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Abstract 
The development of omics technologies has driven a profound expansion in the scale of biological data and the increased complexity 
in internal dimensions, prompting the utilization of machine learning (ML) as a powerful toolkit for extracting knowledge and 
understanding underlying biological patterns. Kidney disease represents one of the major growing global health threats with intricate 
pathogenic mechanisms and a lack of precise molecular pathology-based therapeutic modalities. Accordingly, there is a need for 
advanced high-throughput approaches to capture implicit molecular features and complement current experiments and statistics. This 
review aims to delineate strategies for integrating multi-omics data with appropriate ML methods, highlighting key clinical translational 
scenarios, including predicting disease progression risks to improve medical decision-making, comprehensively understanding disease 
molecular mechanisms, and practical applications of image recognition in renal digital pathology. Examining the benefits and 
challenges of current integration efforts is expected to shed light on the complexity of kidney disease and advance clinical practice. 
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Introduction 
Kidney disease is a major global health issue and has experi-
enced one of the largest increases in mortality among all types 
of diseases over the past decade [1]. However, chronic kidney 
disease (CKD) remains under-recognized by both patients and 
healthcare providers [2]. In 2018–2019, approximately 82 million 
adults in China suffered from CKD with an awareness rate of 
merely 10% [3]. Globally, over 5 million deaths occur annually due 
to the unavailability of effective treatments for kidney diseases [4]. 
Indeed, the field of nephrology lacks targeted diagnostics and 
treatments tailored to the specific pathophysiological processes 
of individual kidney diseases [5], thus hindering the implementa-
tion of targeted therapies and precision medicine. 

Omics research forms the cornerstone of precision medicine, 
enabling individualized therapeutic approaches [6]. The field of 
oncology exemplifies the progress and application of precision 
medicine [7], but its clinical application in nephrology falls short 
[8]. In current clinical practice, gathering blood, urine (a unique 
noninvasive method known as ‘liquid biopsy’ for kidney diseases), 
and biopsy tissues as biological samples can provide detailed 
molecular omics data [9], leading to a substantial increase in 
kidney disease studies over the last 10 years and the accumulation 
of extensive and intricate datasets [10]. With ongoing techno-
logical advancements, the integration of multi-omics research, 
emerging single-cell and spatial omics [11], radiomics [12], digital 
pathology, and computational image analysis [13] has  become  
one of the primary approaches for current kidney research. The 
integrated analysis of different types of data has challenged 
traditional analytical methods, accelerating the utilization of 

artificial intelligence (AI) techniques and machine learning 
(ML) to enhance the comprehension of intrinsic and crucial 
information [14], often acquiring results beyond the scope of 
traditional statistical approaches. 

This review provides an overview of the ways in which multi-
omics data and ML can be integrated to improve clinical practice. 
We describe the technical practices with examples of clinical 
applicability for the precise prediction of disease onset and 
progression, the further understanding of kidney molecular 
mechanisms, and the strategies for renal digital pathology image 
analysis. 

Integrating and elucidating multi-omics data 
As a vital organ in the preservation of body fluid homeostasis, the 
removal of metabolic waste products, and the maintenance of 
blood pressure, the kidney is unique due to its extremely complex 
anatomy, diverse array of cell types, and intricate molecular 
mechanisms associated with diseases across multiple systems. 
This complexity makes it well-suited for integrating big data [15] 
in data-driven biomedical multi-omics research [16]. Specifically, 
the term multi-omics typically encompasses a wide spectrum of 
biological data, including genes (genomics), broad changes in gene 
expression (epigenomics), ribonucleic acid (RNA, transcriptomics) 
[17, 18], proteins (proteomics) [19, 20], and downstream small-
molecule metabolites (metabolomics), which are generated dur-
ing the processes of deoxyribonucleic acid (DNA) replication, tran-
scription, translation, and post-translational modification. Unlike 
traditional experiments that measure individual biomolecules, 
omics technologies can comprehensively reveal all genes,
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Figure 1. Overview of generating and utilizing multiple omics layers from clinical bio-samples, leading to the discovery of novel mechanisms and 
molecular sub-groups, which support clinical diagnosis, targeted therapy, and improved prognosis. Listed below are some common related methods, not 
exhaustive. 

transcripts, proteins and metabolites within cells, tissues or 
organs from one biological origin, providing detailed molecular 
profiles, regulatory factors, cell types annotations, and spatial 
localizations spanning the entire kidney. 

The integration of multi-omics combines various omics layers 
using advanced computational techniques, allowing for the 
reclassification of patient subgroups to better reveal the under-
lying molecular mechanisms in nephrology, thereby supporting 
clinical diagnosis and targeted therapy (Fig. 1). Each omics data 
type typically provides a list of differential factors potentially 
associated with the disease, such as differential expression genes 
(DEGs), differential expression proteins, and differential DNA 
methylation regions. For example, comparing transcript levels 
between healthy and diseased individuals allows the identifica-
tion of DEGs [21] across two or more sample sets. The broad range 
of differential factors will be further narrowed down, followed 
by the validation using experimental methods or external 

patient cohorts [22], ultimately allowing for the identification 
of key genes and regulatory elements associated with kidney 
diseases [23–25]. For instance, to identify the key biomarkers, a 
recent study on membranous nephropathy (MN) and pan-cancer 
analysis [26] employed ML approaches to intersect a set of 318 
senescence-related genes with 366 DEGs. This approach resulted 
in the identification of 13 senescence-related DEGs, leading to the 
discovery of six hub genes with further intersection and validation 
through immunohistochemical analysis of human renal biopsy 
tissues. 

Powerful open data and online tools 
Public data stands as a pivotal force in driving medical research 
forward. Various general molecular repositories alongside kidney 
disease-specific databases (Table 1) represent abundant sources 
of information concerning pathological mechanisms and molec-
ular targets.
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Identified genetic variants associated with 
kidney disease 
Many factors influence kidney function and disease status, with 
genetic background standing out as a key determining factor 
among them [27]. Previous studies have identified many mono-
genic mutations leading to kidney diseases [28] such as Alport  
syndrome [29] and Fabry disease [30]. The term genetic varia-
tion encompasses three scenarios: (1) single nucleotide substi-
tutions, including rare mutations, common polymorphisms, or 
single nucleotide polymorphisms (SNPs); (2) insertions/deletions 
(indels); and (3) structural variations. For instance, numerous 
studies have found that genetic variations in APOL1 significantly 
increase the risk of various severe kidney diseases among individ-
uals of African descent [31], with the APOL1 G1 variant consisting 
of two amino acid-changing SNPs (mutations), and the APOL1 
G2 variant involving a six-nucleotide deletion. Single nucleotide 
substitutions represent the most studied type of genetic variation 
[32]. The term SNP typically refers to single nucleotide changes 
at specific positions in the genome. While some single nucleotide 
substitutions may have no apparent effect on phenotype, others 
may be lethal. 

Identifying expression quantitative trait loci analysis (eQTLs) 
is a critical analytical method for studying the impact of genetic 
variation on disease. Analyzing the polymorphisms manifested 
at these loci can demonstrate partial variations in RNA or pro-
tein expression of specific gene products. Integration of genomic 
sequencing data with transcriptomic or proteomic expression 
data enables the determination of these loci. Importantly, these 
studies shed light on the functional consequences of gene vari-
ants in regulating kidney disease transcriptional mechanisms. 
For example, using microscopic anatomical samples from 240 
glomeruli and 311 tubulointerstitial compartments obtained from 
human kidney biopsies, genomic regulatory maps of kidney dis-
eases and traits can be constructed [33], and the target loci can be 
finely mapped via genome-wide association studies (GWAS). 

Currently, kidney-specific eQTLs have been employed to 
identify potential novel disease modifiers and targets, such 
as the expression of lysosomal β-glucosidase [34] and disease 
severity. Moreover, compartment-specific eQTLs [35] contribute 
to the identification of novel gene targets and cellular pathways 
involved in the progression of CKD, such as TGF-β and DAB2. 
The increasing number of genetic and transcriptomic studies will 
further deepen our understanding of the genetic determinants 
of kidney diseases and help identify the initial insults and 
transcriptional pathways leading to disease progression in 
genetically susceptible populations. 

Epigenomics mediates crosstalk between genes 
and environmental factors in the kidney 
Emerging evidence suggests that epigenetic regulation con-
tributes to various kidney diseases [36] by playing remarkable 
roles in mediating crosstalk between genes and the environment, 
and inducing phenotypic changes [37]. Without changing the 
primary nucleotide sequence, epigenomics explores heritable 
mechanisms that control gene expression [37], which are 
considered to be stable, heritable, and reversible during cell 
divisions [38]. The most well-studied epigenetic marks include 
DNA methylation of cytosines [39, 40], histone post-translational 
modifications (PTMs) [41, 42], and non-coding RNAs [43, 44]. 
Classically, dense promoter DNA methylation is associated with 
transcriptional repression [45]. For instance, hypermethylation 
leads to the loss of HOXA5, resulting in JAG1 expression and 

NOTCH signaling contributing to kidney fibrosis [46]. However, 
growing evidence suggests that promoter hypermethylation 
also appears to be associated with high transcriptional activity 
[47]. Collectively, targeting DNA methylation and other epige-
netic mechanisms has been believed to effectively affect the 
progression of nephrology [48]. A previous epigenome-wide 
association study (EWAS) found 19 DNA methylation sites that 
were significantly and reproducibly associated with eGFR or CKD 
[49]. And a recent study further demonstrated that methylation 
risk scores can improve disease state annotation and prediction of 
kidney disease development [50], providing potential pathways for 
the development of novel risk stratification methods, suggesting 
that EWAS can complement genotype variations uncovered 
by GWAS and provide powerful information about disease 
susceptibility and causality. 

The study of epigenetics, epigenomics, and metabolic mem-
ory may fill a critical gap in our understanding of kidney dis-
ease development, notably in diabetes, hypertension, and obesity-
attributed kidney disease areas. Genetic predisposition, as well 
as aging, contributes to epigenetic variability, and several envi-
ronmental factors, including exercise and diet, further interact 
with the human epigenome [51]. The persistent effects of high 
glucose through metabolic memory remain a major hurdle in 
the effective management of diabetic kidney disease (DKD) [52]. 
The senescence-associated cyclin-dependent kinase inhibitor p21 
(Cdkn1a) was the top hit among genes persistently induced by 
hyperglycemia and was associated with induction of the p53-
p21 pathway. Recent research indicates that prolonged expression 
of tubular p21 in DKD correlates with the demethylation of its 
promoter and a decrease in DNA methyltransferase 1 (DNMT1) 
expression, while tubular and urinary p21 levels are linked to 
the severity of DKD and stay high even with better human blood 
glucose levels [53]. These studies support not only a role for 
epigenetics in kidney disease development but also epigenetic 
alterations as a response to disease, which hold promise for future 
therapeutic strategies. 

Proteomics and metabolomics relate directly to 
the pathological symptoms and clinical 
parameters 
As downstream molecules of the genome, the proteome and 
metabolome represent the integrated effects of gene function, 
also known as the ‘functional genome’. The purpose is to under-
stand the genotype–phenotype relationships on a genome-wide 
scale and to reflects the influence of environmental exposures 
beyond gene coding [54]. The proteome and metabolome offer 
distinct advantages in kidney disease [55]: the core specimens 
for clinical testing of kidney disease, such as blood and urine, 
contain metabolites (such as urea, creatinine, glucose, and uric 
acid) and proteins (such as albumin, cystatin C, complement, and 
parathyroid hormone), relate more directly to the pathological 
symptoms and clinical parameters observed in patients, which 
can also serve as dynamic therapeutic targets in response to 
disease and treatment changes, as well as specialized tools for 
metabolic biomarker and pathway analysis [56]. Furthermore, 
compared to the genome, the proteome and metabolome pro-
vide biological information at distinct times and locations: as 
functional products of gene expression, they exhibit considerable 
dynamism and variability, yielding different results in different 
locations such as the liver, muscles, kidneys, blood, and urine, and 
showing significant heterogeneity among tissues like glomerular 
cells, endothelial cells, and tubular cells [57]. Therefore, targeted 
proteomics is advantageous for identifying the heterogeneous
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disease mechanisms underlying clinical manifestations and iden-
tifying drug targets for targeted therapy. 

Significantly, in contrast to genomic studies, the proteome and 
metabolome do not deduce causality. Proteins found in urine 
could indicate distinct biological activities in the kidney, yet they 
might also suffer general damage due to the glomerular filtration 
barrier. Nonetheless, the proteome and metabolome are crucial in 
comprehending the disease’s developmental phase and directing 
both diagnosis and treatment. An illustrative milestone in kidney 
proteomic research involves the discovery and precise identifi-
cation of anti-PLA2R in the serum of MN patients. Serum levels 
of these autoantibodies correlate with MN disease activity and 
response to immunosuppression, establishing it as a widely used 
non-invasive marker for MN detection in clinical settings [58]. 
Similar approaches have identified additional markers such as 
THSD7A and amyloid A1 [59], which offer additional prognostic 
insights based on PLA2R antibody levels. 

Single cell and spatial multi-omics: defining the 
atlas of cell states and niches in kidney 
Understanding kidney disease relies on recognizing the complex-
ity of different renal cell types and states, their associated molec-
ular profiles, and interactions within tissue neighborhoods. When 
kidney function progressively declines after injury, dynamic acute 
and chronic changes occur in the renal tubules and surrounding 
interstitial niche, leading to molecular diversity at the single-cell 
level [60]. The heterogeneity among cells is constituted by multi-
ple complex intracellular and intercellular interactions, hierarchi-
cal structures, and environmental variables, as well as temporal 
and spatial informational regulation [61]. Therefore, it is imper-
ative to employ finely-grained single-cell and spatially-resolved 
multi-omics approaches to understand the molecular hierarchy 
of a single cell from genome to phenome. Especially for RNA 
sequencing, This most widely used technology in genomics tool 
box has evolved from classic bulk RNA sequencing to popu-
lar single cell RNA sequencing and newly emerged spatial RNA 
sequencing [62]. 

In recent years, the explosive growth of single-cell technologies 
has unveiled previously underappreciated cellular heterogeneity 
and new cell state associations with gender, diseases, develop-
ment, and other processes [63]. Single-cell transcriptomics, cur-
rently the most mature single-cell omics method, initially rede-
fined cell types and subtypes in the kidney through the tran-
scriptional fingerprints of individual cells, generating compre-
hensive cellular atlases and identifying cell type-specific mark-
ers [64]. Recent research developments have extensively utilized 
these cell-specific gene maps to delineate pathways of disease 
progression and identify new molecular targets. For instance, a 
comprehensive analysis of macrophage transcriptomes in early 
diabetic nephropathy revealed dynamic changes in cellular phe-
notypes during disease progression and enhanced expression 
of pro-inflammatory or anti-inflammatory genes in a subset-
specific manner [65]. 

Spatial omics is widely acclaimed as the emerging frontier 
of life sciences [66]. Since spatial information in tissue context 
remains elusive despite the findings provided by scRNA-seq tech-
nologies regarding cellular heterogeneity within tissue types, it 
has given rise to the development of spatial omics [67]. Methods 
combining single-cell and spatial omics facilitate a deeper under-
standing of cell type-specific metabolism in complex tissues and 
greatly illustrate spatial characteristics and patterns of cells and 
genes. For example, single-cell spatial genomics studies of the 
human kidney can identify cell types as well as complex states 

associated with molecular signatures, and interactions within 
tissue neighborhoods in renal disease by establishing a multidi-
mensional single-cell-referenced map of healthy and damaged 
cell states and ecological niches [68]. Thus, the rise of ‘spatial 
multi-omics’ builds upon spatial single-omics (spatial genomics 
[69], spatial proteomics [70], spatial metabolomics [70], etc.) and 
encompasses a range of emerging technologies including array-
based spatial transcriptomics, microfluidic deterministic barcod-
ing strategies [71–73], DNA antibody labeling [74–77], and multi-
plex single-molecule fluorescence in situ hybridization [78, 79], 
offering a deeper understanding of molecular patterns of complex 
kidney tissues at multiple hierarchical dimensions. 

How to select proper machine leaning strategies 
Past difficulties in conventional analysis methods underscore the 
necessity for computers to possess the ability to acquire knowl-
edge autonomously. ML arises at the intersection of statistics and 
computer science, where the former learns relationships from 
data while the latter emphasizes efficient computational algo-
rithms [80]. Moreover, ML holds a crucial position for datasets that 
are too vast (comprising numerous independent data points) and 
intricate (involving numerous diverse features) for manual exam-
ination, or for the requirements to develop an automated, repli-
cable, and efficient research route [81]. For instance, computer-
based methods can identify drug–target interactions (DTI), reduc-
ing traditional experimental costs [82], especially playing a sig-
nificant role in new drug development processes. Utilizing omics 
data with ML approaches can establish classification models for 
various types of renal diseases [83], and even engage in numerous 
steps of patient disease management, such as predicting clinical 
risks, improving clinical care, assisting clinicians in diagnosis and 
treatment [84]. In practical clinical applications, the Food and 
Drug Administration has already permitted clinicians to utilize 
AI in various domains, such as diabetic retinopathy [85], where AI 
can perform routine diagnoses without the need for ophthalmol-
ogists to confirm them [86]. 

ML is becoming an indispensable tool in the analysis of bio-
logical data workflows. As its application proliferates explosively, 
understanding ML theory, appropriately selecting ML strategies 
based on biological theories [81], and evaluating the suitability of 
these methods are becoming increasingly critical (Fig. 2). 

Supervised learning versus unsupervised 
learning 
Defined by the presence/absence of labels in the datasets, ML can 
be classified into supervised learning and unsupervised learning 
(Fig. 2, Step  3).  

Supervised learning harnesses the power of labeled data to 
train models. Through training, the machine learns the relation-
ship between features and labels, enabling it to predict labels 
for new unlabeled feature data. For instance, gene expression 
prediction for genomic genes using classical labeled genes [87] 
or protein secondary structure prediction based on existing pro-
tein databases [88]. Supervised learning can further be catego-
rized into classification and regression tasks. Common algorithms 
include Support Vector Machine (SVM, a powerful regression and 
classification model that uses kernel functions to transform a 
non-separable problem into an easily solvable separable one), K-
Nearest Neighbors (one of the simplest classification methods), 
and Naive Bayesian Model (stable classification efficiency with 
few parameters to estimate) [89]. Additionally, widely used tree-
based models use a series of if-then rules to generate predictions 
from one or more decision trees. Examples include Random Forest
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Figure 2. Steps of training an ML model: in general, the process of training ML models using biomedical data involves three primary steps. The first step 
entails comprehensively understanding the input data and the tasks to be performed, thereby grasping the problem and significance from a biomedical 
perspective. The second step involves data partitioning for training, validation, and testing purposes. The training set is directly employed to train 
the model, the validation set is used to monitor training progress, and the testing set is utilized to evaluate model performance. Meanwhile, k-fold 
cross-validation with a separate testing set can also be employed. The third step involves model selection, contingent upon the nature of the data and 
prediction tasks, such as the number of features available per data point and the presence of labels. Subsequently, the accuracy of the selected model 
on the testing set is assessed and validated. Note: this schematic shows a fundamental process, not all scenarios. Additional issues like overfitting and  
hyperparameter tuning also need consideration. 

(RF, an ensemble method that builds many decision trees in par-
allel), and eXtreme Gradient Boosting (XGBoost [ 90], an ensemble 
method that builds many decision trees sequentially and is known 
for its exceptional performance in both speed and accuracy). 

In contrast, unsupervised learning focuses on uncovering hid-
den structures and patterns within unlabeled data. The unsu-
pervised learning models are used for three main tasks: clus-
tering, association, and dimensionality reduction. For instance,
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predicting drug responsiveness based on gene expression profiles 
of new patients where different patient subgroups are identi-
fied solely based on expression profiles without any information 
regarding drug responsiveness [91]. These identified subgroups 
can then be further studied for differential drug responsiveness, 
and new patients can be assigned to the most similar cluster 
based on their own expression profiles. 

Traditional ML versus deep learning 
Previously, some fundamental ML algorithms were mentioned 
and illustrated in Fig. 2, Step3, which are often referred to as 
‘traditional machine learning’. When developing ML methods for 
biological data, traditional ML is still regarded as the primary 
exploratory domain for finding the most suitable approaches for 
a given task. Many packages can be utilized to train such models, 
including scikit-learn [92] in Python, caret [93] in R,  and  MLJ [94] 
in Julia. 

In recent years, deep learning (DL) has emerged as the most 
effective approach for many tasks and a leading trend. Due to 
the large volume, diversity, heterogeneity, complexity, and often 
ill-understood nature of data in biology and medicine, DL tech-
niques may be particularly well-suited to solving problems in 
these data-rich disciplines [95]. As a specific type of ML, DL 
conceptualizes the vast world as nested hierarchical systems of 
concepts, defining complex concepts in terms of simpler ones. 
The specific operation involves presenting inputs in the visible 
layer, then extracting a series of increasingly abstract features 
in hidden layers, and finally establishing an output layer. Arti-
ficial Neural Networks (ANNs) are a method of DL and the pri-
mary mode adopted. Of which Convolutional Neural Networks 
(CNNs) are specifically designed for processing data with grid-
like structures, making them well-suited for image-like data and 
widely applied in various medical images, including radiology, 
ultrasound, endoscopy, ophthalmology, and pathology. Currently 
popular algorithms include R-CNN, Fast R-CNN, Faster R-CNN, 
PFN, PSPNet, SSD, YOLO, CenterNet, and EfficientNet [96]. 

However, despite its numerous advantages, the application of 
DL remains restricted to specific domains characterized by large 
datasets (e.g. millions of data points), numerous features per 
data point, and highly structured features (e.g. adjacent pixels in 
images). Biological data, such as DNA, RNA, protein sequences 
[97], and microscopic images [98], fulfills these criteria and has 
seen successful implementation. Nevertheless, the demand for 
substantial datasets can also render DL suboptimal, even when 
the other conditions are met. Thus, developing architectures 
for deep neural networks and training them remains a time-
consuming and computationally expensive endeavor. In contrast, 
traditional models such as SVM and RF offer faster development 
and testing cycles for specific problems. Therefore, when 
exploring and selecting ANNs, it is advisable to concurrently train 
a traditional ML model and conduct a systematic comparison 
with ANN-based models [99]. 

Data augmentation [100] significantly expands the amount 
and variety of data available for training without actually collect-
ing new samples. This is particularly valuable for biological and 
medical data, where collecting large datasets is challenging due 
to privacy concerns and labeling costs. Data augmentation tech-
niques range from basic yet highly effective transformations such 
as cropping, padding, and flipping, to advanced generative models 
[101]. These data augmentation techniques can be divided into 
two broad categories: transformation of original data (including 
affine, erasing, elastic and pixel-level) and generation of artificial 
data (including generative models, feature mixing, model based 

and reconstruction-based method). Depending on the nature of 
the input and the visual task, different data augmentation strate-
gies may perform differently. For this reason, it is conceivable that 
each biological task requires specific augmentation strategies 
that generate plausible data samples and effectively regularize 
deep neural networks. For example, automatically segmenting 
kidneys in different clinical imaging modalities remains a sig-
nificant challenge due to the kidneys’ varied shapes and image 
intensity distributions. To build a robust kidney segmentation 
model, several studies have been proposed in the literature of 
computed tomography [102, 103], magnetic resonance [104], and 
ultrasound [105], A recent systematic literature review found 
consistent benefits across all organs, modalities, and tasks, with 
the use of data augmentation, from the simplest affine transfor-
mations to the most complex generative models [106]. 

Current applications and clinical insights in 
kidney research 
In summary, there are three key aspects of kidney disease appli-
cations (Fig. 3): (1) accurate prediction: predicting the risk of dis-
ease progression and improving medical decisions; (2) mechanism 
elucidation: emphasizing the extraction of regularities from the 
biological internal mechanisms to further understand the molec-
ular mechanisms of diseases; and (3) digital pathological image 
analysis of kidneys. 

Making accurate prediction 
Predicting the risk of disease progression 
The risk prediction models not only aid clinicians in diagnosis and 
treatment but also identify new risk factors for timely interven-
tion in disease management. Acute kidney injury (AKI) is a com-
mon life-threatening condition in kidney disease [107], responsi-
ble for 11% of inpatient deaths due to failure to recognize and 
treat it promptly. Hence, early identification, timely detection of 
risk factors and early intervention are vital for their survival and 
prognosis [108–111]. A common framework involves inputting fea-
tures at each time point into the statistical model and outputting 
the probability of any severity stage of AKI occurring in a future 
time, which exceeds a selected operational threshold to produce 
a positive prediction. As a case in point, a DL-based continuous 
AKI risk prediction model can predict AKI events of any severity 
occurring 48 hours in advance with an accuracy of 55.8% and 
predict 90.2% of AKI cases requiring dialysis [108], demonstrating 
its universality and potential application as a clinical decision 
support tool for improving AKI detection and outcomes [112]. 

End-stage renal disease (ESRD) marks the final stage of 
renal failure. Early prevention and intervention can significantly 
postpone the initiation of renal replacement therapy, improving 
patient quality of life. Recent studies have utilized ANNs to 
develop neural network classifiers [113], also known as clinical 
decision support systems, to predict ESRD based on clinical data 
and omics data from kidney biopsies, enabling the identification 
of high-risk individuals, forecasting time-to-event endpoints, and 
conducting external validation through follow-up. For example, 
for type 1 diabetes patients, currently developed ESRD risk 
prediction models can predict the risk of ESKD for 5 years based on 
routine clinical data (age, gender, duration of diabetes, estimated 
glomerular filtration rate, micro and macroalbuminuria, glycated 
hemoglobin, smoking, and history of cardiovascular disease), 
providing a basis for clinical decision-making [114]. However, the 
5-year prediction period is relatively short for type 1 diabetes 
patients (most of whom are young, yet ESRD progression is 
very long), posing a common challenge for such prediction
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Figure 3. Employing ML to integrate multi-omics molecular data and clinical data for kidney disease research. 

models [ 115]. One solution is to consider establishing lifetime 
prediction models to cover longer time spans, which can not 
only improve the accuracy but also estimate the effects of 
lifestyle changes and preventive drug use (such as reducing blood 
pressure, HbA1c, etc.). 

Predicting response to treatment 
As chronic diseases, kidney diseases critically require novel meth-
ods to elucidate intrinsic therapeutic effects and evaluate treat-
ment outcomes. After a certain treatment, transcriptomic and 

metabolomic data can quantitatively compare the patient’s acti-
vation levels in a certain pathway at different time points to 
predict the response to a specific therapy. To elaborate, by con-
necting genes, drugs, and disease states through common gene 
expression features [116], the mechanism of small molecules can 
be inferred from transcript expression levels, allowing functional 
annotation of genetic variation in disease genes, and informing 
clinical trials for drug development. The quantitative scoring of 
transcriptional features has been used to identify diverse fea-
tures related to kidney disease, including features of podocyte
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development reactivated [117] in patients with glomerular dis-
ease and endothelial cell characteristics indicating the response 
to steroids in patients with focal segmental glomerulosclero-
sis [118]. These features would be essential for identifying spe-
cific pathway activations and evaluating drug efficacy in disease 
settings. 

The predictive model for renal replacement therapy is another 
important research area. For example, transplant renal dysfunc-
tion is a common adverse outcome observed after kidney trans-
plantation. A computer-aided diagnostic system based on DL can 
early detect acute renal transplant rejection [119]. An unsuper-
vised archetype analysis learning method integrating clinical, 
functional, immunological, and histological parameters can strat-
ify the heterogeneity of transplant renal dysfunction based on 
different long-term allograft survival rates and establish an online 
application for clinical practice based on real patients [120]. 

Prognostic biomarkers prediction 
CKD typically evolves over many years, often with a long latent 
period where the disease remains clinically silent. Diagnosis, eval-
uation, and treatment rely primarily on biomarkers, which serve 
as vital indicators marking structural and functional changes in 
organisms, crucial for disease staging, drug development, and 
treatment assessment. Studies have been conducted to predict 
potential targets and new molecular markers among a variety 
of kidney-related diseases such as FOSL1/2 in IgA Nephropathy 
(IgAN) [121], IFI27 in lupus nephritis [122, 123], DUSP1 in hyper-
tensive nephropathy [124], and RPTOR in diabetic nephropathy 
[125]. Nonetheless, despite the theoretical significance of these 
biomarkers, they still need high-quality prospective cohort to 
validate their clinical utility and mechanistic implications. 

The development of new biomarkers contributes to the 
advancement of existing clinical diagnostics. Currently, the 
diagnostic type of CKD and its severity are based on clinical 
features such as eGFR, proteinuria [126], and pathologic features 
from renal biopsy samples. However, this categorization fails to 
capture the diversity of molecular pathways that may lead to 
phenotypically similar renal diseases, which in turn hampers our 
ability to predict long-term prognosis or to test and apply targeted 
therapies. Therefore, an increasing number of studies are focusing 
on developing new biomarkers to identify CKD progression, 
improving the diagnostic classification of CKD [127]. Algorithms 
based on differential network enrichment analysis can partition 
lipidomic profiles associated with CKD progression severity, 
suggesting that alterations in triacylglycerol and cardiolipin-
phosphatidylethanolamine precede the clinical outcome of ESRD 
by several years [128]. In addition, identifying injury features 
of the kidney in urine proteomics is also a significant research 
issue [129–132]. Integrating urine proteomic datasets with kidney 
biopsy tissue transcriptomic data and other clinical information 
can develop risk prediction models for CKD progression. Urinary 
epidermal growth factor (uEGF) may be an effective biomarker 
for predicting pediatric CKD progression [129], where low levels 
of uEGF can predict CKD progression, and reflecting the degree of 
tubulointerstitial damage. 

Identify novel disease mechanisms 
For complicated diseases like nephrology, distinguishing causative 
factors is critical to clarifying diagnosis and guiding treatment 
selection. Nevertheless, substantial variability in disease pro-
gression risk and treatment response within identical diag-
nostic conditions underscores the heterogeneity of underlying 
molecular mechanisms. Thus, identifying pivotal therapeutic 

pathways for complex, multifactorial diseases and elucidating 
their intrinsic mechanisms remain formidable challenges [133]. 
High-throughput analysis offers new opportunities for under-
standing the intrinsic molecular mechanisms corresponding to 
these complex pathophysiological processes. Integrated multi-
omics approaches can be used for novel disease classification 
[127], reclassifying patients into molecularly defined subgroups, 
thereby revealing the intrinsic molecular mechanisms and 
biological pathways of various diseases. For instance, integrating 
IgAN gene expression datasets into blood cells and systematically 
validating them through experimental verification to identify 
aberrantly expressed genes and biological pathways [134]. It 
was found that these aberrantly expressed genes and pathways 
are mainly enriched in the intestinal immune network and are 
involved in IgA production and autophagy processes. Additionally, 
PTEN in B cells may be involved in the mechanism of Gd-IgA1 
production. Another transcriptomic analysis found expression 
characteristics and possible regulatory mechanisms of interferon-
stimulated genes in lupus patients [135]: monocytes, B cells, 
dendritic cells, and granulocytes significantly increased, while 
subsets of T cells significantly decreased. Genomic and epige-
nomic omics research has also identified kidney mechanisms 
mediated by genes associated with hypertension susceptibility, 
revealing 179 unique renal genes involved in blood pressure 
control [136]. 

Radiomics and image analysis: digital pathology 
With collaborative efforts in collecting, analyzing, and integrating 
pathological data, renal pathology is entering the digital era [13]. 
Conventional stained images on slides are being transformed 
into digital format images, known as whole slide images (WSI), 
which involve four consecutive processes [137]: image acquisi-
tion, storage, processing, and visualization. WSI contains rich 
information from traditional staining, single-channel, or multi-
channel immunohistochemistry staining, as well as multi-omics 
data [138]. Continuous technological advancements in digital 
scanners, image visualization methods, and their integration 
with algorithms provide opportunities for the application and 
development of WSI. WSI has been widely used in various aspects 
such as digital diagnosis, remote consultations, and research 
assistance, with studies confirming its high consistency with 
traditional light microscopy (CLM) for diagnosis [139]. 

The main uses of digital imaging in renal pathology can be 
divided into three main operational modes: telepathology, dig-
ital pathology, and computational image analysis [13]. Digital 
pathology includes digital workflows and imaging solutions aim-
ing to create an application environment for accessing, man-
aging, interpreting, and searching WSI or other digital content. 
Telepathology, one of the earliest applications of WSI, involves 
transmitting digital images to another remote site for analysis. 
It has now become a common tool for real-time assessment of 
biopsy tissue adequacy and diagnosis with widespread validation 
[140]. Especially for kidney transplantation, assessment models, 
evaluating the proportion of glomerulosclerosis can rapidly and 
accurately assess whether living donor kidney tissue is suitable 
for transplantation [141], potentially becoming an important part 
of clinical assessment of living donor kidney biopsies. Telepathol-
ogy can significantly optimize the workflow of nephrologists in 
the process of kidney transplantation procurement and eval-
uation. Computational image analysis, which generates exten-
sive data, relies heavily on advanced ML techniques to compre-
hensively extract features, patterns, and information in tissue 
pathology.
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Figure 4. The framework of current challenges and related methods in multi-omics kidney analysis. Overall, due to the structural and mechanistic 
complexity of kidney disease and the relative scarcity of research and data, there are challenges related to data availability, data heterogeneity, and 
model interpretability. Additionally, privacy protection concerns are more pronounced given the long-term chronic nature of the disease. Addressing 
these challenges requires substantial collaboration across various fields and global cooperation. 

In the past, ML was commonly used for quantitative analysis to 
assist in identifying pathological features, such as histological fea-
tures of diabetic nephropathy in rats [ 142], identifying glomerular 
lesions and intrinsic glomerular cell types [143]. However, with 
the explosive development of algorithms, the use of ML has the 
potential to elevate digital images from their basic role as visual 
assessments of disease status to more complex and comprehen-
sive roles, such as facilitating disease trajectory prediction and 
risk scoring for IgAN [144]. The implementation of these novel 
tools is positioning nephropathology at the forefront of defining 
new, integrated, biologically and clinically homogeneous disease 
categories, identifying patients at risk of progression, and trans-
forming current paradigms for the treatment and prevention of 
kidney diseases. 

Challenges and perspectives 
It is worth noting that a meta-analysis showed that ML models 
did not outperform traditional statistical prediction models like 
logistic regression (LR) in predicting AKI [145]. We must recognize 
that various AI technologies are still in development, and there 
remains a gap in achieving the ideal form of AI. Although DL 
is capable of tackling singular issues, it falls short as a com-
prehensive remedy for a range of different problems [146]. With 
approximately 33% of research being irreproducible in the stem 
cell field [147] and a significant lag in the field of big science 
and big data in nephrology (as mentioned before) [148], there are 
some common and specific issues that need to be considered 
(Fig. 4). 

Data availability 
One of the main challenges in kidney diseases is the relative 
scarcity of large, diverse datasets, particularly in the context of 
medical imaging-based DL [149]. Additionally, due to the involve-
ment of multiple technical domains, the quality and reliability 
of data often face difficulties such as batch effects [150], missing 
values [151], and measurement errors. Moreover, not only initial 
model training requires data, but continuous model training also 
relies on ongoing data supplement, validation, and improvement. 
Therefore, generating more global, secure and real-time updated 
invaluable resources for the research and clinical community is 
imperative. Various initiatives have been undertaken to achieve a 
comprehensive characterization of kidney biopsies across various 
CKD subtypes, including the Nephrotic Syndrome Study Net-
work [152], Transformative Research in Diabetic Nephropathy [153], 
Cure Glomerulonephropathy [154], and Kidney Precision Medicine 
Project [155]. When larger quantities are available, it becomes 
feasible to consider using more highly parameterized models, 
which hold great transformative potential. For instance, linking 
molecular data to EHRs could uncover molecular phenotypes 
of kidney diseases, enabling targeted monitoring, personalized 
treatment, and improved family counseling [156]. 

Data heterogeneity 
Specifically, patients with kidney disease often have comorbidities 
that make nephrology cohorts highly heterogeneous. Therefore, 
data standardization and data harmonization with the capability 
to arbitrarily integrate multi-modal datasets stand out to be
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concerned [157]. Additionally, since the model training processing 
also suffered from the classic ‘curse of dimensionality’, effectively 
reducing dimensions and selecting the most influential features 
and variables are crucial. To address these challenges, multiple 
new ML approaches have been proposed and employed such as 
a new deep neuro-fuzzy system consists of a deep structure in 
the rule layer and novel architecture in the fuzzifier layer to 
classify kidney cancer subgroups [158], as well as algorithms like 
RECODE for reducing noise in scRNA-seq data [159] and multifac-
tor dimensionality reduction for analyzing exponentially growing 
SNPs [160]. 

Model interpretability 
While pathological imaging radiomics research holds significant 
importance in nephropathology studies, a major limitation of cur-
rent DL models is their lack of interpretability compared to basic 
statistical regression models. This makes it challenging to under-
stand the significance of each network node and its role in model 
efficacy. In contrast, the low cost of training non-neural networks 
supports ablation programming [161], which helps identify useful 
features, leading to more robust, efficient, and interpretable mod-
els by revealing the significance of different model components 
and making the decision-making process more transparent. 

Recognizing this challenge, the ML community has also 
focused on developing new techniques to elucidate ‘black-box’ 
DL models. For example, activation maximization encompasses 
algorithms that use gradient descent to find inputs maximizing 
the model’s response, aiming to generate inputs that best 
represent a desired outcome [146]. 

Privacy preserving and data accessibility 
As data dissemination for training purposes increases, the 
standardization of secure data storage, retrieval, and access 
becomes crucial [162]. Sensitive medical information, such as 
CKD data containing long-term private information, cannot be 
shared without ensuring patient confidentiality and data security. 
Thus, achieving an appropriate balance between data accessibility 
and privacy preservation is essential and presents significant 
challenges. Algorithms have been developed for efficient feder-
ated learning [163], where many clients collaboratively train a 
model under the orchestration of a central server while keeping 
the training data decentralized, including FedAvg, FedBN, and 
the recent MetaFed [164]. Additionally, cryptographic techniques 
[165] and other alternative models [166] such as virtualization 
technologies have been introduced, enabling analysis without 
sharing the actual data. 

Interdisciplinary collaborations 
Combined efforts from researchers, clinicians, and data scientists, 
along with engagement from multiple stakeholders including 
healthcare organizations, government bodies, and the pharma-
ceutical and biotech industries, are necessary to better under-
stand the pathogenesis and prognosis of kidney disease, which is 
pivotal for final clinical deployment. The kidney community must 
mobilize to conduct more multi-center collaborative studies and 
to collect more data on metrics for monitoring diseases such as 
AKI and CKD. 

Conclusions 
Understanding and optimizing the advantages, strategies, imple-
mentation, and limitations of these ML approaches and multi-
omics techniques are essential for translating research findings 

into clinical practice. Overall, this integration has emerged as a 
revolutionary tool in the era of high-throughput kidney research. 
The success of this new integrated scientific paradigm undoubt-
edly requires active collaboration and communication across var-
ious disciplines. We believe that these specific measures will 
significantly contribute to the clinical prevention, early diagnosis, 
disease management, and monitoring of kidney diseases, thereby 
facilitating accurate disease diagnosis and personalized treat-
ment approaches. 

Key Points 
• This paper provides a comprehensive review of cur-

rent integration of multi-omics and machine learning in 
nephrology. 

• We review the multi-omics data generated and utilized 
in kidney research, especially for genetic variants as 
a key determining factor of disease and proteomics, 
epigenomics mediate crosstalk between genes and envi-
ronmental factors, proteomics and metabolomics that 
relate directly to the pathological symptoms and clinical 
parameters, as well as insights on single cell and spatial 
multi-omics defining the atlas of cell states and niches. 

• We demonstrate the general workflow for appropriately 
selecting ML strategies based on biological theories. 

• The key purpose of the integration is summarized into 
three aspects: making accurate prediction, including risk 
predictors, predicting response to therapy and prognos-
tic biomarkers prediction; uncovering further mecha-
nism; and digital pathological image analysis of kidneys. 

• We discuss major kidney-specific challenges and possi-
ble methods as a general framework about data avail-
ability, data heterogeneity, model interpretability, data 
accessibility, privacy-preserving issues, and our expecta-
tions of active interdisciplinary collaborations. 
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