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In recent years, microRNAs (miRNAs) have been confirmed to be involved in many

important biological processes and associated with various kinds of human complex

diseases. Therefore, predicting potential associations between miRNAs and diseases

with the huge number of verified heterogeneous biological datasets will provide a new

perspective for disease therapy. In this article, we developed a novel computational model

of Triple Layer Heterogeneous Network based inference for MiRNA-Disease Association

prediction (TLHNMDA) by using the experimentally verified miRNA-disease associations,

miRNA-long noncoding RNA (lncRNA) interactions, miRNA function similarity information,

disease semantic similarity information and Gaussian interaction profile kernel similarity

for lncRNAs into an triple layer heterogeneous network to predict new miRNA-disease

associations. As a result, the AUCs of TLHNMDA are 0.8795 and 0.8795± 0.0010 based

on leave-one-out cross validation (LOOCV) and 5-fold cross validation, respectively.

Furthermore, TLHNMDA was implemented on three complex human diseases to

evaluate predictive ability. As a result, 84% (kidney neoplasms), 78% (lymphoma) and

76% (prostate neoplasms) of top 50 predicted miRNAs for the three complex diseases

can be verified by biological experiments. In addition, based on the HMDD v1.0 database,

98% of top 50 potential esophageal neoplasms-associated miRNAs were confirmed by

experimental reports. It is expected that TLHNMDA could be a useful model to predict

potential miRNA-disease associations with high prediction accuracy and stability.

Keywords:microRNA, disease, association prediction, computational predictionmodel, triple layer heterogeneous

network

INTRODUCTION

According to the central law of molecular biology, genetic information was found to be stored
in protein-coding genes (Crick et al., 1961). Recent studies have revealed that up to 70% of
the human genome is transcribed into RNA, whereas protein-coding genes only make up less
than 2% of total genome (Djebali et al., 2012). The majority of the human genome is made
up of non-coding RNAs (ncRNAs) (Derrien et al., 2012). Based on whether transcript lengths
are larger than 200 nucleotides, ncRNAs can be further divided into small ncRNA and long
ncRNA (lncRNA) (Kapranov et al., 2007; Guttman et al., 2013). MicroRNAs (miRNAs) are
endogenous non-coding RNAs (∼22 nt) that bind to the 3′-untranslated regions (3′-UTRs)
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of their target RNAs (mRNAs) and control the expression
of gene (Ganju et al., 2017). MiRNAs could also serve as
positive regulators (Jopling et al., 2005; Vasudevan et al., 2007).
Sufficient evidences indicated that thousands of miRNAs have
associations with many critical biological processes (Lu et al.,
2008), such as cell proliferation (Cheng et al., 2005), development
(Karp and Ambros, 2005), metabolism (Alshalalfa and Alhajj,
2013), aging (Bartel, 2009), transduction (Cui et al., 2006),
viral infection (Miska, 2005), and so on. Some researchers
also founded that allogeneic T cell responses are regulated
by miRNAs (Sun et al., 2013). It also has been shown that
by attenuating shared miRNAs, competing endogenous RNAs
(ceRNAs) could crosstalk and regulate each other, which is
essential for regulating many biological functions (Yuan et al.,
2016).Moreover, miRNA34smight be key effectors of p53 tumor-
suppressor function, and their inactivation might contribute to
certain cancers (Bommer et al., 2007). Recently, experiments
further showed that special class of 5′-capped pre-miRNAs have
been identified in both C. elegans and mouse, this promotes
the understanding of the transcriptional regulation of miRNA
genes themselves (Chen et al., 2017a). Therefore, it is no
wonder that miRNAs are closely connected with diverse human
cancer types, including breast neoplasms, lung neoplasms, colon
neoplasms, kidney neoplasms, lymphoma, etc. (Pasquier and
Gardès, 2016). For example, studies have implicated that miR-
16-1 and miR-15a could cause chromosomal translocations
in patients with chronic lymphocytic leukemia (CLL) (Calin
et al., 2002). Experiments further shown that miRNAs may
be a new target for the molecular targeted therapy of various
cancers (Guzzi et al., 2015; Chen et al., 2017b). Thus, the
identification of disease-associated miRNAs can provided a
new viewpoint with the respect to the diagnosis, prevention
and treatment of human complex diseases in the field of
medicine (Chen, 2016). However, using the traditional biological
methods to identify miRNA-disease associations is usually
time-consuming and expensive. Therefore, more and more
scholars have focused on developing efficient computational
models to predict potential miRNA-disease associations by
integrating various experimentally validated datasets. Database
HMDD and miR2Disease (Jiang et al., 2009; Li et al., 2014c)
have been constructed to collect the associations between
human miRNAs and diseases based on previous biological
experiments.

According to the assumption that functionally similar
miRNAs tend to be associated with phenotypically similar
diseases (Lu et al., 2008; Bandyopadhyay et al., 2010), several
computational approaches have been established to infer the new
miRNA-disease associations. Mork et al. (2014) introduced a
computational model, named miRPD. They identified potential
miRNA–disease associations by systematic combination of
known miRNA-protein associations with known protein-disease
associations. Shi et al. (2013) established a computational
framework on the basis of the assumption that miRNAs whose
target genes are associated with specific diseases are more
possible to be related to these diseases. They constructed
protein-protein interaction (PPI) networks and implemented
random walk on the network to calculate the probability scores

of each miRNA-disease pair. Xu et al. (2011) introduced an
approach to infer novel human miRNA-disease associations
by combining computational target prediction with expression
profiles of miRNA and mRNA in tumor and nontumor tissues.
In the model, the probability scores of each miRNA-disease
pair could be converted into the functional similarity calculation
between miRNA targets and known diseases-related genes. More
importantly, the model could be a useful tool for miRNA-disease
association prediction without relying on the known miRNA-
disease associations. Jiang et al. (2010) proposed a computational
model on the basic of hypergeometric distribution to predict new
disease-associated miRNA by systematic integration of miRNA
functional similarity network, disease phenotype similarity
network, and experimentally verified disease-miRNA association
network. However, less than 40 percent of the molecular for
human disease is known and the dataset of miRNA-target
interactions used in the above studies were not highly accurate,
which may limit the application of the method mentioned
above.

Researchers have also proposed othermethods without relying
on the dataset of miRNA-target interactions. For example,
Chen et al. (2012b) developed the method of Random Walk
with Restart for MiRNA–Disease Association (RWRMDA) to
identify new disease-associated miRNAs by applying a similarity-
based RWR on miRNA functional similarity network. Xuan
et al. (2015) proposed the method of MIRNAs associated
with Diseases Prediction (MIDP) to predict new miRNAs
candidates using random walk. In which they built a miRNA
network derived from miRNA-associated diseases by integration
of the nodes similarities, nodes prior information and their
local topological structure. Then, the potential association
between a disease and a miRNA could be inferred until the
iterative walking process on the network converged. Xuan et al.
(2013) further proposed an effective computational approach
of HDMP by comprehensive integration of miRNA functional
similarity and the distribution of miRNAs associated with the
disease in the k most similar neighbors to obtain scores of
new miRNAs-disease associations. Li et al. (2017) developed
Matrix Completion for MiRNA-Disease Association prediction
(MCMDA), a reliable computational method in which they
updated scores of each pair using matrix completion algorithm.
The model is of high efficiency to update the low-rank miRNA-
disease association matrix. Chen and Yan (2014) reported a
method named Regularized Least Squares for MiRNA-Disease
Association prediction (RLSMDA) on the basis of miRNA
functional similarity, disease semantic similarity and known
human miRNA-disease associations using a semi-supervised
classifier. Recently, Chen et al. (2016a) introduced the model
of Within and Between Score for MiRNA-Disease Association
prediction (WBSMDA) by combination of integrated similarity
and known miRNA-disease associations. The model built two
prediction functions from the perspective of disease and miRNA
according to the idea that functionally similar miRNAs tend
to be associated with similar diseases, and combined them
to calculate the association probability of each miRNA-disease
pair. Chen et al. (2016b) further developed Heterogeneous
Graph Inference for MiRNA-Disease Association prediction
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(HGIMDA), a new approach in which they constructed a
heterogeneous network on the basic of miRNA functional
similarity, disease semantic similarity, known miRNA-disease
associations and an iterative update equation that propagates
information across the heterogeneous network were established
to infer new disease-associated miRNAs. A deep ensemble
miRNA-disease association prediction (DeepMDA) framework
was also introduced by Fu and Peng (2017) to identify
potential miRNA-disease associations using a three-layer neural
network classifier based on high-level features extracted from
miRNA and disease similarity. Moreover, some other computing
models for the identification of miRNA-disease associations were
also gradually proposed, such as Liu et al. (2016) predicted
miRNA-disease associations by implementing random walk on
a heterogeneous network with multiple data sources. Zou et al.
(2015) introduced two computational methods of KATZ and
CATAPULT to make prediction for miRNA-disease pairs based
on social network analysis methods. Pallez et al. (2017) presented
a predictive approach named MiRAI using an evolutionary
tuned latent semantic analysis. Pasquier and Gardès (2016) make
prediction for miRNA-disease associations with a vector space
model.

As mentioned above, an integration strategy may provide
more comprehensive and accurate information to predict
disease-related miRNAs. Actually, miRNA dysregulation is
related to many human diseases through many factors,
including, for example, miRNA-mRNA interactions, miRNA-
lncRNA interactions, miRNA-protein interactions and so on. The
miRNAs involved in genes, coding RNAs, and proteins have been
used widely in other computational model for the identification
of miRNA-disease associations (Shi et al., 2013) (Mork et al.,
2014). In this paper, considering many experimentally verified
miRNA-lncRNA interactions have been confirmed by recent
biological experiments (Li et al., 2014a), we introduced the
model of Triple Layer Heterogeneous Network based inference
for MiRNA-Disease Association prediction (TLHNMDA) to
identify the potential biological links between miRNAs and
diseases by integrating multi-level data regarding miRNAs,
diseases, lncRNAs and their association information into a
triple layer heterogeneous network. We implemented leave-
one out cross validation (LOOCV) and 5-fold cross validation
on the TLHNMDA to evaluate its performance. The AUCs of
LOOCV were respectively 0.8795, and the model obtained the
average AUC of 0.8795 ± 0.0010 on 5-fold cross validation.
Then, case studies of kidney neoplasms, prostate neoplasms
and lymphoma were implemented to assess the independent
prediction performance of the model. As a result, 42, 38, and
39 out of top 50 potential miRNAs for these three important
diseases were confirmed in dbDEMC (Yang et al., 2010) and
miR2Disease (Jiang et al., 2009) database, respectively. We
further tested TLHNMDA on the database HMDD v1.0 (Lu
et al., 2008) to see whether the TLHNMDA still performs well.
Taking esophageal neoplasms as an example, as a result, 49
of the top 50 esophageal neoplasms-associated miRNAs were
verified by experimental reports. It has proved that TLHNMDA
is reliable and effective in predicting potential disease-associated
miRNAs.

MATERIALS AND METHODS

Human miRNA-Disease Association
In this paper, the known dataset of human miRNA–disease
associations were downloaded from HMDD v2.0 database. The
dataset contains 383 diseases, 495 miRNAs and 5430 high-quality
experimentally verified human miRNA-diseases associations.
Furthermore, an adjacency matrix A was established to denote
known miRNAs-disease associations. The row of the matrix
represents the disease, and the column represents the miRNAs.
We used the variables nm and nd to represent the number of
miRNAs and diseases in the dataset, respectively. The value of
A(d(i), m(j)) is 1 whenmiRNAm(i) is associated with disease d(j),
otherwise 0.

miRNA-lncRNA Interactions
The dataset ofmiRNA-lncRNA interactions can be obtained from
starBase v2.0 database (Li et al., 2014a), which provided the
most comprehensive experimentally confirmed miRNA–lncRNA
interactions. The dataset consists of 10112 known miRNA-
lncRNA interactions about 132 miRNAs and 1114 lncRNAs. In
addition, the known lncRNAs-relatedmiRNAs that do not appear
in the dataset of known miRNA-disease associations mentioned
above is deleted. As a result, 9088 miRNA-lncRNA interactions
were obtained. We also constructed an adjacency matrix B to
represent known miRNA-lncRNA interactions. The row of the B
represents the miRNAs, and the column represents the lncRNAs.
The variable nl represents the number of lncRNA in the dataset.
If miRNAm(i) is interacted with lncRNA l(j), the value of B(m(i),
l(j)) in the B is 1, otherwise 0.

miRNA Functional Similarity
Wang et al. (2010) introduced a computational method of
miRNA functional similarity between a miRNA pair (mi and
mj). The whole process of the computational method can
be divided into four steps. First, we need to identify the
diseases set D(mi) (diseases related to mi) and D(mj) (diseases
related to mj) for miRNA mi and mj, respectively. Second,
in both sets, the semantic values of all diseases are calculated
according to the corresponding DAG. Third, the semantic
similarity for each disease pairs between D(mi) and D(mj)
can be computed by consideration of their semantic value.
In the last step, the functional similarity between mi and mj

is calculated in the light of the semantic similarity obtained
in step three. From http://www.cuilab.cn/files/images/cuilab/
misim.zip, miRNA functional similarity probability scores can
be downloaded. Similarly, we built matrix FS to stand for the
miRNA functional similarity matrix, where FS(m(i), m(j)) is
the functional similarity probability score between miRNA m(i)
andm(j).

Disease Semantic Similarity Model 1
Each disease can be described as a Directed Acyclic Graph
(DAG). For example, disease D can be denoted as DAG(D) =
(D,T(D),E(D)),whereT(D) is a set of nodeD itself and its ancestor
nodes, E(D) stands for the edges between parent and child nodes
(Wang et al., 2010). Therefore, the semantic value of disease D

Frontiers in Genetics | www.frontiersin.org 3 July 2018 | Volume 9 | Article 234

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. MiRNA-Disease Association Prediction

could be calculated as follows:

DV1 (D) =
∑

d∈T(D)

DD1
(

d
)

(1)

where

{

DD1
(

d
)

= 1 if d = D

DD1
(

d
)

= max
{

1∗DD1
(

d
′
)∣

∣

∣
d
′
∈ children of d

}

if d 6= D

(2)

1 is the semantic contribution factor. For disease D, the
contribution of itself to the semantic value of diseaseD is 1. If the
distance between D and d increases, the semantic contribution
value of disease d to the D will decreases. Thus, if diseases in
the same layer, they would have the same contribution to the
semantic value of disease D. The value of semantic similarity in
disease semantic similarity model 1 between disease d(i) and d(j)
can be defined as follows:

SS1
(

d (i) , d
(

j
))

=

∑

t∈T(d(i))∩T(d(j)) (Dd(i)1 (t) + (Dd(j)1 (t))

DV1
(

d (i)
)

+ DV1(d(j))

(3)

Disease Semantic Similarity Model 2
In the disease semantic similarity model 2, considering
different disease terms in the same layer of DAG(D) may
appear in different numbers of disease DAGs, disease with
more specific which appears in less disease DAGs should
contribute to the semantic similarity of disease D at a higher
contribution level. Therefore, the contribution of disease d to
the semantic value of disease D can be calculated as follows:

SM
(

m (i),m
(

j
))

=







KM
(

m (i) ,m
(

j
))

+ FS(m (i) ,m(j))

2
m (i) and m

(

j
)

has functional similarity

KM
(

m (i) ,m
(

j
))

otherwise
(12)

SD
(

d (i), d (v)
)

=







KD
(

d (u) , d (v)
)

+ SS(d (u) , d(v))

2
d (u) and d (v) has similarity

KD
(

d (u) , d (v)
)

otherwise
(13)

DD2
(

d
)

= −log[
the number of DAGs including d

the number of diseases
] (4)

In disease semantic similarity model 2, the value of semantic
similarity between d(i) and d(j) can be defined as follows:

SS2
(

d (i) , d
(

j
))

=

∑

t∈T(d(i))∩T(d(j)) (Dd(i)2 (t) + (Dd(j)2 (t))

DV2
(

d (i)
)

+ DV2(d(j))

(5)

Gaussian Interaction Profile Kernel
Similarity
Gaussian interaction profile kernel similarity for diseases can be
defined based on the known miRNA-disease associations dataset
by considering the assumption that similar diseases tend to be

related with more common miRNAs. In this paper, the binary
vector IP(d(u)) is the uth row of matrix A, which was used to
indicate the interaction profiles between disease d(u) and each
miRNA. Therefore, the value of Gaussian interaction profile
kernel similarity between diseases d(u) and d(v) is defined as
follows.

KD
(

d (u) , d (v)
)

= exp(−γd||IP
(

d (u)
)

− IP
(

d (v)
)

||
2
) (6)

where parameter γd is used to control the kernel bandwidth,
which can be obtained from the normalization of a new
bandwidth γ ′

d by the average number of associated miRNAs for
all the diseases.

γd =
γ ′

d

( 1
nd

∑nd
n=1 ||IP(d(u))||

2)
(7)

Similarly, we defined the value of Gaussian interaction profile
kernel similarity between miRNAm(i) andm(j) as follows:

KM
(

m (i) ,m
(

j
))

= exp(−γm||IP (m (i)) − IP
(

m
(

j
))

||
2
)(8)

γm =
γ ′

m

( 1
nm

∑nm
n=1 ||IP(m(i))||2)

(9)

Gaussian interaction profile kernel similarity for lncRNA l(i) and
l(j) can also be calculated as follows:

KL
(

l (i) , l
(

j
))

= exp(−γl||IP
(

l (i)
)

− IP
(

l
(

j
))

||
2
) (10)

γl =
γ ′

l

( 1
nl

∑nl
n=1 ||IP(l(i))||

2)
(11)

Integrated Similarity for miRNAs and
Diseases
Here, integrated miRNA similarity matrix SM are defined on the
basis of miRNA functional similarity and Gaussian interaction
profile kernel similarity for miRNAs. Integrated disease similarity
matrix SD are constructed according to disease semantic
similarity and Gaussian interaction profile kernel similarity for
diseases.

where

SS =
SS1+ SS2

2
(14)

TLHMDA
According to the guilt-by-association principle (Barabási et al.,
2011), new miRNA–disease associations can be inferred through
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existing associations between similar miRNAs and similar
diseases, Likewise, novel miRNA-lncRNA interactions can be
inferred through existing associations between similar miRNA
and lncRNA (see Figure 1). We infer new miRNA-lncRNA
associations in the newly proposed triple layer heterogeneous
network by using an information flow-based method. New
disease-lncRNA association matrixWnew

dl
could be constructed as

follows:

Wnew
dl = Wdm × SM ×Wml (15)

As shown in the above formula, we can identify potential disease-
lncRNA associations on the basis of miRNA-disease associations
Wdm, miRNA-lncRNA interactions Wml as well as integrated
similarity for miRNAs SM according to the equation. Once the
associations between diseases and lncRNAs are established. New
association Wnew

dm
between diseases and miRNAs can be defined

by considering these associations:

Wnew
dm = Wdl × KL×WT

ml (16)

Equation (16) is potentially more powerful in capturing miRNA-
disease associations by incorporating lncRNA information into
miRNA-disease prediction. As a by-product from the model, we
can also obtain a new interaction between each miRNA and
lncRNA pair by incorporating miRNA-disease associationsWdm,
disease-lncRNA associations Wdl as well as integrated similarity

for miRNAs SD. New association Wnew
ml

between miRNAs and
lncRNAs can be defined as follows:

Wnew
ml = WT

dm × SD×Wdl (17)

where the superscript T indicates the transpose of the
corresponding matrix.

We treatWdl as a temporary value, and replaceWdl in the two
Equations (16, 17) using the Equation (15), respectively.

Wnew
dm = Wdm × SM ×Wml × KL×WT

ml (18)

Wnew
ml = WT

dm × SD×Wdm × SM ×Wml (19)

Once the new miRNA-disease associations Wnew
dm

and new
miRNA-lncRNA interactionsWnew

ml
were obtained, we established

iterative updating procedure based on Equations (18, 19). The
final computational model can be written as follows:

Wk+1
dm

= α ×Wk
dm ×

(

SM ×Wk
ml × KL×Wk

ml

T
)

+ (1− α)A

(20)

Wk+1
ml

= α

(

Wk
dm

T
× SD×Wk

dm × SM
)

×Wk
ml + (1− α)B

(21)

FIGURE 1 | Flowchart of potential disease-miRNA association prediction based on the computational model of TLHNMDA: (A) Constructing miRNA-disease

association matrices, miRNA-lncRNA interaction matrices and obtaining integrated similarity network by combining miRNA functional similarity, disease semantic

similarity, Gaussian interaction profile kernel similarity; (B) Constructing a triple layer heterogeneous network and predicting potential miRNA-disease associations

based on an iterative equation to obtain the stable association probability.
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Here α a decay factor in the range of (0,1). A and B
represents the initial disease–miRNA associations and miRNA–
lncRNA interactions, respectively. Wk

dm
and Wk

ml
would be

converge with proper normalization utilizing Equations (24, 25),
respectively (Wang et al., 2013c) (the proof can be found in the
Supplementary Materials).

IM = SM ×Wk
ml × KL×Wk

ml

T
(22)

ID = Wk
dm

T
× SD×Wk

dm × SM (23)

IM
(

m (i) ,m
(

j
))

=

IM
(

m (i) ,m
(

j
))

√

∑nm
l=1 IM

(

m (i) ,m
(

l
))

√

∑nm
l=1 IM

(

m
(

j
)

,m
(

l
))

(24)

ID
(

d (i) , d
(

j
))

=

ID
(

d (i) , d
(

j
))

√

∑nd
l=1 ID

(

d (i) , d
(

l
))

√

∑nd
l=1 ID

(

d
(

j
)

, d
(

l
))

(25)

After some steps, the iteration will be stable after some steps (the

change in value between Wk+1
dm

and Wk
dm

measured by L1 norm

is less than a given cutoff, the cutoff in this paper was 10−6).
The three-layer model is proposed by incorporating miRNA-

lncRNA information into miRNA-disease association prediction
based on miRNA dysregulation is associated with many human
complex diseases may through miRNA-lncRNA interactions.
It can be seen from the two iterative algorithms, once new
association between miRNA and disease is estimated, it can
be used to update other miRNA-disease associations and
miRNA-lncRNA interactions. Similarly, once new association
between miRNA and lncRNA is estimated, it can also be
used to update other miRNA-disease associations and miRNA-
lncRNA interactions. Therefore, the layer between miRNA and
disease and the layer between miRNA and lncRNA paly the
same important role in the triple layer heterogeneous network
to propagate information for the identification of potential
miRNA-disease associations and miRNA-lncRNA interactions
simultaneously. In order to make the two constructed iterative
equations to work effectively, knownmiRNA-disease associations
and known miRNA-lncRNA interactions as weights were added
to the inferred equations because the initial links deserve more
credibility. At last, Wnew

dm
and Wnew

ml
were expected to converge,

whichmeans that the propagation of information would be stable
at the end.

RESULTS

Performance Evaluation
We implemented LOOCV as well as 5-fold cross validation on the
basis of the experimentally verified miRNA-disease associations
in HMDD v2.0 database (Li et al., 2014c) to evaluate the
prediction performance of TLHNMDA. Moreover, TLHNMDA

were compared with four previous classical computational
methods: RLSMDA (Chen et al., 2012b), HDMP (Xuan et al.,
2013), WBSMDA (Xu et al., 2011), RKNNMDA (Chen et al.,
2017c). In the framework of LOOCV evaluation, each known
association ofmiRNA-disease pair in the database was considered
as test samples in turn, the other known miRNA-disease
associations were considered as training samples, the miRNA-
disease pairs with no known verified associations were regarded
as candidate samples. After TLHNMDA was implemented, we
would obtain the scores of the test samples and the scores of
the candidate samples, and then the score of the test sample
was compared with the scores of all the candidate samples in
LOOCV. While in 5-fold cross validation, the experimentally
verifiedmiRNA-disease associations were evenly divided into five
disjoint parts. One part was selected as test samples and the
other four parts were regarded as training samples in each time.
Similarly, the miRNA-disease pairs without known association
evidences were regarded as candidate samples. Then, the score
of each test sample was compared with the scores of all the
candidate samples. It is worth noting that the above process was
repeated 100 times, we would get 100 rankings for all miRNA
and disease pairs. It is worth noting that almost all the models
for the prediction of miRNA-disease associations according to
the assumption that miRNAs with similar functions tend to be
related to phenotypically similar diseases were proposed based
on the LOOCV and 5-fold cross validation (Mork et al., 2014;
Xuan et al., 2015; You et al., 2017; Zhong et al., 2017). At last, we
drew Receiver Operating Characteristics (ROC) curve using true
positive rate (TPR, sensitivity) against the false positive rate (FPR,
1-specificity) at different thresholds evaluate the performance
of TLHNMDA clearly. Sensitivity refers to the percentage of
the positive miRNA-disease associations whose score ranks are
higher than the preset threshold, while specificity refers to the
percentage of negative miRNA-disease pairs with ranks lower
than the threshold. Then, the value of Area under the ROC
curve (AUC) could be calculated to evaluate the prediction
performance of the model. If the value of AUC is 1, it tells us
the approach possesses perfect prediction performance; if the
value of AUC is 0.5, it stands for the method possesses random
prediction performance. For LOOCV, TLHNMDA, RLSMDA,
HDMP, WBSMDA, RKNNMDA obtained AUCs of 0.8795,
0.8426, 0.8366, 0.8030 and 0.7159, respectively (see Figure 2). For
5-fold, TLHNMDA, RLSMDA, HDMP, WBSMDA, RKNNMDA
obtained the average AUCs and corresponding standard
deviations of 0.8795± 0.0010, 0.8569± 0.0020, 0.8342± 0.0010,
0.8185± 0.0009, and 0.6723± 0.0027, respectively.

Case Studies
Here, to evaluate the prediction accuracy of TLHNMDA, case
studies were implemented on kidney neoplasms, lymphoma and
prostate neoplasms. In the model, the 5430 known miRNA-
disease associations in HMDD v2.0 were utilized as the training
set. All candidate miRNAs for each interested disease were
ranked in accordance with their predicted scores. After that,
the top 50 predicted miRNAs were picked out and verified
in other two important miRNA-disease association databases
(i.e., dbDEMC and miR2Disease). Furthermore, the results

Frontiers in Genetics | www.frontiersin.org 6 July 2018 | Volume 9 | Article 234

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. MiRNA-Disease Association Prediction

FIGURE 2 | Comparison between TLHNMDA, RLSMDA, HDMP, WBSMDA, RKNNMDA in terms of ROC curve and AUC based on LOOCV. As a result, TLHNMDA,

RLSMDA, HDMP, WBSMDA, RKNNMDA achieved AUCs of 0.8795, 0.8426, 0.8366, 0.8030, and 0.7159 in the LOOCV, respectively. In conclusion, TLHNMDA

outperform the other models.

showed that 232 of the 5430 known miRNA-disease associations
in HMDD v2.0 also existed in miR2Disease and 546 known
associations also existed in dbDEMC. It is noteworthy that there
was no overlap between the training samples and the prediction
lists. That is because only candidate miRNAs (miRNAs have any
no known associations with interested disease in HMDD v2.0)
for interested disease were ranked and verified in case studies.
Accordingly, none of the top 50 predicted miRNAs existed in
HMDDv2.0 and the verification ofmiRNAs in the prediction lists
was completely independent of HMDD v2.0.

Kidney neoplasms, known as renal cancer, is a common
health problem in cancer diseases (Manojlovi et al., 1986). The
age of its incidence can be in all ages, particularly in the age
between 50 and 70 years old (Nickerson et al., 2002). The
most common symptoms of kidney neoplasms patients are
pains in the lumbar and hematuria (Duque et al., 1998). Many
existing treatments of kidney neoplasms are usually radiation
therapy and chemotherapy drugs, which do not have much effect
in the cure (Zbar et al., 2003). Up to now, lots of miRNAs
have been reported to be associated with kidney neoplasms.
For example, miRNA-192, miRNA-194, miRNA-215, miRNA-
200c, and miRNA-141 were proved to be associated with renal
childhood neoplasms (Senanayake et al., 2012). MiRNA-210 was
reported to be upregulated in renal neoplasms (Eilertsen et al.,
2014). Another miRNA named miRNA-23b could act as an
oncogene and reducing the expression of miRNA-23b would be
an effective way to inhibit the growth of kidney tumor, which
might contribute to the treatment of renal neoplasms inmedicine
(Liu et al., 2010). In case studies, we implemented TLHNMDA
on kidney neoplasms to predict the potential miRNA-disease
associations. In short, 8 of the top 10 and 42 of the top 50
novel identified miRNAs associated with kidney neoplasms were
validated by the two database deDEMC and miR2Disease (see
Table 1).

Lymphoma is the fastest growing human tumor (Chen et al.,
2013), which is a group of blood cell tumors develop from
lymphocytes (a type of white blood cell). The disease consists of
two categories: Hodgkin lymphomas (HL) and the non-Hodgkin
lymphomas(NHL) (Mcduffie et al., 2009). Many lymphoma-
related miRNAs have been reported based on recent biological
experiments. For example, the expression of miRNA-150 was
confirmed to be a tumor suppressor in malignant lymphoma
(Watanabe et al., 2011), which induces the differentiation of
EBV-positive Burkitt lymphoma differentiation based on the
modulation of c-Mybi in vitro (Li et al., 2014a). In addition,
miR-21 could regulate cell activity of proliferation, invasion, and
apoptosis. Accordingly, it has a potential therapeutic application
in lymphoma (Sekar et al., 2014). We implemented TLHNMDA
on lymphoma to predict the top 10 and top 50 related miRNAs.
Briefly speaking, 7 of top 10 and 39 of top 50 potential
lymphoma-related miRNAs were verified in the deDEMC and
miR2Disease database (see Table 2).

Prostate neoplasms is the most common disease in men
(Siegel et al., 2013). The malignant tumor originates from
prostate in the epithelial cells (Gmyrek et al., 2001). In the
recent years, many miRNAs have been verified to be related
with prostate neoplasms base on accumulating researches. For
instance, miR-141, miR-375, miR-21, miR-93, miR-106a, miR-
874, miR-1207, and miR-26a were reported to upregulate in
prostate neoplasms (Xiao et al., 2012; Chu et al., 2014; Dong et al.,
2015). We also implemented TLHNMDA on prostate neoplasms
to identify the related miRNAs. As a result, 7 of top 10 and 38 of
top 50 potential Prostate neoplasms-miRNAs were confirmed in
the deDEMC and miR2Disease database (see Table 3).

Moreover, we further implemented TLHNMDA on the
known miRNA-disease associations in HMDD v1.0 database
(Lu et al., 2008) to see whether the approach worked properly
on a different dataset. Consequently, the predicted scores for
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TABLE 1 | Prediction of the top 50 predicted miRNAs associated with kidney

neoplasms based on known associations in HMDD v2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-16 dbDEMC hsa-mir-20a dbDEMC miR2Disease

hsa-mir-15b dbDEMC hsa-mir-539 unconfirmed

hsa-mir-195 dbDEMC hsa-mir-26a dbDEMC miR2Disease

hsa-mir-424 dbDEMC miR2Disease hsa-mir-27b dbDEMC

hsa-mir-497 dbDEMC hsa-mir-34a dbDEMC

hsa-mir-103a unconfirmed hsa-mir-17 miR2Disease

hsa-mir-485 unconfirmed hsa-mir-29b dbDEMC miR2Disease

hsa-mir-23a dbDEMC hsa-mir-125b unconfirmed

hsa-mir-214 dbDEMC miR2Disease hsa-mir-143 dbDEMC

hsa-mir-155 dbDEMC hsa-mir-128 dbDEMC

hsa-mir-107 dbDEMC hsa-mir-320a unconfirmed

hsa-mir-590 unconfirmed hsa-mir-708 unconfirmed

hsa-mir-19a dbDEMC hsa-mir-124 dbDEMC

hsa-mir-125a dbDEMC hsa-mir-149 dbDEMC

hsa-mir-142 unconfirmed hsa-mir-199a dbDEMC miR2Disease

hsa-mir-19b dbDEMC miR2Disease hsa-mir-34c dbDEMC

hsa-mir-138 dbDEMC hsa-mir-181a dbDEMC

hsa-mir-26b dbDEMC hsa-mir-152 dbDEMC

hsa-mir-150 dbDEMC miR2Disease hsa-mir-106a dbDEMC miR2Disease

hsa-mir-29c dbDEMC miR2Disease hsa-mir-18a dbDEMC

hsa-mir-370 dbDEMC hsa-mir-181b dbDEMC

hsa-mir-31 dbDEMC hsa-mir-193a dbDEMC

hsa-mir-185 dbDEMC miR2Disease hsa-mir-7 dbDEMC miR2Disease

hsa-mir-24 dbDEMC hsa-mir-122 dbDEMC miR2Disease

hsa-mir-29a dbDEMC miR2Disease hsa-mir-106b dbDEMC miR2Disease

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

candidate miRNAs showed that 10 of top 10 and 49 of top 50
potential esophageal neoplasms-associatedmiRNAs were verified
by three databases (see Table 4). Lastly, we list the potential
miRNAs related to all the human diseases and the association
scores of the entire ranking results obtained by the computational
model of TLHNMDA (see Supplementary Table 1).

DISCUSSION

Although progress has beenmade in the discovery of miRNA, the
role of miRNAs in physiologic and pathophysiologic processes
is just emerging. MiRNAs as governors of gene expression
during cardiovascular development and disease have associations
with many critical biological processes (Liu and Olson, 2010).
Identification of miRNAs expressed in specific cardiac cell types
may provide us with new diagnostic, prognostic, and therapeutic
targets for many forms of cardiovascular disease (Cordes and
Srivastava, 2009). Furthermore, aberrant expression of miRNAs
has also been involved in various neurological disorders (NDs)
of the central nervous system such as alzheimer disease,
parkinson’s disease, huntington disease, amyotrophic lateral
sclerosis, schizophrenia and autism. If dysregulated miRNAs
are found in patients with NDs, this may also be a biomarker

TABLE 2 | Prediction of the top 50 predicted miRNAs associated with lymphoma

based on known associations in HMDD v2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-15b dbDEMC hsa-mir-199a dbDEMC

hsa-mir-195 dbDEMC hsa-mir-34c unconfirmed

hsa-mir-424 dbDEMC hsa-mir-152 dbDEMC

hsa-mir-497 dbDEMC hsa-mir-106a dbDEMC miR2Disease

hsa-mir-103a unconfirmed hsa-mir-181b dbDEMC

hsa-mir-485 unconfirmed hsa-mir-193a unconfirmed

hsa-mir-23a dbDEMC hsa-mir-7 dbDEMC

hsa-mir-214 dbDEMC hsa-mir-106b dbDEMC

hsa-mir-107 dbDEMC hsa-mir-22 dbDEMC

hsa-mir-590 unconfirmed hsa-mir-27a dbDEMC

hsa-mir-142 unconfirmed hsa-mir-144 unconfirmed

hsa-mir-26b dbDEMC hsa-mir-326 dbDEMC

hsa-mir-370 unconfirmed hsa-mir-93 dbDEMC

hsa-mir-31 dbDEMC hsa-mir-186 dbDEMC

hsa-mir-185 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-23b dbDEMC hsa-mir-148a dbDEMC

hsa-mir-29a dbDEMC hsa-mir-182 dbDEMC

hsa-mir-27b dbDEMC hsa-mir-199b dbDEMC

hsa-mir-34a dbDEMC hsa-mir-145 dbDEMC miR2Disease

hsa-mir-29b dbDEMC hsa-mir-328 dbDEMC miR2Disease

hsa-mir-125b unconfirmed hsa-mir-330 dbDEMC

hsa-mir-143 dbDEMC miR2Disease hsa-mir-421 unconfirmed

hsa-mir-128 dbDEMC hsa-mir-1 dbDEMC

hsa-mir-320a unconfirmed hsa-mir-181c dbDEMC

hsa-mir-149 dbDEMC miR2Disease hsa-mir-141 dbDEMC

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

for the earlier diagnosis and monitoring of disease progression.
Identifying the role of miRNAs in normal cellular processes
is critical in the development of new therapeutic strategies
for NDs (Kamal et al., 2015). Therefore, predicting disease-
associated miRNAs is important for the understanding of disease
pathogenesis and treatment of a variety of clinically important
disease. In this paper, according to the hypothesis that functional
similar miRNAs and lncRNAs are likely to be associated
with similar diseases. We introduced a novel model, named
TLHNMDA, which constructed a triple layer heterogeneous
network by systematic combination of miRNA functional
similarity, disease semantic similarity, Gaussian interaction
profile kernel similarity, known miRNA-disease associations and
miRNA-lncRNA interactions to identify new disease-associated
miRNAs. In the model, an iterative updating algorithm that
propagates information across the network was proposed based
on the triple layer heterogeneous graph to obtain final prediction
scores between diseases and miRNAs. The experimental results
from LOOCV and 5-fold cross validation have demonstrated that
TLHNMDA outperforms other four computational methods.
What’s more, case studies of four human diseases: kidney
neoplasms, lymphoma, prostate neoplasms and esophageal
neoplasms were implemented and the results were verified by the
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TABLE 3 | Prediction of the top 50 predicted miRNAs associated with prostate

neoplasms based on known associations in HMDD v2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-15a dbDEMC miR2Disease hsa-mir-24 dbDEMC miR2Disease

hsa-mir-16 dbDEMC miR2Disease hsa-mir-29a dbDEMC miR2Disease

hsa-mir-15b dbDEMC hsa-mir-539 unconfirmed

hsa-mir-195 dbDEMC miR2Disease hsa-mir-20a miR2Disease

hsa-mir-424 unconfirmed hsa-mir-26a dbDEMC miR2Disease

hsa-mir-497 miR2Disease hsa-mir-34a dbDEMC miR2Disease

hsa-mir-103a unconfirmed hsa-mir-27b dbDEMC miR2Disease

hsa-mir-485 unconfirmed hsa-mir-29b dbDEMC miR2Disease

hsa-mir-23a dbDEMC miR2Disease hsa-mir-17 miR2Disease

hsa-mir-214 dbDEMC miR2Disease hsa-mir-143 dbDEMC miR2Disease

hsa-mir-155 dbDEMC hsa-mir-128 dbDEMC

hsa-mir-107 unconfirmed hsa-mir-320a unconfirmed

hsa-mir-590 unconfirmed hsa-mir-708 unconfirmed

hsa-mir-19a dbDEMC hsa-mir-124 dbDEMC

hsa-mir-125a dbDEMC miR2Disease hsa-mir-149 dbDEMC miR2Disease

hsa-mir-142 unconfirmed hsa-mir-199a dbDEMC miR2Disease

hsa-mir-19b dbDEMC miR2Disease hsa-mir-34c dbDEMC

hsa-mir-138 dbDEMC hsa-mir-181a dbDEMC miR2Disease

hsa-mir-26b dbDEMC miR2Disease hsa-mir-152 dbDEMC

hsa-mir-150 dbDEMC hsa-mir-18a unconfirmed

hsa-mir-370 miR2Disease hsa-mir-21 dbDEMC miR2Disease

hsa-mir-29c dbDEMC hsa-mir-106a dbDEMC miR2Disease

hsa-mir-31 dbDEMC miR2Disease hsa-mir-181b dbDEMC miR2Disease

hsa-mir-185 unconfirmed hsa-mir-193a unconfirmed

hsa-mir-23b dbDEMC miR2Disease hsa-mir-7 dbDEMC

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

experimental literatures in dbDEMC and miR2Disease database.
We can see that the TLHNMDA turns out to be more reliable and
effective in inferring the potential miRNA–disease associations
than the previous computational models. Therefore, our model
could be an effective and useful computational model to predict
new miRNA-disease associations. Biomedical researchers could
use TLHNMDA to computationally identify the miRNAs that
were potentially related to the investigated diseases.

TLHNMDA could obtain the valid performances due to
the following several reasons. Firstly, TLHNMDA improved
prediction accuracy and decrease the prediction bias by
integration of several reliable types of biological datasets,
including the accurate experimentally verified miRNA-disease
associations, known miRNA-lncRNA interactions, miRNA
functional similarity network, disease semantic similarity
network and Gaussian interaction profile kernel similarity.
Secondly, the model captured newmiRNAs-diseases associations
using global network similarity information, it has an advantage
over the local network similarity information model to capture
miRNA-disease associations. Finally, TLHNMDA is an iterative
algorithm to update predicted scores based on global network
similarity information until the state is in convergence, which
promote the effective prediction of TLHNMDA. However,

TABLE 4 | Prediction of the top 50 predicted miRNAs associated with esophageal

neoplasms based on HMDD v1.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-15a dbDEMC and HMDD hsa-mir-143 dbDEMC and HMDD

hsa-mir-16 dbDEMC hsa-mir-29a dbDEMC

hsa-mir-15b dbDEMC hsa-mir-125b dbDEMC

hsa-mir-195 dbDEMC hsa-mir-29b dbDEMC

hsa-mir-424 dbDEMC hsa-mir-181b dbDEMC

hsa-mir-497 dbDEMC hsa-mir-34a dbDEMC HMDD

hsa-mir-214 dbDEMC HMDD hsa-mir-106a dbDEMC

hsa-mir-107 dbDEMC miR2Disease hsa-mir-106b dbDEMC

hsa-mir-155 dbDEMC HMDD hsa-mir-199a dbDEMC HMDD

hsa-mir-19a dbDEMC HMDD hsa-mir-330 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-20b dbDEMC

hsa-mir-125a dbDEMC hsa-mir-26a dbDEMC HMDD

hsa-mir-185 dbDEMC hsa-mir-1 dbDEMC

hsa-mir-20a dbDEMC HMDD hsa-mir-181a dbDEMC

hsa-mir-24 dbDEMC hsa-mir-186 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-141 dbDEMC HMDD

hsa-mir-23a dbDEMC hsa-mir-93 dbDEMC

hsa-mir-26b dbDEMC hsa-mir-421 dbDEMC

hsa-mir-539 unconfirmed hsa-mir-222 dbDEMC

hsa-mir-150 dbDEMC HMDD hsa-mir-28 dbDEMC HMDD

hsa-mir-23b dbDEMC hsa-mir-145 dbDEMC HMDD

hsa-mir-29c dbDEMC HMDD hsa-mir-92a HMDD

hsa-mir-370 dbDEMC hsa-mir-22 dbDEMC HMDD

hsa-mir-142 dbDEMC hsa-mir-199b dbDEMC

hsa-mir-18a dbDEMC hsa-mir-34c dbDEMC HMDD

The first column records top 1–25 related miRNAs. The second column records the top

26–50 related miRNAs.

several limitations also exist in the TLHNMDA, for example,
TLHNMDA cannot predict the new miRNAs associated with the
new diseases without any known miRNA-disease associations.
Besides, there is no powerful methods to find optimal parameters
of TLHNMDA. The selection of parameters in the iterative
algorithm is based on past experiences which can’t guarantee the
model with best state in the implementation process. Finally,
the number of miRNA-disease associations and miRNA-lncRNA
interactions, confirmed by biological experiments, is still
insufficient. Therefore, in the future research, we can have a try
to propose a new model by integrating more available biological
datasets.

It is noteworthy that there exist many other types of data can
also be used to predict miRNA-disease associations, for example,
miRNA-mRNA interactions (Li et al., 2014b), miRNA-protein
interactions (Shi et al., 2016), miRNA-environmental factors
interactions (Chen et al., 2012a), and so on. Considering some
existing methods have taken advantage of different datasets
to identify miRNA-disease associations, which makes direct
comparison of their performance and the performance of the
proposed method is not realistic. For example, two model
proposed by Pallez et al. (2017) and Pasquier and Gardès (2016)
were based on the dataset of miRNA-disease associations,
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miRNA-neighbor associations, miRNA-target associations,
miRNA-word associations and miRNA-family associations. The
model proposed by Mork et al. (2014) was based on the dataset
of miRNA–protein associations and protein-disease associations
to predict potential miRNA-disease associations. The model
introduced by Shi et al. (2013) for the identification of miRNA-
disease associations was based on disease-gene association,
protein-protein interaction, miRNA-target associations.
Moreover, Liu et al. (2016) proposed a new computational
to predict unobserved miRNA-disease associations based on
disease functional similarity, disease semantic similarity and
miRNA similarity. It is worth noting that miRNA similarity in
the model was calculated based on miRNA-lncRNA interactions.
In addition to datasets, there are different ways in defining
relationships among nodes of the same type. For example, in
the DeepMDA proposed by Fu and Peng (2017), Gaussian
interaction profile kernel similarity for disease was calculated by
using three association matrices, the miRNA-disease association
matrix, the lncRNA-disease association matrix, and the gene-
disease association matrix. MiRNA similarity used in KATZ
and CATAPULT introduced by Zou et al. (2015) was calculated
by text mining analysis of their phenotype descriptions in
the Online Mendelian Inheritance in Man (OMIM) database.
Especially, the relative merits of using different measures are
worth further study. Network analysis and modeling researches
constructed by diverse data were also widely applied in other
fields. Some studies modeled cancer cells by constructing
and modeling networks for individual clones based on tumor
genome sequencing (Wang et al., 2013a). Integrative network
modeling has been applied in the modeling of drug resistance
for personalized treatment (Wang et al., 2013b). Moreover,
Hallmark-specific networks were modeled to better understand
key cellular processes, which are involved in cancer development

and progression (Gao et al., 2016). The hallmarks of cancer
are one of the most widely acknowledged organizing principles
for research on cancer (Wang et al., 2015). Accumulating
evidences indicated that there are some associations between
cancer hallmarks and genes (Wang et al., 2015). For example,
miR-16 obtained the highest score in the case study on kidney
neoplasms and the second high score in the case study on
prostate neoplasms. APP, ATG12, and ATF2 are the common
targets for this miRNA and have been identified to be involved in
hallmark of inflammation (Wang et al., 2015). In the future work,
we plan to extend the model we proposed into new multi-layer
prediction model, one extension is to add more diverse datasets
of different types (other than the three discussed here) and more
associations to the model, then construct the iterative updating
algorithm to identify disease-associated miRNAs.
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