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A B S T R A C T

Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The
pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ)
structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that
distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ
biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes,
which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objec-
tives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the
dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and
challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuro-
muscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to miti-
gate the dystrophic pathology and other disorders of the neuromuscular system.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Dystrophin is a highly abundant protein localized to the inner face
of the plasma membrane of muscle fibres. The primary function of
this molecule is to serve as a link between the sarcolemma and cyto-
skeletal ɣ�actin, which together provide strong structural support
for the myofiber during mechanical stress. The absence of dystrophin
protein, due to mutations in its gene, DMD, results in the most com-
mon and relentless form of muscular dystrophy, Duchenne muscular
dystrophy (DMD). It has been known for over 30 years that dystro-
phic skeletal muscle is characterized by pathophysiological altera-
tions in pre- and postsynaptic neuromuscular junction (NMJ)
structure and function, which contribute to the hallmark muscle
wasting and weakness in DMD [1�13]. Experimental approaches
that impact skeletal muscle and affect NMJ biology in pre-clinical
models of DMD attenuate disease progression and improve func-
tional outcomes [14�18]. This evidence suggests that targeting the
NMJ may be an effective therapeutic strategy for DMD patients. Thus,
continued examination of the mechanisms that govern NMJ mor-
phology and function in DMD will expand our comprehension of the
basic biology of the disorder, as well as identify opportunities for
innovative treatment approaches. In the current paper, we begin by
reviewing recent progress in DMD research, with particular emphasis
on novel salutary modalities. We then discuss NMJ biology in the
healthy and dystrophic contexts and follow with a detailed analysis
of the effects of normalizing the NMJ in muscular dystrophy. In clos-
ing, we highlight the most significant remaining knowledge gaps, as
well as opportunities for future pursuit that will advance our under-
standing of, and therapeutic options for, the NMJ in DMD. This article
expands on earlier, excellent reviews of similar themes [19�23].
2. Duchenne muscular dystrophy

DMD is the most common congenital neuromuscular disorder
affecting approximately 1 in 6000 live male births [24,25]. The eco-
nomic burden associated with DMD is significant for patients
($23,000�$54,000 USD) and their families ($58,000�$71,000 USD)
all over the world [26]. Natural history studies demonstrate that boys
with DMD experience progressive proximal muscle weakness and
wasting at approximately 2�5 years of age, which is also accompa-
nied by a delay in motor milestone achievements [25,27]. This grad-
ual loss in limb function typically necessitates ambulatory supports
by early adolescence. Other clinical hallmarks that manifest in these
patients include the accumulation of intramuscular fatty and fibrotic
tissue resulting in excessive enlargement (i.e., pseudohypertrophy),
particularly of the gastrocnemius muscle, as well as a positive
Gowers’ sign that presents as a predictable difficulty rising from a
lying supine position. Respiratory and/or cardiac failure claim most
DMD patients in their third or fourth decades.
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DMD is caused by mutations in the DMD gene and the subsequent
absence of its dystrophin protein product. Without dystrophin, its
eponymous oligomeric structure termed the dystrophin-associated
protein complex (DAPC) cannot be formed [27,28]. Highly localized
along the sarcolemma, the DAPC is a critical signalling apparatus
between the extracellular matrix and intracellular cytoskeleton that
serves to maintain the structural integrity of muscle cells. The lack of
dystrophin, and by extension the DAPC, ultimately lead to repetitive
cycles of degeneration/regeneration, chronic inflammation, and mus-
cle atrophy [25,29,30]. While dystrophin is certainly important, other
members of the DAPC also play critical roles in health and disease.
Although often overlooked when discussing the devastating effects
of DAPC deficiency, NMJ structure and function are remarkably
impacted in muscular dystrophies, DMD in particular (Fig. 1) [1�13].
Veritably, the biology of dystrophic NMJs is significantly compro-
mised in several pre-clinical models, which strongly suggests that
this phenomenon contributes to the muscle wasting and weakness
apparent in DMD patients. This is not surprising considering the criti-
cally important role of the NMJ in regulating skeletal muscle pheno-
type and contractile activity [31].

There is currently no effective treatment for DMD [32]. Symptom-
atic patients are prescribed glucocorticoids as a standard of care,
which attenuates the decline in muscle strength and function while
also delaying the onset of catastrophic respiratory and cardiac dys-
function [25,33]. However, long-term corticosteroid usage results in
detrimental side effects such as abnormal behaviour and weight gain.
Vamorolone (ReveraGen BioPharma) and Edaslonexent (Catabasis
Pharmaceuticals), two anti-inflammatory medications currently in
the latter phases of clinical trials, provide similar therapeutic effects
of glucocorticoids without the adverse off-target effects [33]. Other
emerging therapies include exon-skipping compounds, such as Vil-
tepso (NS Pharma), Exondys 51 and Vyondys 53 (Sarepta Therapeu-
tics), as well as the nonsense mutation suppressor, Translarna (PTC
Therapeutics), which have been approved by the U.S. Food and Drug
Administration and European Medicines Agency, respectively. How-
ever, these therapeutic strategies are not without their limitations.
For example, Vyondys 53 might be effective only for those who have
a DMD mutation that is germane to the skipping of exon 53, which
represents approximately 8% of all DMD patients [34]. Moreover, pre-
mature termination codon readthrough capability could successfully
address disease-causing mutations in a maximum of 15% of boys
with DMD [35]. A common shortcoming of these genetic therapies is
the restoration of a truncated and less functional dystrophin, which
will ultimately translate, in a best case scenario, to a milder, Becker-
like dystrophic phenotype [36]. Thus, there is a critical, unmet clinical
need to identify effective curative approaches that apply to all DMD
patients.

3. Development, maintenance and plasticity of the NMJ

The NMJ is an electrochemical signalling apparatus that lies at the
interface between an a-motoneuron (aMN) and the skeletal muscle
cells that it innervates. More specifically, it is comprised of an aMN
nerve terminal, the endplate region of a muscle fibre, and perisynap-
tic Schwann cells that envelop the synapse [20,22,23,37]. Depolariza-
tion of the aMN terminal prompts the presynaptic exocytosis of
acetylcholine (ACh)-containing vesicles. ACh from a single vesicle
(i.e., quantal content) diffuses into the synaptic cleft and is either
destroyed by acetylcholinesterase or binds to ACh receptors (AChR)
to evoke a miniature endplate potential (mEPP) at the postsynaptic
endplate. The summation of mEPPs elicited from a simultaneous
release of multiple ACh transmitter quanta upon a single nerve
impulse will cause a relatively larger, local postsynaptic depolariza-
tion known as an endplate potential (EPP). In the healthy condition,
the EPP is almost always sufficient to surpass the threshold required
for depolarization of the sarcolemma, which then causes a muscle
action potential to ensue and leads to the contraction of all myofibers
innervated by the aMN. The amplitude by which the EPP surpasses
the depolarization threshold is known as the “safety factor”, and dis-
ruption to the morphology and/or function of the NMJ will lower this
safety factor below depolarization threshold leading to transmission
failure, muscle weakness and dysfunction [38].

The development and maturation of the NMJ is well characterized
in rodents [22,23,39]. As early as embryonic day (E) 9.5, myofibers
develop with broadly dispersed AChRs that subsequently accumulate
to the central region of the fibre, a process known as pre-patterning.
Shortly after at E11-12, motor axons are directed towards this cen-
tral, pre-patterned domain [21]. The axons first branch, then extend
to appose these AChRs to form nascent NMJs [22]. These newly
formed, oval-like plaques are innervated by multiple nerve terminals
that compete with each other in an activity-based manner to seize
territory within an AChR cluster. Polyinnervation of AChR clusters is
eliminated by approximately 14 days post-birth (P), when a domi-
nant presynaptic terminal has been established [23]. Subsequently,
these more mature synapses adopt a perforated, pretzel-like mor-
phology. The maturation and stability of the NMJ is governed by mul-
tiple proteins including the canonical agrin/low-density lipoprotein
receptor-related protein 4 (LRP4)/muscle-specific kinase (MuSK) sig-
nalling axis, downstream targets docking protein 7 (Dok7), and
43 kDa receptor-associated protein of the synapse (rapsyn), as well
as additional synaptic gene regulators such as GA-binding protein
(GABP; also known as nuclear respiratory factor 2, or NRF-2), and
peroxisome proliferator-activated receptor ɣ coactivator-1a (PGC-
1a). Other proteins, such as utrophin and protein kinase A (PKA) also
modulate the morphology and function of the NMJ. While many addi-
tional signalling pathways have been identified that play a role in
synapse specialization, including neuregulin/ErbB, Wnt/b-catenin,
and Hippo/Yes-associated protein signalling cascades [40], the
remainder of this section will emphasize molecules that have been
examined in the DMD context and how they develop, maintain, and
remodel synaptic structure and function. Readers interested in much
more comprehensive surveys of NMJ maturation are enthusiastically
referred to these recent, expert reviews [20,22,23,37,40,41].

3.1. Agrin/LRP4/MuSK signalling

Agrin was identified as the first neurotrophic factor to regulate
NMJ biology [21,22]. The proteoglycan governs the expression and
localization of AChRs and is therefore critical for the postnatal devel-
opment and plasticity of the NMJ. Indeed, although rodents lacking
agrin form AChR clusters, they are unstable and exhibit a dispersed
organization in the broad middle region of myofibers, resembling an
arrangement that is observed during development [22,39,41]. Addi-
tionally, recombinant agrin treatment of denervated muscles elimi-
nates ectopic AChR cluster formation, further demonstrating the
importance of this neural factor [39,40]. Agrin exerts its effects by ini-
tiating the LRP4/MuSK signalling cascade, which is essential for its
downstream control of AChR expression. For instance, the agrin/
LRP4/MuSK interaction promotes the expression of several synaptic
proteins that encourage AChR transcription, stabilization, and turn-
over. These effector molecules include rapsyn, Dok7, Abl tyrosine
kinase, geranylgeranyltransferase, Rho GTPases, and P21-activated
kinase 1 [22,39]. While many of these factors exhibit functional
redundancy and are therefore dispensable for the postnatal develop-
ment of the NMJ, Dok7 and rapsyn are essential components of the
postsynaptic apparatus [22]. Additional evidence for the importance
of the agrin/LRP4/MuSK signalling axis is demonstrated by LRP4 and
MuSK knockdown and knockout (KO) studies [20�22]. For example,
LRP4 KO mice exhibit perinatal lethality due to severe impairments
in NMJ postsynaptic endplate formation [42]. Thus, the agrin/LRP4/
MuSK cascade serves as the regulatory centrepiece for the maturation
and remodelling of the NMJ.



Fig. 1. Neuromuscular junction biology in Duchennemuscular dystrophy. Evidence
from Duchenne muscular dystrophy (DMD) patients and pre-clinical studies demon-
strate numerous differences in neuromuscular junction (NMJ) structure, function, and
gene expression between the healthy and dystrophic conditions. Morphological abnor-
malities of the synapse exhibited in DMD include denervation, fragmentation and
denuded postsynaptic folds. Acetylcholine receptor (AChR) expression is also
impacted. Neurophysiological properties such as impulse transmission also differ in
dystrophic muscle. For instance, reduced endplate potential (EPP) and miniature EPP
(mEPP) amplitudes, as well as a depressed safety factor, compromise the reliability of
neurotransmission in dystrophic muscle. Furthermore, several disparities in the
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3.2. Transcriptional regulators of synaptic genes

The links between agrin/LRP4/MuSK and synaptic gene expression
are still being identified. Established players include transcription
factors that are part of the E26 transformation-specific (Ets) family of
proteins, including GABP⍺/b and Ets variant 5 (Erm) [20]. These fac-
tors are also regulated at the synapse by mitogen activated protein
kinase pathways, including c-Jun N-terminal kinases and extracellu-
lar signal-regulated kinase (ERK) signalling [40]. An abundance of
subsynaptic genes contain a common, conserved sequence in their
promoters known as the N-box motif (CCGGAA). Here, in subsynaptic
myonuclei (also known as fundamental myonuclei), Ets transcription
factors bind and facilitate the transcription of synaptic genes, includ-
ing AChR subunits (Chrnd and Chrne), acetylcholinesterase (AChEst),
Musk, Rapsn, and utrophin (Utrn). Although Ets factors are dispens-
able for synapse formation [43�45], these proteins play a remarkable
role in NMJ remodelling. For example, rodents lacking GABP⍺/b
exhibit impaired postsynaptic development as a result of attenuated
agrin signalling and reduced subsynaptic gene transcription [43,44].
Furthermore, Hippenmeyer and colleagues demonstrate severe
impairments in NMJ plasticity and function in animals lacking Erm
[45]. This evidence underscores the importance of Ets transcription
factors, specifically GABP⍺/b and Erm, in regulating the NMJ gene
expression program and synaptic function.

The transcriptional coactivator PGC-1a is another important mod-
ulator of the NMJ [28,46,47]. PGC-1a is regulated through several
post-translational modifications that are mediated by upstream mole-
cules such as adenosine monophosphate-activated protein kinase
(AMPK), which is critical protein that governs neuromuscular system
biology [28]. Mechanistic links have been elegantly established
between PGC-1a and synaptic gene regulation via GABP⍺/b/N-box sig-
nalling [15,48]. Further evidence for the role of PGC-1a in the NMJ
gene program can be observed in vivo [17,18,49,50]. For instance, in
addition to demonstrating slower, and more oxidative muscle charac-
teristics such as mitochondrial biogenesis and type 1 and 2a myosin
heavy chain expression, mice overexpressing PGC-1a specifically in
skeletal muscle exhibit a strong postsynaptic gene expression signa-
ture, as well as a type 1 aMN phenotype [50,51]. Interestingly, the lat-
ter alteration indicates that the transcriptional coactivator mediates a
retrograde signalling network from myofibers to their innervating
aMN. Elaborating on this phenomenon, Mills and colleagues recently
showed in cell culture experiments that a PGC-1a isoform directs
axon recruitment and NMJ formation through the release of the myo-
kine, neurturin [52]. Thus, interventions that stimulate PGC-1a in skel-
etal muscle, like exercise for example, may evoke adaptive plasticity
throughout the peripheral neuromuscular system. This warrants fur-
ther research into the therapeutic potential of this protein.

PGC-1a-mediated induction of utrophin via GABP⍺/b/N-box sig-
nalling has been demonstrated in numerous studies [15,48,53]. Utro-
phin is the key component of the utrophin-associated protein
complex (UAPC), an oligomeric structure that is homologous to the
DAPC. However, unlike the DAPC, which resides in the troughs of the
postsynaptic folds at the NMJ and along the length of the sarco-
lemma, the UAPC is typically concentrated at the crests of the post-
synaptic invaginations, but can also be found to a lesser extent
extrasynaptically [54]. In fact, slow-twitch, oxidative muscles possess
significantly greater amounts of extrasynaptic utrophin compared to
faster, more glycolytic muscles, which is thought to be due, in part, to
molecular biology of the NMJ between the healthy condition and DMD have been
documented and include dysregulated autophagy, altered cyclic adenosine monophos-
phate (cAMP) signalling, as well as attenuated muscle specific kinase (MuSK) expres-
sion. Notably, a significant upregulation of synaptic and extrasynaptic utrophin
content, as well as the larger utrophin-associated protein complex (UAPC), are hall-
mark characteristics of dystrophic muscle and are believed to compensate functionally
for the lack of dystrophin.
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enhanced transcriptional and post-transcriptional processes in slow,
oxidative myofibers [53]. Nonetheless, work from Deconinck et al.
and Grady et al. demonstrated that the absence of utrophin only
modestly affects NMJ biology [55,56]. The true impact of utrophin is
revealed in the context of DMD, which will be discussed in greater
detail later in our survey.

Another notable target of PGC-1a and GABP⍺/b/N-box transcrip-
tional activation are the Chrn genes, including the d and e subunits
[15,20,40]. The density of synaptic AChRs is regulated by processes that
synthesize, stabilize, and dismantle the receptors. Innervated AChRs
typically possess a half-life of ~14 days, after which they are endocy-
tosed from the motor endplate and either stored in intracellular com-
partments, recycled back to the synapse, or degraded [19]. The fate of
AChRs is heavily influenced by their phosphorylation status and stabil-
ity, which are governed by the cAMP/protein kinase A (PKA) signalling
pathway [19,37]. AChR elimination involves autophagic machinery
such as autophagy related 7 (ATG7), muscle ring finger 1 (MuRF1),
sequestosome 1, E3 ubiquitin-protein ligase TRIM63, and Rab5-GTPase
[19,57]. Mechanisms that regulate AChR biology pose as a potential
therapy for DMD and will be further discussed below.

4. Synaptic biology in DMD and therapies targeting the NMJ

Early studies in DMD patients and mdx mice revealed that the
absence of dystrophin resulted in fragmented NMJs and denuded
postsynaptic folds [4,6,7,12,13,58], as well as an accelerated
Table 1
NMJ morphology in DMD NMJ structure in pre-clinical models of DMD versus healthy litt

Reference DMDmodel Age Muscles studied

Torres and Duchen 1987 mdx 4 wk
7 wk
4 mo

Soleus

Nagel et al., 1990 mdx 2.5 wk
8.5 wk
37 wk

Diaphragm

Lyons and Slater 1991 mdx 8 wk EPT

Grady et al., 1997 mdx 8 wk Sternomastoid
mdx:utrn�/� 8 wk Sternomastoid

Santa Neto et al., 2003 mdx 5�6 mo Sternomastoid
Minatel et al., 2003 mdx P1

1 wk
2 wk
3 wk

Sternomastoid

Personius and Sawyer 2006 mdx 6�8 mo Diaphragm
Marques et al., 2008 mdx 1 mo

6 mo
Sternomastoid

Ferretti et al., 2011 mdx 2 mo Intrinsic laryngeal, sternomasto
Pratt et al., 2013 mdx 2-3 mo Quadriceps
Pratt et al., 2014 mdx 3 mo Quadriceps
Pratt et al., 2015 mdx 3 mo Quadriceps

Van der pijl et al., 2016 mdx 2�6 mo EPT, diaphragm
mdx:utrn�/� 1�2 mo EPT, diaphragm

Van der pijl et al., 2018 mdx 2�5 mo EPT, diaphragm
mdx-XistDhs 2�5 mo EPT, diaphragm

Haddix et al., 2018 mdx P38
P66
P450

Sternomastoid

GRMD 1�6 yr Cranial tibial

NMJ structure in DMD patients compared to healthy participants
Reference Cohort size Age Muscles studied
Jerusalem 1974 3 3�6 yr Peroneus brevis

Harriman 1976 13 4�8 yr Vastus internus, gastrocnemius,
palmaris longus, peroneus bre

Sakakibara et al., 1977 3 5�11 yr Intercostal

DMD, Duchenne muscular dystrophy; AChR, acetylcholine receptor; EPT, epitrochleoanc
tion; wk weeks; mo, months; yr, years; P, postnatal day.
degradation of AChRs [59] (Table 1). These alterations, which are also
observed in ageing NMJs, may not necessarily translate into func-
tional impairments in neuromuscular transmission [60], whereas a
simplified endplate morphology can contribute to the loss of crucial
postsynaptic membrane proteins [61]. These initial observations in
postsynaptic alterations have since been reported numerous times in
mdx mice [9�11,62�64], golden retriever muscular dystrophy dogs
[65], and other animal models of DMD [66,67]. Whether these
changes occur independent from dystrophy-induced muscle degen-
eration/regeneration is debated [68]. The absence of dystrophin also
alters the presynaptic apparatus of the NMJ likely due, in part, to frag-
mentation of the motor endplate [11]. Specifically, an increase in pre-
synaptic nerve terminal branching, as well as partial denervation
have been observed in mdx animals [11], while axonal sprouting
occurs in DMD patients and mice [13,69].

Initial electrophysiology experiments revealed modest declines in
mEPP and EPP amplitudes and a compensatory increase in quantal
content in the diaphragm of mdx mice, which is the muscle that most
closely phenocopies the human dystrophic pathology (Table 2) [6,7].
More recently, Van der Pijl et al. demonstrated augmented quantal
content, and reductions in mEPP amplitude and the safety factor for
neurotransmission in mdx mice, as well as in the more severe dystro-
phin-utrophin double knockout animals [66]. Additionally, high-
strain, low-repetition, eccentric muscle damage in mdx mice results
in a loss of force production, as well as exacerbates pre-existing
impairments in neuromuscular transmission and fragments the
ermates.

Presynapse Postsynapse

Not reported Reduced synaptic fold size (all age groups)
Fragmented (4 mo)

Not reported Reduced synaptic fold size (all age groups)
Increased AChR area (2.5 wk, 37 wk)
Similar AChR area (8.5 wk)

Not reported Reduced synaptic fold size
Fragmented

Not reported Reduced synaptic fold size
Not reported Reduced synaptic folds size
Axon sprouting Fragmented
Greater monoinnervation
(P1, 1 wk)
Similar innervation
(2 wk, 3 wk)

Similar morphology (P1, 1 wk, 2 wk)
Fragmented (3 wk)

Not reported Fragmented
Not reported Fragmented (both age groups)

id Not reported Fragmented
Not reported Fragmented (worsened with damage)
Not reported Fragmented (worsened with damage)
Increased nerve branching
Partial innervation

Fragmented (worsened with damage)

Not reported Fragmented
Not reported Fragmented
Not reported Fragmented
Not reported Fragmented
Similar nerve branching Fragmented (all age groups)

Fragmentation (worsened with age)

Similar nerve branching Fragmented
Increased AChR area

Presynapse Postsynapse
Similar terminal size
Similar vesicle size

Reduced synaptic fold size
Similar AChR area

deltoid,
vis

Increased axonal sprouting
Partial innervation

Reduced synaptic fold size

Not reported Reduced synaptic fold size
Similar AChR area

oneus; GRMD, golden retriever muscular dystrophy dog; NMJ, neuromuscular junc-



Table 2
NMJ electrophysiology in DMD Electrophysiology in pre-clinical models of DMD versus healthy littermates.

Reference DMDmodel Age Muscles studied Electrophysiological characteristics

Nagel et al., 1990 mdx 2.5 wk
8.5 wk
37 wk

Diaphragm Similar quantal content (2.5 wk)
Increased quantal content (8.5 wk, 37 wk)
Similar mEPP amplitude (2.5 wk, 8.5 wk)
Reduced mEPP amplitude (37 wk)

Lyons and Slater 1991 mdx 8 wk EPT Similar quantal content
Similar mEPP amplitude
Similar mEPC amplitude
Similar resting postsynaptic membrane potential

Grady et al., 1997 mdx 8 wk Sternomastoid Similar mEPP amplitude
Similar neuromuscular transmission fatigue

mdx:utrn�/� 8 wk Sternomastoid Similar mEPP amplitude
Similar neuromuscular transmission fatigue
Reduced twitch contraction force
Increased twitch relaxation time

Deconinck et al., 1997 utrn�/� 8 wk EDL and diaphragm Similar EPP amplitude
Similar EPC amplitude and delay time
Reduced mEPP amplitude
Similar mEPP frequency
Similar quantal content

Carlson and Roshek 2001 mdx 5�7 wk
6�24 mo

Diaphragm Reduced mEPP amplitude (both age groups)
Similar mEPP amplitude variance (5-7 wk)
Increased mEPP amplitude variance (6-24 mo)

Personius and Sawyer 2006 mdx 6�8 mo Diaphragm Similar neuromuscular transmission fatigue
Reduced peak twitch force
Increased twitch relaxation time
Increased twitch contraction force variability

Pratt et al., 2013 mdx 2�3 mo Quadriceps Increased neuromuscular transmission fatigue
Reduced CMAP amplitude
Reduced isometric force production

Pratt et al., 2014 mdx 3 mo Quadriceps Increased neuromuscular transmission fatigue
Reduced isometric force production

Van der pijl et al., 2016 mdx 2�6 mo Diaphragm (electrophysiology, force kinetics)
EPT, and GSP complex (EMG)

Increased quantal content
Reduced mEPP amplitude
Reduced safety factor
Increased neuromuscular transmission fatigue
Reduced CMAP amplitude
Reduced tetanic and twitch contraction force

mdx:utrn�/� 1�2 mo Diaphragm (electrophysiology, force kinetics)
EPT, and GSP complex (EMG)

Increased quantal content
Reduced mEPP amplitude
Reduced safety factor
Increased neuromuscular transmission fatigue
Reduced CMAP amplitude
Reduced tetanic and twitch contraction force

Van der pijl et al., 2018 mdx 2�5 mo Diaphragm (electrophysiology, force kinetics, IHC)
EPT, and GSP complex (EMG)

Increased quantal content
Increased EPP rise time, half width, and decay time
Reduced EPP and mEPP amplitude
Similar mEPP frequency
Increased neuromuscular transmission fatigue
Reduced CMAP amplitude

mdx-XistDhs 2�5 mo Diaphragm (electrophysiology, force kinetics, IHC)
EPT, and GSP complex (EMG)

Increased quantal content
Increased EPP rise time, half width, and decay time
Reduced EPP and mEPP amplitude
Similar mEPP frequency
Increased neuromuscular transmission fatigue
Reduced CMAP amplitude

Electrophysiology in DMD patients compared to healthy participants
Reference Cohort Size Age Muscles studied Electrophysiological characteristics
Panayiotopoulos 1974 9 3�12 yr Extensor digitorum brevis Reduced motor unit action potential

Similar peak terminal latency
Sakakibara 1977 3 5�11 yr Intercostal Similar quantal content

Similar mEPP amplitude and frequency
Reduced resting postsynaptic membrane potential

Hilton-Brown and Stalberg 1983 8 8�19 yr Extensor digitorum communis Increased jitter
Sharma et al., 1995 11 5�10 yr Tibialis anterior Similar neuromuscular transmission fatigue

Reduced CMAP amplitude
Reduced tetanic and twitch contraction force production
Increased tetanic and twitch relaxation time

CMAP, compound muscle action potential; DMD, Duchenne muscular dystrophy; EMG, electromyography; EPC, endplate potential current; EPP, endplate potential; EPT, epi-
trochleoanconeus; GSP, gastrocnemius-soleus-plantaris; mEPC, miniature EPC; mEPP, miniature EPP; hr, hours; mo, months; wk, weeks; yr, years.
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postsynaptic apparatus [9�11]. This drop in force may also be attrib-
uted to depressed muscle excitability secondary to the loss of sarco-
lemmal integrity [70�72]. Nonetheless, it is very likely that both
neuronal and muscle impairments contribute to reduced muscle
activity, and elevated wasting and weakness in the dystrophic condi-
tion. Consistent with rodent work, electrophysiological metrics such
as impulse transmission, resting membrane potential, and the com-
pound muscle action potential, are also affected in DMD patients
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(Table 2) [4,73�75]. Collectively, these data indicate that dystrophin
is essential for the proper maturation of the synapse and is required
for optimal neurotransmission at the NMJ.

4.1. Agrin/LRP4/MuSK signalling in DMD

The fragmented nature of the synapse in dystrophic muscle indi-
cates that the mechanisms controlling NMJ morphology are dysregu-
lated, specifically those that govern the post-synaptic apparatus. The
absence of dystrophin dissociates the DAPC and its key agrin signal-
ling machinery important for NMJ maturation [20,76]. For example,
the loss of the DAPC component dystroglycan prevents agrin binding
and disorganizes AChR clustering [76,77]. Furthermore, reduced
MuSK mRNA and protein expression can be observed in the quadri-
ceps muscles of animals lacking dystrophin [9,10]. Partial inactivation
of the kinase, through transgenic ablation or MuSK autoantibodies,
accelerates the loss of AChRs and impairs neurotransmission
[78�80], which are characteristics of dystrophic synapses. This sug-
gests that MuSK content and/or activity is attenuated in DMD, how-
ever firsthand data in patients are currently lacking.

Despite its lower expression and function levels in dystrophic
muscle, the agrin/LRP4/MuSK signalling cascade may serve as valid
candidates for muscular dystrophy therapies. Agrin-derived con-
structs, known as mini-agrins, ameliorate neuromuscular trans-
mission and AChR clustering in murine models of congenital
myasthenic syndrome (CMS) and limb gridle muscular dystrophy
[41], as well as increase utrophin expression in cultured myotubes
[81]. The use of agrin-based therapies has not yet been evaluated
in the context of DMD. Augmenting MuSK expression in mdx ani-
mals via an adeno-associated virus (AAV) vector reduced neuro-
muscular failure from eccentric muscle damage and elevated
DAPC/UAPC components [16]. Furthermore, AAV induction of
downstream effector proteins rapsyn and Dok7 conferred unique
neuromuscular alterations in several disparate models of NMDs,
including DMD [16], CMS [82], SMA [83], and amyotrophic lateral
sclerosis [84]. Thus, these pre-clinical data indicate that targeting
the agrin/LRP4/MuSK cascade may eventually yield promising
therapeutic effects in DMD patients.

4.2. Regulation of the NMJ gene expression program in DMD

Surprisingly, GABP⍺/b biology has not yet been directly examined
in dystrophic muscle. However, we can infer the stimulation of this
signalling pathway in DMD since a number of N-box-containing
genes are elevated, such as Utrn and Chrn, which will be discussed in
greater detail below. An alternative regulator of the N-box, ERK, may
also be partly responsible for this selective increase of synaptic genes,
as ERK signalling is upregulated in mdx mouse muscle [85]. The
potential regulatory role of PGC-1a in GABP⍺/b/N-box signalling in
dystrophic muscle [15,48], as well as the function of the transcrip-
tional coactivator as a master regulator of neuromuscular phenotype
[50,51], has led to an interest in PGC-1a as a possible therapeutic tar-
get in DMD. Indeed, several studies have shown that augmenting
PGC-1a expression via genetic, pharmacologic, and physiological
means, can reduce the dystrophic phenotype in pre-clinical models
of DMD (see [28,53] for comprehensive review). The mechanisms by
which PGC-1a exerts its beneficial effects in DMD include evoking
the NMJ gene expression program, as demonstrated by increased
Agrn, Musk, and Chrn expression [15,17,18]. Moreover, PGC-1a also
drives the expression of slower, more oxidative characteristics, which
endows muscle with a greater degree of protection against the dys-
trophic phenotype. A notable indicator of the slow, oxidative pheno-
type is high synaptic and extrasynaptic utrophin expression [53,86],
however it is unclear whether utrophin is required for improved
molecular and physiological outcomes in mdx mice elicited by, or
associated with, PGC-1a induction [18,87].
Regardless of whether utrophin is necessary or not for the effects
of PGC-1a, the dystrophin homologue is nevertheless a critically
important NMJ molecule when considering potential therapeutic
approaches for DMD. An endogenously expressed protein, utrophin
content is consistently upregulated in the skeletal muscles of pre-
clinical DMD animal models, as well as in DMD patients [88]. This is
very likely a compensatory adaptation in an effort to account for the
absence of dystrophin. In fact, some data indicate that a positive rela-
tionship exists in DMD patients between utrophin protein expression
in skeletal muscle and the age of symptom onset [89], while other
results indicate no correlation [90]. In mdx mice, further induction of
utrophin significantly mitigates the dystrophic phenotype, as well as
rescues NMJ morphology and improves synaptic function [27,29,53].
Conversely, the absence of utrophin significantly exacerbates the dys-
trophic pathology in mdx animals and results in a relatively more
accurate phenocopy of the human DMD condition [28]. Therefore,
utrophin is clearly an important molecule at the NMJ with substantial
therapeutic potential in DMD. Successful translation of utrophin-
mediated strategies in patients remains a high priority.

In dystrophic muscle, impaired cAMP/PKA signalling destabilizes
and expedites the elimination of AChRs [37,59]. However, this loss is
coincidentally offset by the upregulation of Chrn gene expression
[11,91] and AChR incorporation at the synapse [59], which therefore
maintains net AChR content at the motor endplate at a similar level
as compared to the healthy, non-dystrophic condition. Interestingly,
attenuating the accelerated loss of AChRs through cAMP signalling
also decreases the rate of total protein degradation in skeletal muscle
[59]. Several pre-clinical studies with mdx animals have demon-
strated the therapeutic applicability of b2 adrenergic receptor ago-
nists, which are potent stimulators of cAMP production and
downstream signalling [92]. Specifically, chronic, low doses of b2

agonists, including formoterol and clenbuterol, reduce muscle degen-
eration and increase force production in mdx animals [92]. Clinical
studies investigating the effects of cAMP agonists are limited in num-
ber, but have also demonstrated improvements in muscular health in
Duchenne and Becker patients [93,94]. These b2 agonist-driven bene-
fits are likely caused, at least in part, through cAMP/PKA signalling at
the NMJ, and suggest that regulating AChR biology may provide some
therapeutic utility for DMD in the future.

4.3. Activity-induced plasticity of the dystrophic NMJ

Synaptic activity is essential for maintaining the structure and
function of the NMJ [23]. Increases or decreases in neural stimulation
drives remodelling of the neuromuscular synapse [19,95]. For exam-
ple, advanced ageing is commonly associated with decreased periph-
eral nerve activity, NMJ fragmentation and neurotransmission
impairments, which are all mitigated by chronic exercise [19,46]. The
favourable alterations at the NMJ represent only a tiny fraction of the
health benefits provided by habitual physical activity. The underlying
molecular mechanisms responsible for exercise-induced NMJ adapta-
tions remain undefined, but likely include MuSK upregulation, AMPK
and PGC-1a signalling, and AChR stabilization [46]. To our knowl-
edge, the data on exercise and the NMJ in DMD are limited. For
instance, daily, volitional physical activity increased utrophin protein
expression in mdx mice [96], and chronic, endurance exercise aug-
mented Utrn in DMD patients [97]. In the absence of additional pri-
mary data, we can reasonably speculate as to what impacts exercise
would have on neuromuscular synaptic morphology and function in
DMD. For example, given that autophagy is essential for optimal NMJ
function in the healthy condition, including AChR turnover [98], and
exercise robustly stimulates autophagic processes in healthy and dys-
trophic skeletal muscle [99], then exercise-induced autophagy may
act to rescue dystrophic NMJ morphology and function. Moreover,
since low-intensity exercise preserves muscle health and physical
function in DMD patients [100], it is likely that, as the interface
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between muscles and their motor nerves, the NMJ is also positively
affected. Examining physical activity-evoked alterations in the struc-
ture and function of the NMJ in the DMD context, as well as the
underlying molecular mechanisms driving phenotypic plasticity, will
increase our understanding of the biology of the neuromuscular sys-
tem and may lead to the identification and development of novel
therapeutic strategies for this disorder.
4.4. Restoration of dystrophin

Perhaps the ideal resolution for the neuromuscular defects in
DMD, including at the NMJ, is to restore dystrophin. Indeed, in mdx
mice only 5�15% of normal dystrophin levels is sufficient to augment
muscle function and prolong survival [101], whereas a higher
requirement, estimated to be 20�50%, is needed to improve synaptic
morphology and function [67]. However, translating this solution to
the clinic is challenging. This is due, in part, to the exceptionally large
size of the DMD gene, which limits the viability of some dystrophin-
based gene therapies. On the other hand, delivery to the muscles of
truncated variants of dystrophin, for example mini- or micro-dystro-
phin, leads to the reassembly of the DAPC and significantly attenuates
the dystrophic pathology [29]. For instance, treatment ofmdx animals
with mini-dystrophin rescued postsynaptic fold complexity [2]. As
Fig. 2. Therapeutic strategies targeting the NMJ in dystrophic muscle. Several recen
approaches targeting the NMJ in DMD. Adeno-associated virus (AAV)-MuSK administration
related protein 4 (LRP4)/MuSK activation, thereby enhancing AChR clustering and driving g
downstream of MuSK are the transcriptional activators Ets variant 5 (Erm) and GA-binding p
N-box response element found in numerous synaptic genes, including Musk, Rapsn, Utrn, and
LRP4/MuSK activation, however this has yet to be directly demonstrated. Elevating neural
expression by stimulating AMP-activated protein kinase (AMPK)/peroxisome proliferator-ac
of Utrn expression results in augmented utrophin and UAPC content throughout the myofibe
compensate for the lack of dystrophin. Exercise and AMPK also elicit autophagy-mediated AC
trophic NMJ. b2 adrenergic agonists increase cAMP/protein kinase A (PKA) signalling and no
dystrophin replacement strategies, such as mini-dystrophin, have also been shown to impro
ated protein complex (DAPC) expression. Solid lines indicate established connections betwee
small molecule, viral, and other dystrophin-based gene and cell ther-
apies improve in their efficacy, safety and practicality, we anticipate
correction of the NMJ and amelioration of the broader dystrophic
pathology.
5. Outstanding questions

The accumulation of synaptic alterations and molecular dysregu-
lation are common in pre-clinical models of DMD. Indeed, the
absence of dystrophin significantly impacts NMJ structure, function,
and gene expression. This is exemplified, in part, by increased NMJ
fragmentation, reduced postsynaptic folding, and elevated neuro-
muscular transmission variability and fatigue that contribute to the
progressive muscle atrophy and weakness that characterize pre-clini-
cal DMD, and to a lesser extent due to the paucity of human studies in
this area, DMD patients (Fig. 1, Tables 1 and 2). Molecular mecha-
nisms underlying NMJ adaptations have been identified and include
alterations in the agrin/LRP4/MuSK, GABP⍺/b/N-box, PGC-1⍺, and
cAMP/PKA signalling pathways. Importantly, additional work is nec-
essary to further confirm the importance of these cascades in DMD
patients. Several pre-clinical, proof-of-principle studies employing
genetic or pharmacological approaches have recently demonstrated
that targeting these pathways attenuate NMJ morphological and
t pre-clinical studies have provided mechanistic insights into potential therapeutic
improves the dystrophic phenotype by stimulating low-density lipoprotein receptor-
ene expression in subsynaptic (also known as fundamental) myonuclei. In particular,
rotein (GABP⍺/b; also known as nuclear respiratory factor 2, or NRF-2) that bind to the
Chrn. Similarly, mini-agrin treatment likely improves dystrophic NMJ biology through

activity, for example via a prescribed chronic exercise program, evokes synaptic gene
tivated receptor ɣ coactivator-1a (PGC-1⍺)/GABP⍺/b signalling. The chronic induction
r, most notably extrasynaptically along the sarcolemma where it serves to functionally
hR recycling, a complementary molecular pathway that beneficially remodels the dys-
rmalize AChR recycling and may correct NMJ morphology in dystrophic animals. Lastly,
ve the stability and function of the NMJ, at least in part via rescue of dystrophin-associ-
n events and dashed lines refer to potential linkages between steps.



8 S.Y. Ng and V. Ljubicic / EBioMedicine 61 (2020) 103032
functional abnormities, and by extension mitigate disease progres-
sion and severity in dystrophic muscle. A summary of these NMJ-
modifying gene expression and signalling cascades are presented in
Fig. 2. A current challenge is to translate these pre-clinical data into
effective treatments for DMD patients. Continued evaluation of neu-
regulin/ErbB, Wnt/b-catenin, and Hippo/Yes-associated protein path-
ways may reveal novel mechanisms for therapeutic pursuit in
muscular dystrophy. Additionally, low-intensity, rationally-pre-
scribed (e.g., limiting stressful eccentric contractions) exercise-
induced synaptic activity is a safe, accessible, and low-cost behaviou-
ral strategy well known to enhance NMJ biology in health conditions
that mimic in some ways the dystrophic pathology, such as advanced
ageing. However, further research is required to resolve the molecu-
lar mechanisms of exercise in the DMD context, particularly with
respect to the NMJ. As more practical dystrophin-based gene, cell,
and small molecule therapies with better efficacy continue to
emerge, we anticipate their correction of NMJ biology as part of a
broader improvement in the dystrophic pathology.

In conclusion, the continued examination of the NMJ in DMD will
expand our basic understanding of neuromuscular biology. This
information may be useful for designing NMJ-targeted drug or behav-
ioural strategies to address the dystrophic pathology and other disor-
ders of the neuromuscular system.

6. Search strategy and selection criteria

Data for this review were identified by searches of PubMed and
Google scholar using the search terms (“DMD”) AND (“NMJ”, “neuro-
transmission”, “synaptic genes”, OR “therapies”). References from rel-
evant articles were also manually sought after. All articles referenced
are academic and peer reviewed. A preference was given to articles
published recently.
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