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Brief Definit ive Report

Lymphatic circulation extends throughout most 
of the body and contributes to tissue homeosta-
sis and function by facilitating the clearance of 
excess fluid and macromolecules from the inter-
stitium (Secker and Harvey, 2015). However, 
the central nervous system (CNS) is considered 
to lack lymphatic vasculature, which has raised 
long-standing questions about how cerebral  
interstitial fluid (ISF) is cleared of waste products 
(Iliff and Nedergaard, 2013). The exchange of 
compounds is limited by the blood–brain bar-
rier, which functions as a diffusion barrier be-
tween the brain and circulating blood. Therefore, 
the transvascular clearance of most compounds 
is dependent on specific active transporter mech-
anisms (Zlokovic, 2011). In addition, the brain 
has adapted to use a unique paravascular route 
in which fluids may freely exchange between 
the brain ISF and the cerebrospinal fluid (CSF) 
along glial “lymphatic” (glymphatic) routes with-
out crossing the tightly regulated endothelial 
cell (EC) layer (Iliff et al., 2012; Xie et al., 2013). 
Downstream of the glymphatic system, the ma-
jority of the CSF is considered to drain into the 
venous circulation through arachnoid granulations. 

Still, several studies have found that a substan-
tial proportion of the CSF is also drained into 
extracranial lymphatic vessels and LNs (Koh  
et al., 2005). However, the mechanisms of CSF 
entry into the extracranial lymphatic compart-
ment are unclear.

The visualization of lymphatic vessels has 
been markedly facilitated over the last decade 
by the identification of specific lymphatic EC 
markers, such as prospero homeobox protein 1 
(PROX1) transcription factor, a master regulator 
in the program specifying the lymphatic EC 
fate (Hong et al., 2002), vascular endothelial 
growth factor receptor 3 (VEGFR3), a lymphan-
giogenic tyrosine kinase receptor (Secker and 
Harvey, 2015), chemokine (C-C motif) ligand 
21 (CCL21), a chemokine secreted by lym-
phatic ECs which facilitates the migration of 
dendritic cells into LNs (Liao and von der Weid, 
2015), lymphatic vessel endothelial hyaluronan 
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The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. 
Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The 
mechanism of CSF entry into the LNs has been unclear. Here we report the surprising 
finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that 
dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain inter-
stitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into 
deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse 
model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic 
vessels, macromolecule clearance from the brain was attenuated and transport from the 
subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water 
content were unaffected. Overall, these findings indicate that the mechanism of CSF flow 
into the dcLNs is directly via an adjacent dural lymphatic network, which may be important 
for the clearance of macromolecules from the brain. Importantly, these results call for a 
reexamination of the role of the lymphatic system in CNS physiology and disease.
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Figure 1.  Terminally differentiated lymphatic vessels in the dura mater of the brain. Visualization of CNS lymphatic vasculature using Prox1-GFP 
reporter mice with DiI counterstaining for blood vasculature, Vegfr3+/LacZ reporter mice and immunofluorescence for PECAM1, and the lymphatic markers 
PROX1, LYVE1, PDPN, CCL21, and VEGFR3, as indicated. White arrowheads denote lymphatic vessels, yellow arrowheads denote the skull exit sites, and 
asterisks denote valves. (A) A schematic image of the various areas analyzed. The letters in bold refer to the corresponding images below. MMA, middle 
meningeal artery; PPA, pterygopalatine artery; RGV, retroglenoid vein; RRV, rostral rhinal vein; SS, sigmoid sinus; SSS, superior sagittal sinus; TV, trans-
verse vein. (B) Lymphatic vessels running down along the SS and exiting the skull. (C) Lymphatic vessels running down along the proximal MMA branches. 
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accessory), exiting the skull along the nerve (Fig. 1, G and H). 
Lymphatic vessels could be observed also in the dural lining 
of the cribriform plate, where some vessels passed through 
the skull into the nasal mucosa (Fig. 1, G and J).

Generally, lymphatic vessels were relatively scarce in the 
superior portions of the skull, whereas the base of the skull 
contained a more extensive lymphatic vessel network (Fig. 1 A). 
Interestingly, only the lymphatic vessels at the base of the skull 
contained valves, but their distribution was relatively scarce. 
Valves were separated by long stretches of valveless vessel seg-
ments (Fig. 1, B–D).

To determine the localization of these vessels in relation 
to the meninges, thick skull sections were analyzed. In these 
preparations, PROX1- and CCL21-positive lymphatic vessels 
were observed in the meninges underlying the bony parts of 
the skull, adjacent to the dural blood vasculature (Fig. 1 K).

Whole-mount immunofluorescence staining of the supe-
rior sagittal lymphatic vessels showed that, like conventional 
lymphatic vessels, the dural lymphatic vessels express very low 
levels of PECAM1 (Fig. 1 L) but high levels of LYVE1, PDPN, 
VEGFR3, CCL21, and PROX1 (Fig. 1, M–P; Aspelund et al., 
2014). Thus, the dural lymphatic vessels are lined by termi-
nally differentiated lymphatic endothelium.

Overall, these data indicated that lymphatic vessels are pres-
ent in the dura mater of the CNS and drain out of the skull 
via the foramina of the base of the skull alongside arteries, 
veins, and cranial nerves. We named these lymphatic vessels on 
the basis of their venous, arterial, or cranial nerve counterparts. 
The localization of the vessels suggested a possible role in CSF 
absorption through the arachnoid mater.

Dura mater lymphatic vessels drain brain  
ISF into deep cervical LNs (dcLNs)
Tracers injected into the brain ISF have been shown to trans-
locate into the CSF via the glymphatic system and further 
into dcLNs (Koh et al., 2005; Iliff et al., 2012; Plog et al., 
2015). However, it is unclear how these tracers gain access 
into the LNs. We hypothesized that the dura mater lymphatic 
vessels absorb brain ISF and CSF. To test this, we injected an 
inert 20-kD poly(ethylene glycol) (PEG) conjugate of the 
bright near-infrared dye IRDye 680 (PEG-IRDye; Proulx  
et al., 2013) into the brain parenchyma of the Prox1-GFP 
mice. 2 h after injection, the tracer was observed to exit the 
brain via paravenous routes for entry into the CSF space (not 
depicted), as previously reported (Iliff et al., 2012). Lymphatic 

receptor 1 (LYVE1), and podoplanin (PDPN; Oliver and 
Srinivasan, 2010). We have recently discovered that in the 
eye, another immune-privileged organ previously consid-
ered to lack lymphatic circulation, the Schlemm’s canal is a  
lymphatic-like vessel (Aspelund et al., 2014). These intriguing 
inconsistencies and our recent discoveries led us to investi-
gate the possibility of lymphatic circulation in the CNS in 
more detail.

RESULTS AND DISCUSSION
Lymphatic vessels in the dura mater surrounding the brain
The brain is enveloped by meningeal linings consisting of 
three layers: the pia mater tightly attached to the surface of the 
brain, the avascular arachnoid mater overlying the subarach-
noid space, and the vascularized dura mater fused to the cra-
nial bones. To determine whether lymphatic vessels exist within 
the CNS and surrounding meninges, we analyzed the Prox1-
GFP and Vegfr3+/LacZ reporter mice and whole-mount immuno-
fluorescence preparations of the skull and brain of WT mice 
against LYVE1, PROX1, PDPN, CCL21, VEGFR3, and 
PECAM1. To visualize blood vessels, the Prox1-GFP mice 
were perfused with the fluorescent dye 1,1-dioctadecyl-
3,3,3,3-tetramethylindocarbocyanine (DiI; Li et al., 2008).

After removing the brain from the skull, no lymphatic 
vessels were seen on the brain parenchyma or pia mater (not 
depicted). However, a surprisingly extensive network of lym-
phatic vessels was observed in the meninges underlying the 
skull bones (Fig. 1, A–J; and Video 1). In sagittal planes of the 
inner skull, lymphatic vessels were observed to run down to-
ward the base of the skull along the transverse sinus, the sig-
moid sinus, the retroglenoid vein, the rostral rhinal vein, and 
the major branches of the middle and anterior meningeal  
arteries (Fig. 1, B and D; and Video 1). In preparations of  
the superior portions of the skull, the lymphatic vessels were 
visualized along the superior sagittal sinus, the transverse sinus, 
the rostral rhinal veins, and the middle meningeal artery (Fig. 1, 
E and F). A concentration of lymphatic vessels could be ob-
served to exit the skull along the meningeal portions of the 
pterygopalatine artery, a branch of the internal carotid artery 
which dives in and out of the skull to give rise to the middle 
meningeal artery (Fig. 1 I). Lymphatic vessels along the sig-
moid sinus and retroglenoid vein exited the skull along the 
veins (Fig. 1, B and D). In preparations of the base of the skull, 
lymphatic vessels could be seen in the distal portion of several 
cranial nerves (optic, trigeminal, glossopharyngeal, vagus, and 

(D) Lymphatic vessels around the RGV with some vessels exiting the skull. (E–H) Whole-mount LYVE1 immunofluorescence of the skull top and base. (E) Lym-
phatic vessels along the SSS and the distal parts of the anterior MMA branch extending toward the bregma. (F) Lymphatic vessels along the SSS, bifurcat-
ing into the TVs at the confluence of sinuses. (G) Lymphatic vessels exiting the skull along the optic (II) and the trigeminal (V) nerves and through the 
cribriform plate (CP). CN, cranial nerve. (H) Lymphatic vessels associated with the glossopharyngeal (IX), vagus (X), and accessory (XI) nerves. XII, hypo-
glossal nerve. (I and J) Stereomicrographs of tissues in a Vegfr3+/LacZ reporter mouse showing the skull exit of dural lymphatic vessels along the PPA  
(I) and through the CP into a nasal concha. OB, olfactory bulb area. (K) Immunofluorescence of thick skull section for PECAM1, PROX1, and CCL21. bv, blood 
vessel; sas, subarachnoid space. (L–P) Whole-mount immunofluorescence staining of superior sagittal lymphatic vessels with antibodies against PECAM1 
(L), LYVE1 (M), PDPN (N), CCL21 (O), VEGFR3 (P), and PROX1 (M–P). LYVE1 and PECAM1 colocalization is indicated with the dashed lines. n = 2–3 per 
staining. Data are from two to three independent experiments. Bars: (B–H and L–P) 100 µm; (K) 50 µm.
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data suggest that the dura mater lymphatic vessels absorb 
brain ISF/CSF from the subarachnoid space for transport into 
downstream dcLNs.

Absence of dura mater lymphatic  
vasculature in K14-VEGFR3-Ig mice
VEGF-C/D signaling via VEGFR3 is a critical regulator of 
lymphangiogenesis (Secker and Harvey, 2015). To (a) study 
whether dura mater lymphatic vessels are regulated by VEGFC/
D–VEGFR3 signaling and (b) characterize an animal model 
in which the functional consequences of dura mater lymphatic 
vessel aplasia can be examined, we investigated the K14-
VEGFR3-Ig transgenic (TG) mouse, which has impaired 

drainage of brain ISF was confirmed by visualization of  
an intense signal in the dcLN but not in the superficial cervi-
cal LNs (scLNs; Fig. 2, A and B). Preferential drainage into the 
dcLN ipsilateral to the side of injection was observed (Fig. 2, 
A and C). When the tracer-filled afferent lymphatic vessels of 
the dcLNs were followed upstream, the vessels appeared to 
drain from the base of the skull (Fig. 2, C and D). Inside the 
skull, some PEG-IRDye filling of dura mater lymphatic ves-
sels was observed only in the basal parts of the skull (Fig. 2,  
E and F), suggesting uptake by the lymphatic vessels but  
a quick washout. When the efferent lymphatic vessel of the 
dcLN was ligated (Fig. 2, G and H), enhanced filling of the 
dural lymphatic vessels was observed (Fig. 2, I–K). These 

Figure 2.  Dura mater lymphatic vessels drain 
brain ISF into dcLNs. (A–J) Analysis of lymphatic 
outflow routes of cerebral ISF by fluorescent stereo
microscopy in Prox1-GFP (green) mice 1 h after PEG-
IRDye (red) injection into the brain parenchyma 
without (A–F) and with (G–J) ligation of the efferent 
lymphatic vessel of the dcLN. See K for schematic il-
lustration of the experimental setup and summary of 
the results with and without ligation. (A and B) dcLNs 
and scLNs (both indicated with arrowheads) showing 
preferential filling of the ipsilateral dcLN but no fill-
ing in the scLNs. (C) Drainage into the ipsilateral dcLN 
via the efferent carotid lymphatic vessels (arrow-
heads). CCA, common carotid artery. (D) Internal 
carotid artery (ICA) and adjacent lymphatic vessels 
(white arrowheads) immediately below the osseous 
skull, showing drainage from the skull (yellow arrow-
head). (E and F) Lymphatic vessels around the ptery-
gopalatine artery (PPA), showing tracer uptake by the 
dura mater lymphatic vessels (arrowheads) only in 
the basal parts of the skull, nearby their exit site. 
MMA, middle meningeal artery. (G) Placement of a 
suture around the efferent lymphatic vessel (asterisk) 
of the dcLN. Arrowheads, afferent lymphatic vessels. 
(H) Afferent lymphatic vessel of the dcLN after liga-
tion (asterisk), showing bulging of the afferent ves-
sels (arrowheads). (I and J) Lymphatic vessels around 
the posterior branch of the MMA, showing increased 
filling of lymphatic vessels after ligation, extending 
above the retroglenoid vein (RGV) level. n = 2–3/
group. Data are representative of two independent 
experiments. Bars: (A–E and G–J) 500 µm; (F) 100 µm.
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inhibited in the TG mice (Fig. 5). Overall, these data imply 
that the dura mater lymphatic vessels contribute to the clear-
ance of macromolecules from the brain.

In this study, we report the surprising finding of a lym-
phatic vessel network in the dura mater of the CNS and show 
that dura mater lymphatic vessels are lined by fully differ-
entiated PROX1+/VEGFR3+/LYVE1+/PDPN+/CCL21+/
PECAM1low lymphatic endothelium that is unique in its 
morphology and scarcity of valves. In the late eighteenth 
century the Italian anatomist Paolo Mascagni described what  
he called lymphatic vessels in the meninges and on the sur-
face of the brain, but his finding could never be reproduced 
(Mascagni and Bellini, 1816; Lukić et al., 2003). The CNS 
proper has since been considered devoid of lymphatic vasculature. 

VEGF-C/D–VEGFR3 signaling. These mice express a solu-
ble VEGF-C/D trap protein consisting of the ligand-binding 
Ig homology domains 1–3 of VEGFR3 fused with the Fc  
domain of Ig (Mäkinen et al., 2001). Although the VEGF-C/D 
trap transgene is expressed in keratinocytes, the circulating 
protein inhibits lymphangiogenesis in most tissues, and the 
mice display LN hypoplasia (Mäkinen et al., 2001; Alitalo  
et al., 2013). Lymphatic vessels were absent from both supe-
rior and basal parts of the skull in the TG mice compared 
with WT littermate mice (Fig. 3, A–F). Surprisingly, the mice 
displayed absence of only the scLNs but not dcLNs (Fig. 3, 
G–I; and Fig. 4 C). These data indicate that the dura mater 
lymphatic vessels are very sensitive to the inhibition of VEGF-
C/D signaling and that the K14-VEGFR3-Ig TG mouse is a 
suitable model for studying the functional consequences of 
the absence of lymphatic drainage from the brain.

Lack of dural lymphatic vessels compromises  
CNS macromolecule clearance
First, we hypothesized that the absence of dura mater lym-
phatic vessels would impair the clearance of ISF and solutes 
from the brain. Thus, brain water content and ISF pressures 
(IFPs) were measured in TG and WT mice. Surprisingly, the 
IFP (TG vs. WT: 2.50 ± 0.54 vs. 2.53 ± 0.53 mmHg, P = 
0.92, n = 6/group) and water content (TG vs. WT: 3.68 ± 
0.023 vs. 3.71 ± 0.043 g/g dry weight, P = 0.27, n = 4/group) 
were not significantly different between the two groups. 
These results suggest that in physiological conditions, the 
brain has alternative ways to manage fluid extravasated from 
the blood vessels.

Second, we hypothesized that the absence of dura mater 
lymphatic vessels may impair macromolecule clearance from 
the brain. To test this, we studied the cerebral clearance of 
Alexa Fluor 488–conjugated OVA (A488-OVA, 45 kD), a 
macromolecule which retains fluorescent signal during fixa-
tion. We recorded cerebral, dcLN, and dura mater lymphatic 
vessel fluorescence from tissues 2 h after injection into the 
brain parenchyma of TG and WT littermate mice. Mice were 
perfusion fixed after sacrifice to prevent outflow of the tracer. 
Interestingly, the TG mice displayed a significant reduction in 
the amount of OVA cleared at the 2-h time point after injection 
(Fig. 4, A and B). Furthermore, a nearly complete abrogation 
of OVA accumulation was observed in the dcLNs of the TG 
mice (Fig. 4, C and D). Tracer-filled lymphatic vessels could 
be observed around the pterygopalatine artery and middle 
meningeal artery of WT mice, but this was absent in the  
TG mice (Fig. 4, E and F). To assess other possible causes for 
the drainage defect, we analyzed glymphatic function and 
the dcLN capacity for drainage. To this extent, the TG mice 
did not display qualitative defects in glymphatic function, as 
indicated by detectable paravascular outflow of the tracer in 
the subendothelial and perivascular space (Fig. 4, G and H),  
or a significant reduction in the amount of draining lym-
phatic vessels in the dcLN (Fig. 4, I and J). We also studied 
PEG-IRDye transfer from the subarachnoid space into the 
dcLNs after cisterna magna injection, which was significantly 

Figure 3.  Absence of dural lymphatic vasculature in K14-VEGFR3-Ig 
TG mice. (A–F) Analysis of dura mater lymphatic vasculature in K14-
VEGFR3-Ig TG and WT littermate control mice. (A–C) Immunofluorescence 
of the superior sagittal lymphatic vessels (arrowheads) for PECAM1, PROX1, 
and CCL21 (A and B) and quantification of PROX1+/CCL21+ lymphatic ECs 
(LECs)/grid (C). (D–F) Immunofluorescence of the pterygopalatine and mid-
dle meningeal lymphatic vessels (arrowheads) for PECAM1 and PROX1  
(D and E) and quantification of PROX1+ LECs/grid (F). (G–I) Stereomicroscopic 
photographs showing the absence of the scLNs (arrows) in the TG mice 
(G and H) and quantification of the (mean left/right) scLN and dcLN sur-
face areas (I). Micrographs of the dcLNs are shown in Fig. 4 C. (A–F) n = 3 
(TG) and 4 (WT). (G and H) n = 4/group. Data are representative of two 
independent experiments. Bars: (A, B, D, and E) 100 µm; (G and H) 2 mm. 
Error bars indicate SD. Statistical analysis: two-tailed Student’s t test  
(C and F) and two-way ANOVA followed by Šídák’s post-hoc test (I). ***, P < 
0.001; ****, P < 0.0001.
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for transport into the cerebral venous sinuses (Pollay, 2010). 
However, recent discoveries have established the glymphatic 
system as a critical regulator of cerebral waste clearance, espe-
cially during sleep (Iliff et al., 2012; Xie et al., 2013). In addi-
tion to the CSF clearance via arachnoid granulations, several 
studies have established that a part of brain ISF and CSF is 
drained into cervical LNs, yet it has been unclear how CSF 
enters the LNs (Koh et al., 2005; Weller et al., 2009). The ob-
servation of CSF tracers in the nasal lymphatic vessels under 
the cribriform plate has suggested clearance via olfactory 

Incidentally, lymphatic vessels were mentioned in an electron 
microscopic study of the rat dura mater innervation. Fur-
thermore, lymphatic vessels were detected in association with 
the murine cribriform plate and the human optic nerve (Andres 
et al., 1987; Gausas et al., 2007; Furukawa et al., 2008). How-
ever, the extent of the dura mater lymphatic network, or its 
role in CSF clearance, has not been realized.

According to the classical textbook model, CSF is produced 
by the choroid plexus, flows through the ventricles and the 
subarachnoid space, and is absorbed by arachnoid granulations 

Figure 4.  Lack of dural lymphatic vessels compromises CNS macromolecule clearance. Analysis of A488-OVA distribution 2 h after intra
parenchymal injection in K14-VEGFR3-Ig TG mice and WT littermate controls. (A and B) Representative false color maps and quantification of the 
epifluorescence efficiency in the brain using IVIS imaging. (C and D) Representative images and quantification of the fluorescence in the dcLNs (indi-
cated by arrows). (E and F) Representative fluorescent images of the A488-OVA tracer (indicated by arrowheads) accumulation in the LYVE1-stained 
lymphatic vessels around the PPA and MMA, with quantification of the A488-OVA–positive signal. Note the partial leakage of the tracer from the 
vessels caused by the perfusion fixation. (G) Fluorescent images of brain sections stained with DAPI and antibodies against endomucin (EMCN), show-
ing the A488-OVA tracer distribution in the glymphatic system. (H) Plot profile analysis of the fluorescence along the indicated lines in G, showing 
A488-OVA signal in the subendothelial and perivascular spaces (arrows) in both TG and WT mice. (I) Immunofluorescent images of dcLNs stained with 
DAPI and antibodies against LYVE1. (J) Quantification of the LYVE1+ area in the dcLNs in TG mice and WT littermate controls. (A, B, and G–J) n = 4 (TG) 
and 3 (WT). (C–F) n = 3 (TG) and 4 (WT). Data are representative of two independent experiments. Bars: (C) 2 mm; (E) 100 µm; (G) 8 µm; (I) 1,000 µm. 
Error bars indicate SD. Statistical analysis: two-tailed Student’s t test. **, P < 0.01; ***, P < 0.001.
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Choi et al., 2011), and Vegfr3+/LacZ (FVB/N background; Dumont et al., 1998) 
mouse lines have been published previously. WT littermate mice were used as 
controls. For WT analysis, C57BL/6J mice were used. For tissue analysis, mice 
were given a lethal dose of ketamine and xylazine and perfusion fixed through 
the left ventricle with ice-cold 1% paraformaldehyde (PFA) after puncture of 
the right auricle. The tissues were immediately immersed in 4% ice-cold PFA 
and postfixed overnight at 4°C, washed in PBS, and processed for staining. 
Prox1-GFP mouse tissues were freshly imaged without fixation.

Immunostaining and X-gal staining. For whole-mount staining of the 
skull bones for laser-scanning confocal microscopy, the fixed skulls were dis-
sected and underwent a mild decalcification with 0.5 M EDTA, pH 7.4, over-
night at 4°C. For whole-mount staining of the basal skull for fluorescent 
stereomicroscopy, no decalcification was performed. After washes with PBS, 
the tissues were permeabilized in 0.3% Triton X-100 in PBS (PBS-TX) and 
blocked in 5% donkey serum/2% bovine serum albumin/0.3% PBS-TX. Pri-
mary antibodies were added to the blocking buffer and incubated with the tis-
sue overnight at room temperature (RT). After washes in PBS-TX, the tissues 
were incubated with fluorophore-conjugated secondary antibodies in PBS-TX 
overnight at RT, followed by washing in PBS-TX. After postfixation in 1% 
PFA, the superior portions of the skull were washed with PBS and mounted 
in Mowiol 4-88 mounting medium (Sigma-Aldrich) containing 1,4-diazabicy
clo[2.2.2]octane (DABCO; Sigma-Aldrich) and sealed with Cytoseal (Thermo 
Fisher Scientific). Clothespins were used to hold the coverslip and the micro-
scopic slide together before the Cytoseal and Mowiol hardened. Tissues for 
fluorescent stereomicroscopy were stored in PBS and imaged immediately.

For cryosections of the skull, the fixed tissues underwent decalcification 
with 0.5 M EDTA, pH 7.4, for 72 h, immersion into 20% sucrose and 2% 
polyvinylpyrrolidone (PVP) for 24 h at 4°C, embedding in OCT compound 
(Tissue-Tek), and freezing for storage at 80°C. For other cryosections,  
the fixed tissues were immersed into 25% sucrose and embedded as above. 
Tissues were cut into 10–100-µm sections using a cryostat (Microm HM 
550; Thermo Fisher Scientific). The sections were air-dried, encircled with 
a pap-pen, rehydrated in PBS, and blocked with 3% BSA in PBS-TX at RT. 
After primary antibody incubation at 4°C in 3% BSA in PBS overnight, the 
sections were washed with PBS and incubated for 2–3 h with the appropri-
ate fluorophore-conjugated secondary antibody conjugates and 3% BSA  
in PBS. After washes with 0.1% PBS-TX, the sections were mounted with 

nerve sheaths through the cribriform plate (Kida et al., 1993; 
Koh et al., 2005). Additionally, CSF clearance has been ob-
served to occur along spinal and cranial nerve sheaths with 
subsequent entry into extracranial lymphatic vessels (Miura et al., 
1998; Weller et al., 2009).

Our data indicated filling of the dura mater lymphatic ves-
sels after intraparenchymal injection of the tracer and the lack 
thereof in the K14-VEGFR3-Ig TG mice. This suggests a model 
in which a part of the brain ISF, downstream of the glymphatic 
system, is cleared directly from the subarachnoid space as CSF 
into the dura mater lymphatic vasculature. Interestingly, we also 
observed lymphatic vessels draining out of the skull along the 
dura mater of cranial nerves. Furthermore, we observed lym-
phatic vessels crossing the cribriform plate, which may explain 
some of the previous observations. Because of the lack of other 
known direct anatomical connections between the CSF space 
and extracranial lymphatic vessels, the dura mater lymphatic 
vessels are likely to represent the most important CSF source 
for the extracranial lymph compartment.

The importance of understanding the mechanisms of 
brain waste management are highlighted in patients suffering 
from Alzheimer’s disease and other neurodegenerative dis-
eases characterized by the pathological accumulation of mis-
folded proteins, such as amyloid , into the brain parenchyma 
(Deane et al., 2008; Huang and Mucke, 2012). In other tissues, 
lymphatic vessels are critical for the absorption of macromol-
ecules (Tammela and Alitalo, 2010). In the brain under physi-
ological conditions, a major part of the cerebral amyloid  is 
removed by the transvascular route (Zlokovic, 2011; Zhao  
et al., 2015). However, recent evidence suggests that the glym-
phatic system may also be key in amyloid  clearance (Iliff  
et al., 2012). The present data show that the absence of dura 
mater lymphatic drainage results in inhibited clearance of OVA 
from the brain interstitium, suggesting that dura mater lym-
phatic vessels are critical for the absorption of macromolecules 
from the brain ISF and CSF.

Importantly, these findings open new avenues for re-
search. Several other potential roles of dura mater lymphatic 
vessels can be envisioned, such as in the trafficking of cerebral 
immune cells, in antigen presentation in the dcLNs, and in 
the clearance of brain edema. These data may also explain 
why primary brain tumors can rarely metastasize into cervical 
LNs (Mondin et al., 2010). Interestingly, surgical removal of 
the dcLN results in cognitive impairment in mice (Radjavi  
et al., 2014), and ligation of the deep cervical lymphatic vessels 
has been reported to aggravate cerebral ischemia after stroke 
by increasing brain water edema and infarction volume in rats 
(Si et al., 2006). Further studies should be conducted to de-
fine the full contribution of dura mater lymphatic vasculature 
in CNS homeostasis and disease.

MATERIALS AND METHODS
Study approval. The study was approved by the Committee for Animal 
Experiments of the District of Southern Finland.

Mice and tissues. The K14-VEGFR31-3-Ig (FVB/N and C57BL/6J back-
grounds; Mäkinen et al., 2001), Prox1-GFP (C57BL/6J albino background; 

Figure 5.  Lack of dural lymphatic vasculature inhibits CSF up-
take into the dcLNs. (A) Schematic illustration of the experimental 
setup. (B) Representative fluorescent images of the dcLN in TG and WT 
mice 30 min after PEG-IRDye injection into the cisterna magna. AF, green 
channel autofluorescence. Bar, 1,000 µm. (C) Quantification of the dcLN 
fluorescence. n = 6 (TG) and 5 (WT). Data are representative of two inde-
pendent experiments. Error bars indicate SD. Statistical analysis: two-
tailed Student’s t test. *, P < 0.05.
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with a XFO-6 (Dolan-Jenner Fiber-Lite PL-900 Illuminator; quartz halogen 
lamp) for fluorescent imaging and an iXon+ 888 EMCCD camera (Andor 
Technology). Images were processed and region of interest efficiencies were 
calculated with the Living Image 3.2 software. Image brightness and contrast 
were adjusted using ImageJ (National Institutes of Health) or Photoshop 
(Adobe) software. Quantitative analysis of the micrographs was performed 
using the ImageJ software.

Measurement of brain water content. Mice were sacrificed with carbon 
dioxide. The brains were removed from the skull and placed on a preweighed 
piece of aluminum foil and immediately weighed to obtain the wet weight. 
The dry weight was recorded after dehydration for 5 d in an 80°C oven. 
Water content was calculated as (wet weight  dry weight)/dry weight. The 
data shown in the text is representative of two independent experiments.

Measurement of brain IFP. Mice were anesthetized with a mixture of  
120 mg/kg ketamine (Ketalar) and 0.24 mg/kg medetomidine (Domitor) in 
saline given s.c. and placed into a stereotactic device. Using a dental drill  
(2 mm OD), the skull bone was thinned at a site 2 mm caudal and lateral to 
the bregma. Brain ISF pressure was measured with micropipettes, tip diameter  
2–4 µm, as described in detail previously (Wiig and Reed, 1983). Pipettes 
were inserted through an intact dura, and pressures were recorded 150–300 µm 
into brain tissue. The data shown in the text is representative of three inde-
pendent experiments.

Statistical analysis. All values are expressed as mean ± SD. Quantitative data 
were compared between different groups by two-sample (unpaired Student’s) 
two-tailed t test assuming equal variance. Two-way ANOVA followed by 
Šídák’s post-hoc test was used for multiple comparisons. Differences were 
considered statistically significant at P < 0.05.

Online supplemental material. Video 1 shows dura mater lymphatic ves-
sels in the lateral aspects of the interior portions of the skull in sagittal plane in 
the Prox1-GFP mouse. Online supplemental material is available at http://
www.jem.org/cgi/content/full/jem.20142290/DC1.
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