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Abstract: Background: Malignant mesothelioma (MM) is an aggressive and incurable carcinoma that
is primarily caused by asbestos exposure. However, the current diagnostic tool for MM is still under-
developed. Therefore, the aim of this study is to explore the diagnostic significance of a strategy
that combined plasma-based metabolomics with machine learning algorithms for MM. Methods:
Plasma samples collected from 25 MM patients and 32 healthy controls (HCs) were randomly divided
into train set and test set, after which analyzation was performed by liquid chromatography-mass
spectrometry-based metabolomics. Differential metabolites were screened out from the samples
of the train set. Subsequently, metabolite-based diagnostic models, including receiver operating
characteristic (ROC) curves and Random Forest model (RF), were established, and their prediction
accuracies were calculated for the test set samples. Results: Twenty differential plasma metabolites
were annotated in the train set; 10 of these metabolites were validated in the test set. The seven
metabolites with most significant diagnostic values were taurocholic acid (accuracy = 0.6429), uracil
(accuracy = 0.7143), biliverdin (accuracy = 0.7143), tauroursodeoxycholic acid (accuracy = 0.5000),
histidine (accuracy = 0.8571), pyrroline hydroxycarboxylic acid (accuracy = 0.8571), and phenylalanine
(accuracy = 0.7857). Furthermore, RF based on 20 annotated metabolites showed a prediction accuracy
of 0.9286, and its optimized version achieved 1.0000 in the test set. Moreover, the comparison
between the samples of peritoneal MM (n = 8) and pleural MM (n = 17) illustrated a significant
increase in levels of taurocholic acid and tauroursodeoxycholic acid, as well as an evident decrease
in biliverdin. Conclusions: Our results revealed the potential diagnostic value of plasma-based
metabolomics combined with machine learning for MM. Further research with large sample size
is worthy conducting. Moreover, our data demonstrated dysregulated metabolism pathways in
MM, which aids in better understanding of molecular mechanisms related to the initiation and
development of MM.

Keywords: malignant mesothelioma; metabolomics; machine learning; diagnosis

1. Introduction

Malignant mesothelioma (MM) is an aggressive and incurable malignancy that devel-
ops on the lining of the pleural and peritoneal cavities [1,2]. Incidence of MM is strongly
associated with exposure to asbestos—a known human carcinogen. Despite the widespread
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prohibition on the application of asbestos, the worldwide incidence rate of MM is still
increasing dramatically as a result of continuous use of asbestos in developing countries
and the large existing population with preceding exposure to asbestos [3]. China, as a
country with the highest consumption of asbestos, showed a 2.5% increase in incidence
rate per year between 2000 and 2013 [4]. Unfortunately, such growth in MM incidence rates
is expected to persist in the following decades in China due to its continuous industrial use
of asbestos.

The standard treatment for MM involves a combination of surgery, chemotherapy, and
radiotherapy. However, efficacy of this multidisciplinary treatment is relatively limited.
Recently, novel therapies, including molecular-targeted drugs and immune checkpoint
inhibitors, have been applied into practice for treating MM, which, however, turned out to
be dissatisfactory [5–7]. Nonetheless, MM patients diagnosed in early stages have a higher
chance of better prognosis and, accordingly, better survival prospects, illustrating that early
detection of MM is extremely important. However, early and accurate diagnosis of MM
remains problematic. As suggested in a recent review, the misdiagnosis rate is relatively
high worldwide, ranging from 14% in developed countries to 50% in developing countries,
reflecting an urgent need for a novel and accurate means of diagnosis [3]. Furthermore,
most diagnoses of mesothelioma occur in their advanced stages due to the long latency
period (30–50 years after asbestos exposure) and nonspecific symptoms, consequently
resulting in delayed treatments and shortened survival time [8]. Thus, it is crucial to
identify sensitive and specific biomarkers for the early diagnosis of MM.

Metabolic reprogramming as one of the hallmarks of cancer cells supports the en-
ergy formation for their uncontrollable proliferation [9]. Characterization of cancer cells’
metabolic profile not only provides metabolic biomarkers for diagnosis or prognosis, but
also reveals the molecular biology of MM that can facilitate the detection of the underlying
therapeutic targets [10]. As a powerful tool for the identification and quantification of en-
dogenous metabolites, metabolomics has been used widely in cancer research fields [11,12].
Meanwhile, a machine learning approach has been increasingly utilized in medical field for
its value in disease diagnosis. Recently, emerging studies demonstrated that the combina-
tion of metabolomics and machine learning is an accurate and effective diagnostic approach
for diseases, including cancer [13,14]. Therefore, further exploration on applicability and
effectiveness of this combined method for MM is worthwhile.

In this study, a total of 25 malignant mesothelioma patients (MMs) and 32 healthy
controls (HCs) were randomly divided into a train set (n = 43) and a test set (n = 14). An
LC-MS-based untargeted metabolomics was performed on the plasma samples. Diagnostic
models, including ROC analyses and machine learning algorithm, were established based
on the annotated differential metabolites in the train set and further validation of the
predictive performance in the test set. Our study not only provides a novel diagnostic
strategy for MM, but also reveals the plasma metabolic profile of MM for the first time,
providing insights and general evidence for further investigation of molecular biology in
MM. However, further studies with a larger sample size on this novel diagnostic method
of MM, as well as the panel of dysregulated metabolites, need to be conducted.

2. Materials and Methods
2.1. Chemicals and Reagents

Acetonitrile (high-performance liquid chromatography (HPLC) grade) and methanol
(HPLC grade) were purchased from Tedia Company (Fairfield, OH, USA). Formic acid
(HPLC grade) was obtained from Roe Scientific Inc. (Newark, DE, USA). Distilled water
was obtained from Wahaha Group Co., Ltd. (Hangzhou, China).

2.2. Study Population and Sample Collection

Plasma samples were collected from 25 patients with histopathologic confirmation
of MM at Zhejiang Cancer Hospital, China between March 2016 and March 2020, and
none had previously received anti-cancer treatment. Plasma controls were collected from
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32 age- and sex-matched healthy individuals. All participants were overnight fasted before
sample collection. Plasma samples were then immediately centrifuged at 3000 rpm at
4 ◦C for 15 min. Di-potassium salt of ethylenediaminetetraacetic acid (K2-EDTA) was
used as the anticoagulant. Plasma samples were stored at −80 ◦C until analysis. The
detailed characteristics of the participants are listed in Table 1. All participants in this
study were provided with informed consent, and the study was conducted in accordance
with the ethical standards of the Ethics Committee of Zhejiang Cancer Hospital and the
1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Table 1. Clinical characteristics of patients with malignant mesothelioma (MM) and healthy controls (HC).

Feature HC (n = 32) MM (n = 25) p-Value a

Gender 0.83
Male 17 (53.1%) 14 (56.0%)

Female 15 (46.9%) 11 (44.0%)
Age 0.99

Mean ± SD 55.8 ± 7.4 55.7 ± 10.9
Site NA

Pleural mesothelioma NA 17 (68.0%)
Peritoneal mesothelioma NA 8 (32.0%)

Asbestos exposure NA
Yes NA 11 (44.0%)
No NA 10 (40.0%)

Unknown NA 4 (16.0%)
a: Two tailed Chi-square test was used to compare the distribution of sex or age between two groups; p-value < 0.05
was recognized as significant. MM: malignant mesothelioma. HC: healthy controls. SD: standard deviation. NA:
not available.

The participants (n = 57, MM: 25, HC: 32) were randomly divided into a train set
(n = 43, MM: 19, HC: 24) and a test set (n = 14, MM: 6, HC: 8) using function “sample” in R
(v3.4.1) (Figure 1).
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2.3. Sample Preparation

Plasma preparation was performed according to our previous established method [15].
In brief, 320 µL of pre-chilled acetonitrile was added to 80 µL of each plasma sample and
vortexed for 30 s. The mixture was centrifuged at 13,000 rpm, 4 ◦C for 15 min. Then, 350 µL
of supernatant was transferred to a new centrifuge tube and lyophilized. The residue
was reconstituted with 80 µL of solution consisting of acetonitrile/water (1:4, v/v). After
vortexing for 30 s and centrifuging at 13,000 rpm, 4 ◦C for 15 min, 60 µL of supernatant
was transferred into a vial and 5 µL of the supernatant was analyzed by LC-MS.

Meanwhile, pooled quality control (QC) samples were prepared by pooling equal
volume of aliquots from each MM and HC sample followed by extraction as described
above. QC samples were analyzed periodically throughout the analytical run to ensure the
stability of the platform.

2.4. LC-MS Analysis

LC-MS analysis was conducted according to our previous method [16]. Briefly,
metabolomic analyses were performed with a Q ExactiveTM Hybrid Quadrupole-Orbitrap
Mass Spectrometer coupled with an Ultimate 3000 UHPLC system (Thermo Fisher Scien-
tific, CA, USA). An ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, particle size
1.8 µm, Waters, USA) at 40 ◦C was used with a flow rate of 0.3 mL/min for chromatographic
separation. The mobile phase consisted of 0.1% formic acid (phase A) and acetonitrile
(phase B), and the gradient conditions were set as follows: 0–1 min, 2% phase B; 1–10 min,
2–100% phase B; 10–13 min, 100% phase B; 13–13.1 min, 100–2% phase B; 13.1–16 min, 2%
phase B. The capillary voltages used for the positive electrospray ionization (ESI+) and
negative electrospray ionization (ESI-) modes were 3500 v and 2500 v, respectively. The ion
transfer tube temperature was set to 350 ◦C. The mass scan range (m/z) was set to 70–1000
with a mass resolution of 70,000 in both ESI+ and ESI− modes. The sheath gas was set
to 35 and 40 Arb in ESI+ and ESI− modes, respectively. For collecting MS/MS spectra,
data-dependent acquisition was performed in a top 10 mode with a mass resolution of
17,500 and stepped collision energies of 10, 20, and 40 eV.

2.5. Metabolomic Data Analysis

Mass spectrometry raw data were converted to mzXML format with MSConvert soft-
ware (http://proteowizard.sourceforge.net/downloads.shhtml, accessed on 15 December
2020), and then analyzed with the R package XCMS (v3.4.1) for peak picking, retention
time alignment and peak matching. Subsequently, the data were further processed with R
package MetaX (v1.4.16) for ion filtration with the following criteria: (1) ions that were not
detected in over 50% of all QC samples, (2) ions that were not detected in over 80% of all
non-QC samples, or (3) ions with a relative standard deviation >30% in QC samples. In
order to reduce the influence by the signal drift, quality control-based robust LOESS signal
correction algorithm was applied.

Principal component analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA) were performed using R package ropls (v1.18.8). The differential
metabolic features were selected in train set samples with criteria of variable importance in
projection values (VIP) > 1 in the OPLS-DA, p-value < 0.05 by two-tailed Student’s t-test, and
fold change >1.5 or <0.667. Metabolites were further annotated by matching their precursor
m/z values and MS/MS spectra with reference spectra from online databases METLIN (
http://metlin.scripps.edu/, accessed on 10 January 2021) and HMDB (http://www.hmdb.
ca/, accessed on 10 January 2021), as well as our in-house database. Metabolism pathway
analysis was conducted using the online Metaboanalyst (https://www.metaboanalyst.ca/
MetaboAnalyst/home.xhtml, accessed on 8 February 2021).

2.6. Metabolite-Based Diagnostic Modeling

For the single metabolite-based models, ROC curve was generated for each metabolite
using R package ROC (v1.16.2) to evaluate their diagnostic performance in the train set. The

http://proteowizard.sourceforge.net/downloads.shhtml
http://metlin.scripps.edu/
http://metlin.scripps.edu/
http://www.hmdb.ca/
http://www.hmdb.ca/
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
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top 7 metabolites in terms of AUC values were used for further modeling. Optimal cutoff
values of each metabolite were selected through calculating the maximum of Youden’s
index (J = sensitivity + specificity − 1). Based on the cutoff values, the unknown samples
in the test set were sorted into predictive classes, followed by the calculation of diagnostic
performances including accuracy, sensitivity, and specificity.

For the multiple metabolite-based machine learning model, “scaling” and “centering”
preprocesses were performed in the train set, with identical preprocessing methods as well
as same parameters applied to the test set. Random Forest (RF) algorithm was investigated
for the classification of MM and HC via R package caret (version 6.0–85). To train the RF
model, ten repeated five-fold cross validations were performed along with the automatic
optimization of the tunned parameter “mtry”. In order to avoid multicollinearity and
complexity of RF model, different variable sets were utilized for prediction. The variable
sets dynamically included from top2 to top20 metabolites, which were ranked according to
variable importance defined by the RF model.

2.7. Statistical Analyses

Statistical analyses were performed using R software (version 3.6.2). ROC analysis
was performed by R package pROC (version 1.15.3). The Student’s t-test was used to
compare the means between two groups. A two-tailed p-value < 0.05 was considered to be
statistically significant.

3. Results
3.1. Population Characteristics

As shown in Table 1, there were no statistically significant inter-group differences in
terms of age and sex (p-value > 0.05). Among the MM patients, 17 had pleural MM, and
8 had peritoneal MM. When categorizing by asbestos exposure, 11 reported positive while
10 reported negative, with the other 4 unknown. The total number of asbestos-exposed
patients with plural MM was 7, and that of non-exposed ones was also 7. With regard to
the 8 patients with peritoneal MM, 4 had been exposed to asbestos, while 3 had not.

3.2. Plasma Metabolic Shift between MM and HC Groups

The total ion chromatographs of 5 pooled QC samples in ESI+ mode shown in
Figure 2A were indicative of a successfully established LC-MS modality for untargeted
metabolomics, where most of the main peaks were consistent with each other in terms of
retention time and peak intensity. A total of 4327 metabolic features in ESI+ mode and
6023 in ESI- mode were extracted from the raw data. The clustering of pooled QCs in PCA
analysis showed a high degree of consistency which pointed out our results being reliable
and reproducible (Figure 2B).

OPLS-DA analysis of the samples of the train set exhibited a significant separation
between MM and HC groups, with R2 value of 0.78, and cross-validated by 200-time
permutation tests (Figure 2C,D). In line, a volcano plot based on p-values, VIP values, and
fold changes suggested a panel of dysregulated metabolic features in MM plasma samples,
with 309 upregulated and 596 downregulated (Figure 2E). A total of 20 metabolites were
annotated, with 8 upregulated and 12 downregulated (Table 2).
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Figure 2. LC-MS analysis and metabolomics analysis for screening out the differential metabolic
features between MM and HC groups. (A) Typical total ion chromatograms of pooled-QC sample in
positive electrospray ionization (ESI+) mode. (B) PCA score plot for all the samples, including QC
samples. (C) OPLS-DA score plot for MM and HC groups. (D) Permutation test with 200-time cross-
validation for OPLS-DA. (E) Volcano plot for the dysregulated ions with criteria of p-value < 0.05,
VIP > 1.0 and fold change >1.5 or <0.667. PCA: principal component analysis. OPLS-DA: orthogonal
partial least squares-discriminant analysis. VIP: variable importance in projection.
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Table 2. Twenty annotated differential circulating metabolites between MM patients and healthy controls.

Metabolite Mode a m/z b rt (min) c
Train Set d Test Set

VIP e p-Value FC f p-Value FC f

Histidine g Neg 154.061 0.86 2.06 7.36 × 10−5 0.64 2.27 × 10−3 0.46
Uracil Pos 113.035 2.16 1.52 1.21 × 10−4 0.59 1.09 × 10−1 0.74

Biliverdin Pos 639.407 11 1.34 2.23 × 10−4 0.36 1.33 × 10−1 0.5
Pyrroline hydroxycarboxylic

acid g Pos 130.05 5.16 2.05 4.42 × 10−4 1.77 1.66 × 10−2 3.76

Bilirubin Pos 585.27 14.42 1.31 6.79 × 10−4 0.63 5.03 × 10−1 0.81
Phenylalanine g Pos 166.086 4.57 2.10 1.31 × 10−3 1.73 2.72 × 10−2 1.74

Uridine g Neg 243.063 2.12 1.06 2.87 × 10−3 0.62 1.27 × 10−2 0.48
Kynurenine Pos 209.092 3.96 1.38 3.46 × 10−3 1.69 5.67 × 10−2 1.9
Malic acid Neg 133.013 1.15 1.45 3.66 × 10−3 0.65 5.61 × 10−2 0.53

Androsterone sulfate g Neg 369.176 6.72 1.27 5.62 × 10−3 0.48 3.66 × 10−2 0.34
Tauroursodeoxycholic acid Neg 498.292 7.53 1.52 6.26 × 10−3 2.82 1.63 × 10−1 0.58
3-Guanidinopropanoate g Neg 130.061 0.97 1.14 7.81 × 10−3 0.58 2.07 × 10−2 0.37

Taurocholic acid Neg 514.287 6.92 1.82 8.26 × 10−3 3.39 5.49 × 10−1 0.6
5-Hydroxyindoleacetic acid g Pos 192.065 3.96 1.16 1.69 × 10−2 1.51 4.85 × 10−2 1.93

Oleamide g Pos 282.279 12.16 1.73 2.11 × 10−2 3.35 2.25 × 10−2 4.34
Glycocholic acid Neg 464.304 6.71 1.01 2.16 × 10−2 2.07 8.21 × 10−1 1.18

Dehydroepiandrosterone g Neg 367.16 7.28 1.12 2.59 × 10−2 0.55 1.88 × 10−2 0.33
Prasterone sulfate g Neg 367.16 7.28 1.12 2.59 × 10−2 0.55 1.88 × 10−2 0.33

Creatine Pos 132.077 0.97 1.32 2.85 × 10−2 0.55 8.72 × 10−1 1.07
Dihydroxybenzoic acid Neg 153.019 5.08 1.12 4.96 × 10−2 0.63 3.33 × 10−1 0.57
a: “Pos” and “Neg” refer to positive scan mode and negative scan mode in mass spectrometry, respectively. b: Mass-to-charge ratio.
c: Retention time. d: Differential metabolite features selected based on train set samples by criteria of VIP > 1.00, p-value < 0.05, and
(FC > 1.5 or FC < 0.667). e: Variable importance in projection (VIP) values from orthogonal partial least squares-discriminant analysis
(OPLS-DA). f: Fold change. g: Differential metabolites that were validated in the test set in terms of fold changes and p-values.

Validation in the test set further demonstrated that 17 metabolites were of the same
variation trend, among which 10 were significant and 7 were not. While an opposite
variation trend was observed in test set for tauroursodeoxycholic acid, taurocholic acid,
and creatine. Detailed information is listed in Table 2. Moreover, heatmaps in terms
of the 20 annotated differential metabolites were plotted for both train and test splits
(Figure 3A,B). Both of the plots showed similar patterns and clear distinctions between
MM and HC samples. Figure 4A showed a panel of up or downregulated feature metabo-
lites in MM compared to HC. Variation trends were consistent in train and test set for
most metabolites, except for tauroursodeoxycholic acid, tauroucholic acid, and biliverdin.
Moreover, 14 pathways were enriched for these metabolites, of which most were related to
amino acid metabolism and three pathways were significantly enriched, including tryp-
tophan metabolism (p-value = 0.0130); beta-alanine metabolism (p-value = 0.0269); and
phenylalanine, tyrosine and tryptophan biosynthesis (p-value = 0.0491) Figure 4B.

3.3. Predictive Performance of Single-Metabolite-Based Models and Multiple Metabolite-Based
Machine Learning Model

ROC curve analyses were performed with the annotated differential metabolites of
the train dataset on a singular basis, and finally seven metabolites were selected being
of high AUC values: taurocholic acid (AUC = 0.8421), uracil (AUC = 0.8399), biliverdin
(AUC = 0.8289), histidine (AUC = 0.8180), tauroursodeoxycholic acid (AUC = 0.8048),
pyrroline hydroxycarboxylic acid (AUC = 0.8026), and phenylalanine (AUC = 0.8004)
(Figure 5A–G). Sensitivity and specificity of each metabolite at the optimal cutoff value
were provided in Table S1. Boxplots of the seven metabolites demonstrated a significant
difference in circulating levels between MM and HC groups (Figure 5A–G). Specifically,
the MM group experienced an upregulation of taurocholic acid, tauroursodeoxycholic
acid, pyrroline hydroxycarboxylic acid, and phenylalanine; and a downregulation of uracil,
biliverdin, and histidine.
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Prediction accuracies were calculated from the test set by applying Youden’s in-
dex, showing that some models exhibited low accuracies, which were taurocholic acid
(accuracy = 0.6429), uracil (accuracy = 0.7143), biliverdin (accuracy = 0.7143), and tau-
roursodeoxycholic acid (accuracy = 0.5000), while others still retained relatively high
prediction accuracies of over 0.7500. Outstandingly, models of histidine and pyrroline
hydroxycarboxylic acid, both reported an accuracy of 0.8571 (Figure 6A).
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In addition to ROC models based on single metabolites, the RF model based on all
the twenty annotated metabolites was also performed, with a reported AUCROC value of
1.0000 (Figure 5H). For this model, the optimized value of “mtry” was 2, the prediction
accuracy for the train set was 1.0000, and that for the test set was 0.9286 (Figure 6A).

3.4. Feature Metabolite Selection for RF Model

Figure 6B–D presented the ranking of the annotated 20 metabolites in RF model, as
well as prediction accuracies and kappa values of all models with different amounts of
top metabolites. Notably, a model which included the least number of metabolites (i.e.,
top 2) exhibited a satisfactory prediction accuracy of 0.7857 (Figure 6C,D). For the rest
of the models, accuracy improved as more metabolites were included until it reached a
maximum of 1.0000 for the model of top 9. Such high accuracy remained from top 10 to
top 13 models, after a slight reduction in the model of top 14, the accuracy increased to
1.0000 again for models of top 15 and top 16, and finally dropped to 0.9286 and remained
constant for the rest four models (Figure 6C,D). To sum up, reducing metabolites included
in RF does not always lower prediction accuracy, and a maximum accuracy of 1.0000 can
be reached by inclusion of only 9 metabolites.

3.5. Differential Metabolites between Peritoneal and Pleural MMs

When comparing the levels of 20 differential metabolites between peritoneal (n = 8)
and pleural (n = 17) MMs, tauroursodeoxycholic acid, tauroucholic acid, and biliverdin
were found to be significantly upregulated in peritoneal MMs (Figure 7A–C). Comparison
between overall MMs (n = 25) and HCs (n = 32) revealed that the levels of tauroursodeoxy-
cholic acid and tauroucholic acid were both upregulated in MMs, in line with the variation
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trend observed in the train set (Figure 5A,E and Figure 7A,B), while the concentration
of biliverdin was downregulated in MMs, in consistent with the change in the train set
(Figures 5C and 7C). Further analyses of the difference between the two subtypes of MMs
and HCs demonstrated that the levels of tauroursodeoxycholic acid and tauroucholic acid
in peritoneal MMs were significantly higher than HCs, while those in pleural MMs were
not (Figure 7A,B). The levels of biliverdin in pleural MMs were significantly downregulated
compared to HCs, while those in peritoneal MMs were not (Figure 7C).
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4. Discussion

Mesothelioma is rare cancer that mainly results from exposure to asbestos. Despite
asbestos being banned in most countries, asbestos-induced mesothelioma still cannot
be depleted. Apart from the long incubation period, mesothelioma is distinctive of its
difficulties in diagnosis and treatment, hence leading to an unfavored late-stage diagnosis
and poor overall survival. It was proved that early diagnosis significantly improves the
overall survival of MM [3]. However, the currently available diagnostic methods are
reported as being of relatively poor sensitivity and specificity [17].

Herein, aiming to improve MM prognosis by optimizing clinical diagnosis, this study
used a combined strategy of untargeted metabolomics and machine learning algorithms
to investigate differential metabolites between plasma samples of MM patients and age-
and sex-matched HCs. After screening and annotation, twenty metabolites were found to
be dysregulated, of which ten metabolites were validated of their variation trends in the
test set. And to better elucidate the diagnostic significance of these metabolites, both single
metabolite-based ROC model and multiple metabolite-based RF discriminated between
MM and HC, and the RF exhibited higher prediction accuracy than the single metabolite-
based ROC model, hence we assumed that: (a) Machine learning models combined with
metabolomics is a novel and promising measure for accurate mesothelioma diagnosis;
(b) our annotated metabolites are of high diagnostic value clinically, as well as giving
instructions and supportive evidence for future research.

Biliverdin and bilirubin are two feature metabolites of mesothelioma that have po-
tential diagnostic value, supported by the result that biliverdin ranked fourth in the RF
model in terms of overall importance. Biliverdin is the precursor of bilirubin, which is
initially released during catabolism of red blood cells and then reduced to bilirubin, in line,
our results suggested the same variation trend in bilirubin and biliverdin [18]. Bilirubin is
widely known for its beneficial effects on health as an antioxidant in that a slightly higher
level helps prevent various morbidities, including cancer [19,20]. In contrast, a low plasma
level of bilirubin could be a risk factor for various cancers, such as colon cancer [20] and
lung cancer [21], etc. Consistently, downregulations in biliverdin and bilirubin in MM
patients revealed in this study suggested a possibility of these metabolites being potential
biomarkers of malignant mesothelioma. Furthermore, exposure to asbestos, which is the
major culprit of mesothelioma, can lead to adsorption of hemoglobin and histones to the
inhaled asbestos fibers, causing oxidative stress and finally cancer. This might explain
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the observed reduction in plasma bilirubin and biliverdin levels in mesothelioma patients
compared to healthy participants. However, future research is needed to validate this
hypothesis and to investigate further mechanisms of bilirubin’s protective effect against
malignancy on a molecular basis.

Intemperate utilization of amino acids is a phenomenon well recognized and validated
in many cancers [22,23]. Tryptophan is an essential amino acid taken up exclusively from
diet and serves as a building block for protein biosynthesis [24]. It is mainly involved
in two metabolic pathways, the serotonin pathway, and the kynurenine pathway [25],
of which the latter is noticed to be deregulated in various malignancies as a result of
aberrant activation of IDO that subsequently leads to immunosuppression [24]. In line,
our results detected enrichment of this pathway, as well as a significantly increased cir-
culating level of kynurenine in MM patients by 1.68 folds in the train set and 1.9 folds
in the test set. The breakdown product of the serotonin pathway, 5-hydroxyindoleacetic
acid, was also detected to be upregulated in the present study, thus further reflecting a
phenomenon that tryptophan was utilized to a greater extent in MM compared to HC.
Meanwhile, a semi-essential amino acid, histidine, had reduced 0.64 folds in the train
set and 0.46 folds in the test set, which might imply a favored uptake and utilization of
this amino acid by cancer cells. Tumor’s glutamine dependency may explicate its ap-
petite for histidine, as the catabolism of this amino acid provides free ammonia essential
for glutamine biosynthesis [26]. Moreover, upregulation of pyrroline hydroxycarboxylic
acid revealed an upregulated proline consumption by the cancer cell, because pyrroline
hydroxycarboxylic acid is generated by oxidation of pyrroline-carboxylate, which is an
intermediate product of proline metabolism [27]. An increase in phenylalanine level was
observed in MM, which was contradictory to variation in histidine. Thereby, these metabo-
lites, and their associated amino acids, serve as potential diagnostic biomarkers to aid
clinical distinction between HC and MM, though further research is still required to reveal
underlying mechanisms.

Taurocholic acid and tauroursodeoxycholic acid are bile acids that exist usually as
sodium salts of bile. Physiological functions with regard to tauroursodeoxycholic acid have
remained unclear in MM, while it was suggested a protective effect of this acid against bile
acid-induced apoptosis [28], which supported the initiation of colon cancer [29]. In addition,
epidemiological evidence showed that taurocholic acid is associated with tumorigenesis
through the generation of hydrogen sulfide, which is a genotoxic compound and tumor-
promotor [30]. In the present study taurocholic acid and tauroursodeoxycholic acid were
found significantly upregulated in MM, suggesting their potential of being parameters for
monitoring cancer risk and prognosis. Nevertheless, inconsistency in the variation trend
of these metabolites was observed between samples from the train set and samples from
the test set. Such phenomenon was probably due to an uneven distribution of peritoneal
MM patients (who had much higher plasma levels of bile acids than plural MM and HCs)
allocated to the train set and test set: only one peritoneal MM patients were included in the
test set, comparing to 7 included in the train set, thus lowering the average levels of these
acids in MM of the test set. Altogether, taurocholic acid and tauroursodeoxycholic acid
are potential biomarkers to discriminate between MM and HC, as well as discrimination
between subtypes of MM.

Apart from the aforementioned metabolites, plasma metabolomic profiling of this
study also demonstrated upregulation in glycocholic acid, and oleamide, as well as down-
regulation in 3-guanidinopropanoate, dihydroxybenzoic acid, malic acid, androsterone
sulfate, dehydroepiandrosterone, prasterone sulfate, uracil, and uridine in MM samples of
both train and test sets. While creatine exhibited inconsistent trends, that is downregulated
in the train set and upregulated in the test set. Herein the present study demonstrated the
potential of these metabolites of being diagnostic biomarkers, though mechanisms have
not yet been fully explained and further research is required to investigate them and to
validate these trends.
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Limitations of this study must be mentioned. First, the sample size of this study
is relatively small for machine learning algorithms. Therefore, this study may only be
considered a pilot study due to its small sample size. A larger cohort is needed to validate
this novel diagnostic strategy for MM. Due to the rarity of MM, a large sample size-based
metabolomics might be only achieved through multiple-center cooperation. Second, the
predictive performance of RF is limited due to only two classes of participants involved
in the machine learning model. To reduce the probability of misdiagnosis, further study
should involve more classes of samples, such as asbestos-exposed individuals and cancers
that are easily misdiagnosed with MM (lung cancer or ovarian cancer). Third, the amount of
metabolite, which was annotated in this study, was relatively low due to a lack of available
MS2 spectra, leading to many feature ions with potential diagnostic value not being
annotated. Last but not least, the potential biological function and molecular mechanisms
of differential circulating metabolites, such as kynurenine, bilirubin, and biliverdin, are
required to be clarified further.

In conclusion, this study aimed to investigate the plasma metabolic profile in MM
patients for the first time; the data revealed several dysregulated metabolism pathways,
including tryptophan metabolism and β-alanine metabolism, as well as phenylalanine,
tyrosine, and tryptophan biosynthesis, aiding in understanding the molecular biology of
MM and providing potential therapeutic targets for MM. Furthermore, the combination of
metabolomics and machine learning exhibited an outstanding diagnostic value for MM,
pointing out a novel and effective strategy for MM diagnosis. Future studies with a large
sample size are encouraged to start soon on this rare disease, which could significantly
benefit the prognosis of MM patients.
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