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Abstract: The implementation of neural network regression prediction based on digital circuits is
one of the challenging problems in the field of machine learning and cognitive recognition, and it is
also an effective way to relieve the pressure of the Internet in the era of intelligence. As a nonlinear
network, the stochastic configuration network (SCN) is considered to be an effective method for
regression prediction due to its good performance in learning and generalization. Therefore, in this
paper, we adapt the SCN to regression analysis, and design and verify the field programmable
gate array (FPGA) framework to implement SCN model for the first time. In addition, in order to
improve the performance of the SCN model based on the FPGA, the implementation of the nonlinear
activation function on the FPGA is optimized, which effectively improves the prediction accuracy
while considering the utilization rate of hardware resources. Experimental results based on the
simulation data set and the real data set prove that the proposed FPGA framework successfully
implements the SCN regression prediction model, and the improved SCN model has higher accuracy
and a more stable performance. Compared with the extreme learning machine (ELM), the prediction
performance of the proposed SCN implementation model based on the FPGA for the simulation data
set and the real data set is improved by 56.37% and 17.35%, respectively.

Keywords: field programmable gate array; hardware neural networks; regression prediction;
stochastic configuration networks

1. Introduction

In the past few decades, the gradient-based learning method has been widely used in training
neural networks, such as the backpropagation (BP) algorithm, which uses the back propagation of error
to adjust the weight of the network. However, due to the improper learning step size, the convergence
speed of the algorithm is very slow, and it is easy to produce a local minimum value. So, a lot of
iterations are often needed to get more satisfactory accuracy. These problems have become the main
bottleneck restricting its development in the application field. Therefore, improving the learning
ability and generalization performance of neural network models is a challenging task. One solution
is to find an appropriate architecture for the neural network model. Artificial neural networks have
two important hyper-parameters, which are used to control the scale of the network: the number
of layers and the number of nodes in each hidden layer. The values of these parameters must be
specifically determined when configuring the network. However, there is no rule to determine the
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scale of the network. In the regression prediction application, most researchers set up a series of
models with different scales during the training process, and then selected the best one according to
the test results [1–3]. However, this kind of method increases the training cost and time. Thus, how
to determine the ideal number of hidden layer nodes before network training is an urgent problem
to be solved [4,5]. In order to solve this problem, a newly developed randomized learner model,
termed stochastic configuration networks (SCNs), was proposed by Wang et al. [6]. As a single-layer
feedforward neural network, the SCN belongs to the random neural network class. Although the
parameters of the SCN are also randomly generated, it is different from the existing randomized
learning algorithms for single layer feed-forward neural networks (SLFNNs); the SCN mainly randomly
assigns the input weights and biases of hidden nodes in the light of a supervisory mechanism, and the
output weights are analytically evaluated in either a constructive or selective manner. Compared
to other random neural networks, this random learning model is also different from the classical
random vector functional link (RVFL) network. The SCN restricts the assignment of input weights and
bias by introducing inequality constraints. Under the supervisory mechanism, SCN has a universal
approximation property with the increase of the number of hidden nodes [7–10]. Instead of training a
model with a fixed architecture, the construction process of the SCN starts with a small sized network
and then adds hidden nodes incrementally until an acceptable tolerance is achieved, then solves a
global least squares problem with the current learner model to find the output weights. Its advantages
ar: the minimization of a convex cost that avoids the presence of local minima, good generalization
performance, and a notable representation ability [6]. Compared with deep neural networks, the SCN
has lower training complexity and faster learning speed.

Nowadays, random neural networks have left impressive performance in the fields of deep learning
and cognitive science. Compared with being applied to computer platforms, the implementation
of random neural networks on reconfigurable digital platforms, such as field programmable gate
array (FPGA), shows its huge and unique advantages: First, in the neural domain where parallelism
and distributed computing are inherently involved, FPGAs have increased their speed with their
very high computing power [11]. Second, with the miniaturization of component manufacturing
technology [12], neural networks are becoming more and more widespread in embedded applications.
Third, compared to computers, hardware systems can reduce costs by decreasing power requirements
and lowering the number of components [13]. Fourth, parallel and distributed architectures have
a high fault tolerance rate for system components [14], and provide support for applications that
require security. Also today, a large number of mobile devices are connected to the internet, and cloud
computing data centers are under excessive load. The implementation of neural networks in software
requires a lot of computing resources. In order to reduce the Internet load, the collaborative use of
edge and cloud computing is particularly important. FPGA-based random neural networks stand at
the edge-computing perspective and move part of the computational power to data collection sources,
thereby reducing the network load [15]. With the surge in data volume and the constant demand for
computing power, the original computing framework consisting solely of CPUs has been unable to
meet the real-time requirements of the edge-computing system, while one of the greatest value of
FPGAs is that they are reconfigurable, so designs can be updated at any time, even after the hardware
has been deployed in the field. By virtue of this advantage and high efficiency, FPGA is widely used in
many edge computing scenarios [16]. At the same time, with the development of Internet of Things
(IoT), hubs should support a large number of ultra-low power network protocols, various applications
workloads, and be responsible for completing authentication, encryption, and security. This kind of
changing and uncertain environment is a terrible thing for ASIC or SoC, but it is easy to implement for
FPGA with very high running speed and computational efficiency. Therefore, the implementation of
neural networks on FPGAs has very good development prospects and application values.

Researchers have done a lot of works on the hardware implementation of random neural networks
and made many achievements. In 2012, Decherchi et al. implemented the classification prediction
model of extreme learning machine (ELM) [17–19] on the FPGA and achieved high-precision prediction
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results [20]. In 2018, Ragusa et al. improved the hardware implementation model of the ELM classifier
for resource-constrained devices, effectively balancing accuracy, and network complexity, and reducing
resource utilization [21]. In 2019, Safaei et al. proposed a specialized system on chip (SoC) hardware
implementation and design approach for embedded online sequential ELM (OS-ELM) classification,
which has been optimized for efficiency in real-time applications [22].

Inspired by the above papers, this paper designs and completes the implementation of the SCN
regression prediction model on the FPGA. The main contributions of this paper are listed below.
(1) The SCN model exhibiting good performance in learning and generalization is investigated for
regression prediction; this is the first time the SCN model on the FPGA has been implemented.
(2) A new nonlinear activation function is proposed to optimize the FPGA implementation of the SCN
model; this new activation function, unlike the previous ones, further considers the prediction accuracy
and hardware resource utilization. (3) Experimental results from simulation and real data sets indicate
that the proposed FPGA framework successfully implements the SCN regression prediction model.
(4) The prediction performance of the proposed FPGA implementation of the SCN model is significantly
improved compared with the same case studies for other implementation in the literature [20].

The rest of this paper is organized as follows. Section 2 describes the specifics of the SCN.
Section 3 proposes the hardware architecture of the SCN. Section 4 proposes methods for improving
and optimizing the performance of FPGA models. Section 5 verifies the designed SCN hardware
prediction model on the simulation data set and the real industrial data set. Finally, the conclusion is
drawn in Section 6.

2. Stochastic Configuration Networks

For a target function f : Rd
→ Rm , suppose that an SCN model has already been built with L− 1

hidden nodes, i.e., fL−1 =
∑L−1

l=1 βlφl
(
ωT

l x + bl
)
(L = 1, 2, . . . ; f0 = 0), where βl =

[
βl,1, βl,2, . . . , βl,m

]T
,

and φl
(
ωT

l + bl
)

is an activation function of the lth hidden node with random input weights ωl and

bias bl. e∗L−1 = f − fL−1 =
[
e∗L−1,1, . . . , e∗L−1,m

]
denotes the residual error where

[
β∗1, β∗2, . . . , β∗L−1

]
=

argminβ‖ f −
∑L−1

l=1 βlφl‖.
Given a training data set with N sample pairs

{
(xn, yn), n = 1, 2, . . . , N

}
, where xn ∈ Rd and yn ∈ Rm,

let X ∈ RN×d and Y ∈ RN×m represent the input and output data matrix; eL−1(X) ∈ RN×m be the residual

error matrix, where each column eL−1,q(X) =
[
eL−1,q(x1), . . . , eL−1,q(xN)

]T
∈ RN, q = 1, 2, . . . , m. Denote

the output vector of the Lth hidden node φL for the input X by

hL(X) =
[
φL

(
ωT

L x1 + bL
)
, . . . ,φL

(
ωT

L xN + bL
)]T

. (1)

Thus, the hidden layer output matrix of fL can be expressed as HL = [h1, h2, . . . , hL]. Denoted by

ξL,q =

(
eT
L−1,q(X)·hL(X)

)2

hT
L (X)·hL(X)

− (1− r− µL)eT
L−1,q(X)eL−1,q(X),

q = 1, 2, . . . , m, (2)

where 0 < r < 1 and
{
µL

}
is a nonnegative real number sequence with limL→+∞µL = 0 subjected

to µL ≤ (1− r). The SCN algorithm firstly generates a large pool of Tmax candidate nodes, namely{
φ
(1)
L ,φ(2)

L , . . . ,φ(Tmax)
L

}
, in varying intervals. Then, it picks up those candidate nodes whose minimal

value of the set
{
ξL,1, . . . , ξL,m

}
is positive. Then, the candidate note φ∗L with the largest value of

ξL =
∑m

q=1 ξL,q will be assigned as the Lth hidden node for fL. Thus, the output weight matrix of the

SCN model, β = [β1, β2, . . . , βL]
T
∈ RL×m, could be computed by the standard least squares method,

that is,
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β∗ = argmin
β

∥∥∥HLβ−Y
∥∥∥2

F = H†LY, (3)

where H†L is the Moore-Penrose generalized inverse of the matrix HL, and ‖ · ‖F represents the Frobenius
norm [23–25].

The construction process of the SCN starts with a small sized network, then incrementally adds
hidden nodes followed by computing the output weights. This process continues until the model
meets some termination criteria. The supervisory mechanism of the SCN guarantees the universal
approximation property.

3. FPGA-Based Implementation of the SCN

The implementation of the SCN on the FPGA needs to balance accuracy, speed, and resource
utilization. The proposed architecture should make full use of the advantages of FPGA parallel
processing. Due to the fact that the SCN adopts the method of gradually increasing hidden nodes to
find the optimal solution, the flexibility of the model must be fully considered in the design, so that it
can make specific changes for different problems.

Figure 1 shows the overall architecture of the SCN inference prediction model based on the FPGA.
The whole architecture includes three parts: the first part belongs to a parallel processing structure,
and the second and third parts adopt a pipeline structure. The first part, Input Part, stores the feature
vector x = [x1, . . . , xn], the weights ω j( j = 1, . . . , H) connecting the input layer to the hidden node
and the bias term b j( j = 1, . . . , H). The feature vector x adopts a signed, two-complement fixed-point
representation. The binary number length of each feature vector is a + b + 1, where a is the number
of digits representing a positive number, b is the number of digits representing a decimal, and the
remaining one is used to represent a sign bit. Negative numbers are coded by inverting their absolute
value and adding 1. In order to facilitate the calculation by FPGA, the weight value ω j is specially
processed and can be expressed as

ω j = sign(r1)2−r2 , (4)

where r1 ∈ [−1, 1] and r2 ∈ [0, R] are random quantities (in the program, r2 can take the following
values: 1, 2, 3). If x is extended to x = [x1, . . . , xn, 1] and ω j to ω j ∈ Rn+1, the bias term b j can be
embedded in ω j. The second part, Neuron Part, receives the results of the parallel processing from the
first part and calculates the output of the activation function. The third part, Output Part, receives the
output of the second part and calculates the output neurons through serial processing. A finite-state
machine controls the entire process, ensuring that the calculations of the third part are always one
clock cycle ahead from the calculations of the first and second parts.
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(1) Input Part: The Input module stores all extended feature vectors xi =
[
xi1, xi2, . . . , xi(n+1)

]T
∈ Rn+1,

and the Shifter modules stores the absolute value of extended random weights ω j ∈ Rn+1. Due to
the special processing of ω j, the FPGA can input (n + 1)×H results into the Mux module through
parallel shift calculation. The Mux module outputs the calculation results in turn according to the
finite state machine, and outputs (n + 1) items each time.

(2) Neuron Part: First, the Inverting module receives the output of the first part according to the
signs of the random weights ω j ∈ Rn+1, and applies a bitwise NOT to the result item whose
corresponding random weight is negative. Then, the output (n + 1) result and the corresponding
item in the ones module are input to the Sum module for summation, where the Ones module
compensates the difference “1” between the calculated result and the true value due to the
bitwise NOT. Finally, the result of the Sum module is activated by the sigmoid function of the
activation module to obtain the output ϕ

(
ω jx + b j

)
of the hidden layer. The activation module

should be a hardware implementation of the activation function. This is an extremely critical
step. The implementation and optimization of the activation function in FPGA are specifically
introduced in Section 4.1.

(3) Output Part: The Mac module multiplies the output h j = ϕ
(
ω jx + b j

)
of the hidden layer by the

weight β j from the hidden layer to the output layer according to the control of the state machine.
The calculation results are summed by an accumulator, and then the output Y of the neural
network is obtained.

4. Improvement and Optimization of FPGA-Based Model Performance

When the FPGA implements the single hidden layer neural network prediction model, the error
sources are mainly the approximation degree of the nonlinear activation function and the difference
between the data and the actual floating point number due to numerical coding.

4.1. Proposal of Hardware-Oriented Sigmoid Function

The sigmoid function is the most commonly used nonlinear activation function. When the SCN is
implemented on FPGA, the sigmoid function (Equation (5)) is selected:

f (x) =
1

1 + e−x . (5)

Because factors such as accuracy and resources must be considered at the same time,
the implementation of nonlinear functions on the FPGA is very complicated [26,27]. Division
and exponential operations are extremely demanding operations, requiring a large amount of area
resources and slow convergence, so it is not feasible to directly implement the sigmoid function on
the FPGA. Polynomial approximation and Look-Up-Table (LUT) are two common methods when the
accuracy and speed meet the requirements.

In terms of the approximation of the sigmoid function, researchers have made many explorations.
Tommiska proposed the piecewise linear approximation of the sigmoid function in [28], which is also
the traditional method of sigmoid function implementation in hardware:

f (x) =


0, x < −2

0.25x + 0.5, −2 ≤ x ≤ 2
1, x > 2

. (6)

This scheme was proved to be effective in solving hardware implementation of classification
problems in [20]. The approximation of the activation function has little effect on classification problems,
and the results of classification problems are often determined through comparison operations.
The regression problem needs to directly deal with the calculation results of the FPGA-based model,
which requires that the implementation of the activation function in hardware has good similarity with
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the original sigmoid function. It can be seen from Equation (6) that when −2 ≤ x ≤ 2, f (x) = 0.25x+ 0.5
is the first-order Taylor expansion of the sigmoid function. Figure 2 shows that Equation (6) has an
ideal approximation to the sigmoid function on x ∈ [−1, 1], but not on x ∈ [−3,−1)∪ (1, 3]. Equation (7)
gives the third-order Taylor expansion of the sigmoid function:

f (x) =


0.167, x < −2

−0.021x3 + 0.25x + 0.5, −2 ≤ x ≤ 2
0.833, 2 < x

. (7)

However, it is known from Figure 2 that Equation (7) does not improve the problem of Equation (6),
and the approximation effect is still not ideal. Considering the use of resources, the higher-order Taylor
expansion (x ≥ 5) the sigmoid function is no longer suitable for hardware implementation. Therefore,
a combinational approximation should be found on the basis of Equation (7). A method of Piecewise
second-order approximation of sigmoid function was proposed in [29] (Equation (8)):

f (x) =
{
−0.03125x2 + 0.5, −3 ≤ x < 0
0.03125x2 + 0.5, 0 ≤ x ≤ 3

. (8)

Due to excessive consideration of resource utilization in [29], the proposed results are severely
impaired in the approximation of the sigmoid function shown in Figure 2. The Equation (9) proposed
in this paper improves the second-order approximation of Equation (8) on the basis of Equation (7),
and applies it to x ∈ [−3,−1)∪ (1, 3]:

f (x) =


0.03913x2 + 0.2651x + 0.5, −3 ≤ x < −1
−0.021x3 + 0.25x + 0.5, −1 ≤ x ≤ 1
−0.03913x2 + 0.2651x + 0.5, 1 < x ≤ 3

. (9)

As shown in Figure 2, comparing with the sigmoid function, Equation (9) almost perfectly presents
the sigmoid function.
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In fact, many researchers have given different approximation methods for the implementation of
the sigmoid function on FPGA. In 2012, Panicker et al. proposed a piecewise linear approximation
method in [30]:

f (x) =


0.03125|x|+ 0.84375, 2.375 ≤ |x| ≤ 3

0.125|x|+ 0.625, 1 ≤ |x| < 2.375
0.25|x|+ 0.5, 0 ≤ |x| < 1

. (10)

In 2015, Khodja et al. proposed a piecewise second-order approximation method in [31]:

f (x) =
{

0.0332x2 + 0.2549x + 0.5, −3 ≤ x < 0
−0.0332x2 + 0.2549x + 0.5, 0 ≤ x ≤ 3

. (11)

In 2016, Ngah et al. also proposed a piecewise second-order approximation method in [32]:

f (x) =
 0.5× (1− 0.25|x|)2, −3 ≤ x < 0

1− 0.5× (1− 0.25|x|)2, 0 ≤ x ≤ 3
. (12)

In order to qualitatively analyze the approximation of sigmoid function by Equations (6)–(12),
according to the method of [29], the maximum and average errors are used to evaluate the approximation
degree of the sigmoid function. If a function f (x) is approximated by a function f̂ (x) the interval
x ∈ (η0, η1), the average and maximum errors are obtained by uniformly sampling x on 106 equally
spaced points in the domain of (η0, η1). Average Error =

∑106
−1

i=0

∣∣∣ f̂ (xi)− f (xi)
∣∣∣

106

Maximum Error = max
η0<xi<η1

∣∣∣ f̂ (xi) − f (xi)
∣∣∣ (13)

According to Equation (13), whenη0 = −3, η1 = 3, the average and maximum errors corresponding
to Equations (6)–(12) are shown in Table 1.

Table 1. The average and maximum errors of Equations (6)–(12).

Average Error Maximum Error

Equation (6) 0.048187 0.1192
Equation (7) 0.035147 0.11924
Equation (8) 0.1914 0.25718
Equation (9) 0.000606 0.00244
Equation (10) 0.006037 0.018941
Equation (11) 0.006228 0.013326
Equation (12) 0.008038 0.016176

As shown in Table 1, the average error between the Equation (9) proposed in this paper and the
sigmoid function is less than 0.001, which best completes the approximation of the sigmoid function.

Table 2 lists the resource utilization rate (Proportion of Slice LUTS used to available Slice LUTS)
of Equations (6), (7) and (9) after synthesizing on Xilinx’s FPGA XC7Z020CLG400-2. As can be seen
from Table 2, the resource utilization rate of Equation (9) is similar to that of Equations (6) and (7).
On the regression model that requires higher calculation accuracy, the proposed Equation (9) can make
the calculation result of FPGA prediction model closer to the real value, which is a better choice for
balancing accuracy and resource utilization.

Table 2. Resource utilization of the sigmoid function with different approximation methods.

Equation (6) Equation (7) Equation (9)

Resource utilization 0.0282% 0.0320% 0.0469%
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4.2. Format of Numerical Representation on FPGA

The FPGA architecture uses the signed, two-complement fixed-point representation for numbers.
The difference between the encoded number and the target value may also be one of the reasons for
the error. Table 2 shows the comparison between the binary number and the target value in the 16-bit
(a = 4, b = 11) or 21-bit (a = 4, b = 16) encoding mode.

Table 3 shows that the 16-bit and 21-bit encoded numbers are almost the same as the target values,
proving that the results of the two different encoded numbers are basically equal. In order to save
resources, the FPGA-based model uses a 16-bit coding format.

Table 3. Comparison of encoded binary numbers with target values.

Target Value: λtarget Binary Number Decimal Value for Binary Number:
λdecimal

Relative Error:
|λtarget−λdecimal|

|λtarget|

0.294294 0000001001011010 0.293945 0.119%
−1.086123 1111011101010000 −1.085937 0.017%
0.294294 000000100101101010110 0.294281 0.004%
−1.086123 111101110100111110100 −1.086120 0.003%

5. Experimental Results

The regression prediction model based on the FPGA is tested on simulation data set and real
industrial data set. The simulation data set consists of 1200 patterns (located in 1-eigenvalue space),
of which the training set contains 600 patterns and the test set contains 600 patterns. The real hot-rolled
strip crown data set were collected from a 1780 mm hot strip production line of a company in Hebei
Province, China. In a hot-rolled process, crown is defined as the difference of thickness between the
center and a point 40 mm from the edge of the strip. For strip products, smaller crown is required,
which can save materials and reduce costs. Therefore, control of strip crown is a high priority for
hot-rolled production process. The crown of the strip is decided by the 3D deformation in finishing mill,
it can be regarded as the reflection of the cross-sectional shape of roll gap at the outlet of finishing mill.
Thus, all the factors which can affect the cross-sectional shape of roll gap at the outlet of deformation
zone are the factors that affect the crown value of strip. In this paper, nine important attributes in
hot-rolled strip production are selected as input variables. They are: Cooling water flow of rolling
mill (%), Entrance temperature (◦C), Exit temperature (◦C), Strip width (m), Entrance thickness (mm),
Exit thickness (mm), Bending force (kN), Rolling force (kN) and Entry profile (µm). The real hot-rolled
strip crown data set contains 474 patterns (located in 9 eigenvalue space), of which the training set
contains 380 patterns and the test set contains 94 patterns. All data are normalized within the range
of [−1, 1]. The experimental test realizes the regression prediction of the SCN based on the FPGA.
In [20], the ELM model implemented on the FPGA is applied to the detection of classification problems.
We modified the FPGA-based ELM model in [20] and adopted it to the regression problem. We give
the experimental results of the FPGA-based ELM model on the simulation data set and the real data
set, and compare it with the proposed FPGA-based SCN model to explain the superiority of the SCN.
The FPGA used in the experiment is Xilinx’s FPGA XC7Z020CLG400-2.

Figure 3 shows the functional simulation results of the input and output signals of the modules
in the FPGA architecture, including: clock signal (net_clk), reset signal (net_reset), pattern selection
signal (input_select), an output signal of the Input module (Input_out0—an eigenvalue), an output of
the Shifter module (Shifter1_out0), an output of the Mux module (Mux_out0), an output of the Inverting
module (Inverting_out0), an output of the Sum module (Sum_out0), an output of the activation module
(activation_out0), output enable signal (out0_ready) of the Mac module which indicates that the result
has been calculated and the final output of the system (out0) in the Mac module. Taking the signal in
Figure 3 as an example, it represents the calculation process of the data of one pattern in the FPGA,
where the value “10′h002” of the Signal input_select represents the calculation of the second pattern
currently being performed. The calculation process in the FPGA given in Figure 3 has 18 clock cycles
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of the Signal net_clk, corresponding to the 18 hidden nodes in the SCN model. The Signal out_ready
in the figure is the flag signal for calculating the data of each pattern. The Signal out_ready is set low
at the rising edge of the Signal net_reset, indicating that this pattern data calculation process starts,
and the low level state is always maintained during the calculation process. Then after the calculation
is completed (that is to say, after the 18 clock cycles of the Signal net_clk), the Signal out_ready is set
high, which indicates that the pattern data calculation process ends. After the rising edge of the Signal
out_ready appears, the value “16’h066B” of the Signal out0 is the prediction result of the second pattern.
The specific implementation process of the SCN on the FPGA is as follows: After being triggered by
the reset signal (net_reset), the Shifter module acquires an input vector [x1, x2, . . . , xN] from the Input
module. At the rising edge of the next clock, the Mux module receives the result [sh1, sh2, . . . , shN]

from the Shifter module in parallel. The Inverting module processes the data and outputs it according to
the signs of the input weights. After another rising edge of the clock, the Sum module adds up the data
and activates the data through the activation module. The Mac module accumulates the activated data
after another rising edge of the clock. When all data accumulation is completed, the Signal out0_ready
generates a rising edge, and then the final output of the system can be read out from the signal out0.
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Figure 3. Functional simulation of the field programmable gate array (FPGA)-based implementation of
the stochastic configuration network (SCN).

Figures 4 and 5 show the results of FPGA regression prediction model on the simulation data
set and real data set. In the simulation data set, the number of hidden layer nodes of the SCN and
ELM were 18 and 35 respectively, while in the real data set, the number of hidden layer nodes of the
SCN and the ELM were 42 and 55 respectively. As can be seen from Figure 4, for the simulation data
set, the SCN model based on Equation (7) and the ELM model can only predict the general trend of
the real value, while the SCN model based on Equation (6) cannot predict the trend of the real value,
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and only the SCN model based on Equation (9) can predict the real value well. As can also be seen
from Figure 5, for the real data set, the SCN model based on Equation (9) has the best prediction result,
and the predicted value almost completely coincides with the real value, while the prediction result of
other models is relatively poor. Therefore, both the simulation data set and real data set prove that the
FPGA implementation of the SCN model based on Equation (9) proposed in this paper has the best
prediction performance.
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In order to quantitatively analyze the implementation effect of the optimized SCN on the FPGA,
Table 4 shows the average values of 30 groups of root-mean-square errors (RMSE) of the implementation
results of FPGA-based SCNs and ELM, computer-based SCN and ELM on two data sets. Considering
that FPGA is limited by hardware resources and calculation accuracy, and its calculation capability is
relatively weak compared with that of a computer, Table 4 takes the prediction results of computer as
benchmark, and compares the implementation accuracy of the proposed model on FPGA with that
of a computer. As can be seen from Table 4, in the simulated data set, the implementation result of
the SCN on the computer is worse than that of the ELM, but in the real data set, the implementation
result of the SCN on the computer is better than that of the ELM. Therefore, the advantages of the SCN
based on computer implementation are not obvious. Compared with the implementation of the SCN
on computer, the prediction accuracy of the SCN implemented on FPGA with Equations (6) and (7) is
greatly reduced. Using the sigmoid function proposed in Equation (9), the prediction accuracy of the
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SCN implemented on FPGA is obviously the best, which is completely better than the ELM, especially
in real data set, and is almost the same as the implementation accuracy of the SCN on the computer.
The results fully demonstrate the strong generalization ability and high prediction accuracy of the
FPGA-based the SCN proposed in this paper.Sensors 2020, 20, x FOR PEER REVIEW 11 of 14 
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Table 4. Average root-mean-square error (RMSE) of the prediction results.

Simulation Data Set Real Data Set

FPGA-based SCN (Equation (6)) 0.1625 4.9169 µm
FPGA-based SCN (Equation (7)) 0.1056 4.7567 µm
FPGA-based SCN (Equation (9)) 0.0551 3.5783 µm

FPGA-based SCN (Equation (10)) 0.0614 3.7821 µm
FPGA-based SCN (Equation (11)) 0.0643 3.7994 µm
FPGA-based SCN (Equation (12)) 0.0626 3.7187 µm

FPGA-based ELM 0.1263 4.3296 µm
Computer-based SCN 0.0150 3.5404 µm
Computer-based ELM 0.0126 4.2290 µm

Tables 5 and 6 show the resource utilization and power consumption of SCNs and ELM implemented
on the FPGA. The analysis of Tables 5 and 6 shows that, whether it is the simulation data set or
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the real data set, compared with the ELM, the resource utilization and power consumption of SCN
implemented on FPGA is lower. However, the resource utilization and power consumption of SCNs
based on different equations are basically the same. In order to analyze the running speed of the
SCN model based on the FPGA, Table 7 shows the actual clock frequencies of the SCN and the ELM
implemented on the two data sets for comparison. As can be seen from Table 7, the experiments on both
data sets prove that the SCN implemented on FPGA runs faster than ELM. The fundamental reason is
that the SCN needs fewer hidden layer nodes to reach the optimal solution, therefore, FPGA-based
implementation of the SCN has lower resource utilization and power consumption and faster operation
speed than the ELM.

Table 5. Resource utilization of FPGA-based prediction models.

SCN (Equation (6)) SCN (Equation (7)) SCN (Equation (9)) ELM

Simulation data set 2.29% 2.30% 2.32% 2.48%
Real data set 1.65% 1.66% 1.68% 2.14%

Table 6. Power consumption of FPGA-based prediction models.

SCN (Equation (6)) SCN (Equation (7)) SCN (Equation (9)) ELM

Simulation data set 0.991 W 0.991 W 0.991 W 0.993 W
Real data set 1.039 W 1.039 W 1.039 W 1.043 W

Table 7. Actual clock frequency of FPGA-based prediction models.

SCN (Equation (9)) ELM

Simulation data set 43.1 MHz 31.7 MHz
Real data set 48.6 MHz 41.8 MHz

6. Conclusions

This paper adopts the SCN to regression analysis, and verifies the FPGA framework to implement
the SCN model. Based on the balance between prediction accuracy and resource utilization, this paper
cuts in from multiple perspectives to improve the performance of the SCN model based on the FPGA.
The implementation of the activation function on the FPGA is optimized, which effectively improves
the prediction accuracy while considering the utilization rate of hardware resources. Experimental
results based on simulation and real data sets prove that the proposed FPGA framework successfully
implements the SCN regression prediction model, and the improved SCN model has higher accuracy and
more stable performance. Compared with other implementations in the literature [20], the prediction
performance of the proposed the SCN implementation model based on the FPGA for simulation data
set and real data set is improved by 56.37% and 17.35% respectively. In addition to the prediction
accuracy, this paper also compares and analyzes the experimental results from the aspects of resource
utilization rate, power consumption and running speed. The experimental results fully demonstrate
the performance advantages of the FPGA-based SCN implementation architecture proposed in this
paper. Some studies have shown that the SCN model is not only used for regression prediction but also
can be used for recognition and detection. In the future, we can extend the FPGA-based SCN prediction
model to more complex scenes. The use of FPGA-based SCN model will be of great significance for
edge computing and alleviating the computing pressure of the cloud computing center.
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