation at the whole-brain level 
was calculated as the average of the clustering coefficient across all cortical regions. In later 
analyses of regional specificity, we examined the clustering coefficient of individual nodes or 
regions. We specifically chose measures of functional network architecture that were suitable 
for weighted, signed networks, when possible.  

We also estimated a measure of functional network integration, the participation 
coefficient, which quantifies the diversity of a node’s connections across systems39,103. See 
Supplemental Methods for further details of network analysis and equations for measures of 
network segregation and integration.  
 
Demographics and socioeconomic status. Mothers completed surveys in each trimester, at 
delivery, and during follow up visits every 4 months to assess social background, mental health, 
and life experiences. As described in 35, prenatal SES was assessed using a latent factor of 
socioeconomic disadvantage from a confirmatory factor analysis that included measures of 
mother’s income-to-needs ratio, educational attainment, area deprivation index, insurance 
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status, and nutrition. Maternal self-reported highest level of education and health insurance 
status were collected in trimester 1. Mothers reported household income and persons in the 
home to calculate INR in each trimester104. Home addresses were collected at delivery to obtain 
Area Deprivation Index percentiles; the area deprivation index is a geocoding measure that 
ranks neighborhoods by socioeconomic disadvantage compared with the national average 
based on census block data, including factors for the domains of income, education, 
employment, and housing quality105. Prior work in the eLABE cohort has shown that, while 26% 
of mothers changed addresses during pregnancy, there was no significant change in block 
groups during pregnancy106, and we similarly find that there was not significant social mobility 
(change in ADI) during the study time period in our sample (Fs(child age) = 1.44, p = 0.19). Maternal 
nutrition was assessed in the third trimester or at delivery using the Healthy Eating Index, a 
validated dietary assessment tool available through the National Institutes of Health used to 
measure diet quality based on U.S. Dietary Guidelines for Americans107. Higher scores on the 
disadvantage factor are indicative of lower SES. 

Data on demographic and socioeconomic indicators (education, household income, 
insurance status, ADI) were also collected during follow-up visits. Prenatal disadvantage was 
highly correlated with disadvantage at years 1-3 (r’s = 0.92-0.93, p’s < 1 x 10-16). While we focus 
our analyses on the disadvantage factor assessed at birth, supplementary analyses investigate 
the contribution of disadvantage at later time points. Additionally, we examine the effect of using 
a composite variable of parental education and income to assess SES, rather than the 
disadvantage factor, for consistency with prior literature, in our sensitivity analyses.  

 
Cognitive and language outcomes. The Bayley Scales of Infant and Toddler Development-
Third Edition (Bayley-III) was used to assess cognitive, language, and motor abilities at both two 
and three years of age. Based on prior evidence that network segregation is associated with 
higher-order cognitive abilities in adults9, we specifically examined age-standardized cognitive 
and language composite scores (M = 100, SD = 15); the language composite consists of the 
Receptive Language and Expressive Language subscales. At the two-year timepoint, n = 90 
children had usable Bayley assessments and fMRI data (2 children with imaging data were 
excluded for low-quality or missing Bayley). At the three-year timepoint, n = 66 children had 
usable Bayley assessments and fMRI data (no children with imaging data were excluded for 
low-quality or missing Bayley). 
 
Data analysis. Our analyses relating age and SES to cortical functional network architecture 
were pre-registered at https://aspredicted.org/eb5pd.pdf. Any deviations from the original plan or 
additional exploratory analyses have been fully described below. 
 
Statistical models. To flexibly model longitudinal linear and non-linear relationships between 
cortical functional network segregation and age, we implemented GAMMs (generalized additive 
mixed models) using the mgcv package in R108. GAMMs were fit with functional network 
segregation as the dependent variable, age as a smooth term, a random effect of participant, 
and biological sex assigned at birth, in-scanner motion (average framewise displacement), 
number of frames of fMRI retained after censoring, and average functional network weight 
(average network connectivity) as linear covariates. Each GAMM estimates a smooth function 
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(the model age fit, generated from a linear combination of weighted basis functions) that 
describes the relationship between functional network segregation and age, thus modeling the 
developmental trajectory of network segregation. Four basis functions were specified as the 
maximum flexibility afforded to age splines in all models (k = 4). Models were fit using thin plate 
regression splines as the smooth term basis set and the restricted maximal likelihood approach 
for smoothing parameter selection. Average network weight was included to control for global 
differences in connectivity strength109–111. Random effects included a random intercept per 
participant. To test for windows of significant change across the age range, we calculated the 
first derivative of the smooth function of age from the GAMM model using finite differences, and 
then generated a simultaneous 95% confidence interval of the derivative112 using the gratia 
package in R. The first derivative of this smooth function represents the rate of change in 
network segregation at a given developmental time point. Intervals of significant age-related 
change were identified as areas where the simultaneous confidence interval of the derivative 
does not include zero. Multiple comparisons correction was applied across models of 
developmental changes in cortical functional network segregation using FDR correction113. 

To examine moderating effects of SES on age-related increases in functional network 
segregation, we allowed the smoothed age effect in the GAMM to interact with SES; predictors 
thus included an age-by-SES interaction term, a smooth term for age, and covariates including 
sex, in-scanner motion, number of frames of fMRI, and average network weight. We compared 
two interaction models: a simpler varying coefficient (linear-nonlinear) model that allows the 
smooth term for age to vary as a linear function of SES, and a more complex non-linear 
interaction (bivariate smooth) model that allows the smooth term for age to vary as a fully non-
linear function of SES. We compared models using Bayesian information criterion (BIC), and 
evaluated the significance of the interaction term for the selected model. All models were best fit 
using the simpler varying coefficient (linear-nonlinear) model that allows the linear association 
between SES and network segregation to vary as a smooth function of age. Interaction p-values 
were confirmed using a parametric bootstrap likelihood ratio test (pbkrtest package in R) for 
significance estimation in the mixed model context. Multiple comparisons correction was applied 
across models of age-by-SES effects on cortical functional network segregation using FDR 
correction. 

To evaluate the scale at which SES affects measures of functional network segregation, 
we fit models for each of our measures of local, meso-scale, and global segregation in turn, 
controlling for each of the other measures of segregation. For example, we first fit a GAMM for 
the age-by-SES effect on system segregation while including modularity as a fixed effect, then 
fit a GAMM for age-by-SES effects on system segregation while including the clustering 
coefficient as a fixed effect.  

To characterize regional specificity of SES effects on maturational changes in local 
segregation, we fit region-specific GAMMs with the same interaction structure and covariates as 
the whole-brain models. Models were fit separately for each parcellated cortical region. For 
each regional GAMM, the significance of the age-by-SES interaction term was assessed in a 
fixed degree-of-freedom context to ensure stable and accurate estimation. We corrected p-
values across all region-wise GAMMs using FDR correction and set statistical significance at 
pFDR < 0.05. To establish the overall magnitude of the moderating effect of SES on age-
associated increases in local segregation, which we refer to throughout as a region’s overall 
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age-by-SES effect magnitude, we used the F-statistic for the age-by-SES interaction effect. To 
evaluate the age-by-SES effect across functional systems, we used the effect magnitude at 
each parcel within each system. A Kruskal-Wallis test was used to compare the magnitude of 
the age-by-SES effects across functional systems. 

Moderating effects of SES on associations between age and language composite scores 
were also modeled with GAMMs; we allowed the smoothed age effect in the GAMM to interact 
with SES, using the same model comparison framework as above. We tested a varying-
coefficient (linear-nonlinear) model and a more complex fully non-linear interaction (bivariate 
smooth) model, comparing models using Bayesian information criterion (BIC), and evaluated 
the significance of the interaction term for the selected model; the bivariate smooth model fit the 
language composite best, while the linear-nonlinear model fit the cognitive composite best. Note 
that as these the composite scores are standardized for age, the smoothed effect of age in this 
model solely accounts for variation over time in language scores relative to age norms. 

When examining relationships between local cortical network segregation and language 
outcomes at the two-year and three-year timepoints, due to the smaller number of datapoints 
available, we used linear models (results are qualitatively unchanged when using GAMs). We 
estimated associations between local segregation and Bayley language scaled scores, 
controlling for biological sex assigned at birth, in-scanner motion (average framewise 
displacement), number of frames of fMRI retained after censoring, and average functional 
network weight. Multiple comparisons correction was applied across each set of two models 
using FDR correction. 
 
Comparison of cortical maps. A previously derived axis of sensorimotor-association cortical 
organization8 was retrieved from https://github.com/PennLINC/S-A_ArchetypalAxis. To quantify 
the association between S-A axis ranks and observed environmental effects on developmental 
increases in local segregation, we used Spearman’s rank correlations and tested for statistical 
significance using spin-based spatial permutation tests114,115, which account for spatial 
covariance structure common in neuroimaging data. We generated a null distribution based on 
10,000 spherical rotations, and compared the observed value to the null. 
 
Code and data availability. All analyses were conducted in R4.1.2 (https://www.r-project.org/) 
and MATLAB R2021b. Functions from the Brain Connectivity Toolbox103 were used to calculate 
measures of network segregation and integration. Freely available MATLAB code from 
https://github.com/mychan24/system_matrix_tools was used to calculate system segregation. 
Surfaces and regional effects were shown on cortical surfaces generated by MCRIB using the 
cifti and ciftiTools packages116 and Connectome Workbench. Code for all analyses presented 
here is publicly available at 
https://github.com/utooley/Tooley2023_prenatal_env_cortical_network_dev. Deidentified data 
will be deposited into a public repository upon publication. 
 
Deviations from pre-registration. We did not conduct some analyses in the pre-registration 
that were deemed potential exploratory analyses and turned out to be unhelpful in elucidating 
the effects we found. Specifically, as the primary driver of the age-by-SES effect was found to 
be on local segregation (the clustering coefficient) and alterations in local topology, we did not 
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examine age-by-SES effects on within- and between-system connectivity; this analysis would 
have been informative for probing age-by-SES effects on system segregation. As our measure 
of local segregation, the clustering coefficient, does not rely on an a priori assignment of regions 
to functional systems, we deemed an analysis of functional-system-level connectivity unhelpful 
in investigating the effects we found here. Also, in a follow-up analysis we had planned to 
examine the effect of including only participants whose disadvantage factor score did not 
change by > 1 SD between timepoints. However, as upon investigation there was little change 
in direct indicators of SES during the study period (see Supplementary Figure 3), and the 
composition of the disadvantage factor score changed from the birth to toddler timepoints 
(prenatal Healthy Eating Index was removed from the factor score), we decided not to pursue 
this analysis. 

Additionally, we include here follow-up analyses that were not part of our pre-registration 
to probe the contributors and potential behavioral associations of the moderating effects of SES 
on cortical functional network development trajectories that we found in the pre-registered 
analyses. Specifically, we examined a) which scale of segregation was the fundamental driver 
of age-by-SES effects on cortical network segregation, b) regional variation in age-by-SES 
effects on local segregation, and c) associations between local segregation and language and 
cognitive outcomes. These analyses were not pre-registered and should be considered 
exploratory in nature. 

Finally, we initially planned to rerun any GAMMs with estimated degrees of freedom 
(EDF) of the age smooth < 2 as linear mixed effects models, but upon visual inspection of 
developmental trajectories of cortical network segregation, non-linear models of age seemed 
appropriate even for those measures with age EDFs slightly under 2. As GAMMs can model 
both linear and non-linear relationships, in the case that there is no non-linear relationship 
between age and an outcome measure, the smooth term for age will be penalized down to a 
linear term. Thus, for ease of comparison and to avoid switching modeling approaches, we have 
instead used GAMMs for all models in the included analyses.  
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