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In humans, acid–base balance is crucial to cell homeostasis. Acidosis is observed in 
numerous inflammatory processes, primarily acute conditions such as sepsis, trauma, 
or acute respiratory distress where females tend to exhibit better prognosis compared 
with males. The mechanisms underlying these gender-dependent differences are mul-
tiple, probably involving hormonal and genetic factors, particularly the X chromosome. 
Although pH influences multiple immunological functions, gender differences in acid–base 
balance have been poorly investigated. In this review, we provide an update on gender 
differences in human susceptibility to inflammatory diseases. We additionally discuss the 
potential impact of acid–base balance on the gender bias of the inflammatory response 
in view of our recent observation that girls present higher neutrophilic inflammation and 
lower pH with a trend toward better prognosis in severe sepsis. We also highlight the 
potent role played by endothelial cells in gender differences of inflammation through 
activation of proton-sensing G protein-coupled receptors.

Keywords: inflammation, homeostatic balance, neutrophils, monocytes, endothelial cells, gender differences, 
acid–base balance, mechanisms of inflammatory cascade

inTRODUCTiOn

In both humans and animals, physiology and metabolism need homeostatic mechanisms (1) to 
maintain the stability of not only the intracellular but also the extracellular milieu and plasma, 
thereby guaranteeing long-term survival of multicellular organisms. Various factors including basic 
metabolism, diet, physical activity, and environmental aggressions are daily life triggers of many 
physiological imbalances. Inflammation is the main active response designed to avoid dramatic 
stress challenges to homeostasis in the setting of infections, tissue injuries, cancers, or large burns. 
To maintain a permanent cell homeostasis, different receptor types are capable of sensing short 
and significant fluctuations in certain variables, along with multiple messengers that likely modify 
cell recruitment (especially neutrophils from vessels and bone marrow), diapedesis of monocytes 
and macrophages, vascular permeability, and production of protein mediators like cytokines and 
chemokines. Neutrophils, the major inflammatory effector cells at the site of acute injury (abscess, 
surgical trauma, pleural effusion, etc.), are capable to live in extremely challenging conditions such 
as severe acidosis or lack of oxygen. Chronic inflammation and diseases with a similar response 
profile can be considered as a dysregulation of the defense mechanisms, causing deleterious tissue 

Abbreviations: TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; IL-6, interleukin-6; GLUT 2, glucose transporter 2; 
NF-κB, nuclear factor kappa B; BCL6, B-cell lymphoma 6 protein; G-CSF, granulocyte colony-stimulating factor.
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damage and increased morbidity and mortality. In these cases, 
different parameters may be chronically modified by inflamma-
tion, thereby exceeding normal ranges, without any possibility of 
returning to normal patterns when the system remains “locked.”

Mechanisms that control homeostasis could differ between 
males and females.

ROLe OF ACiD–BASe iMBALAnCe AS 
TRiGGeR OF inFLAMMATORY 
ReSPOnSeS

During acute inflammatory processes, particularly infections and 
even more dramatically sepsis, the acid–base balance is usually 
severely challenged. The extracellular milieu’s pH interferes with 
a wide range of immunological functions (2, 3). The role of acid 
as trigger of cytokine production was already described in 1997. 
In vitro studies have emphasized, among others, the following 
associations: increased inflammatory cytokines, such as interleu-
kin (IL)-1β, IL-6, or tumor necrosis factor-α (TNF-α), produced 
by mononuclear cells; neutrophil activation with upregulation 
of cluster of differentiation (CD)18 expression and hydrogen 
peroxide production; and maturation of human dendritic cells. 
More recently, in critically ill patients, a positive correlation was 
found between a strong anion gap and the concentrations of IL-6, 
IL-8, IL-10, and TNF-α (4, 5).

In the initial response to acute infection, the primarily 
phagocyte-based innate immune system likely plays a crucial role 
in managing the inflammatory process. A critical modulation of 
the early inflammatory process by metabolic acidosis may impact 
the prognosis of the sepsis. In a blunt trauma setting, upon admis-
sion, patients exhibit a significant base deficit that is associated 
with differential immune/inflammatory pathways, which may 
subsequently predispose patients to a more complicated clinical 
course (6). It could be postulated that the proton concentration 
that must be drastically controlled in life could represent a unifying 
signal inducing inflammation. Proton-sensing G protein-coupled 
receptors, including OGR1, GPR4, and TDAG8, were reported 
to prove highly significant for physiological pH homeostasis and 
inflammation control (7). Patients suffering from inflammatory 
bowel disease have been shown to express higher levels of these 
proton-sensing receptors in the mucosa compared to controls. It 
is interesting to note that proton pump inhibitors, which block 
gastric acid secretion, were shown in vitro to selectively inhibit 
TNF-α and IL-1β secretion by TLR-receptor-activated human 
monocytes, without any cellular toxic effects. They are thus con-
sidered as promising agents targeting severe inflammation (8), 
but might also account for increased susceptibility to infections 
in these patients (9). Proton pump inhibitors can also enhance the 
risk of Clostridium difficile infections (10).

GPR4, a proton-sensing receptor expressed in endothelial 
cells and other cell types, is fully activated by acidic extracellular 
pH. However, this product exhibits less activity at the physi-
ological pH 7.4 and only minimal activity at a more alkaline pH 
(11). When varying GPR4 expression in human umbilical vein 
endothelial cells, it proves possible to induce a substantially 
increased expression of numerous inflammatory genes, such as 

chemokines, cytokines, adhesion molecules, nuclear factor kappa 
B (NF-κB) pathway genes, prostaglandin-endoperoxide synthase 
2, and stress response genes. This also applies to human lung 
microvascular endothelial cells and pulmonary artery endothelial 
cells. While acidosis-induced GPR4 activation stimulates the 
expression of numerous inflammatory genes in endothelial cells, 
it has been possible to suppress this inflammatory response by 
small molecule inhibitors of GPR4, which suggest a potential 
therapeutic value of such agents.

Although numerous mediators have been shown to increase 
neutrophil levels when injected into experimental animals 
(leukotriene B4, complement C5a), the initiation process 
(particularly monocytes–macrophages and endothelial cells) 
and triggering factor could, however, differ depending on the 
disease’s origin. Regardless of the disease type, these cells may 
be generated by the same unifying physiological mechanism 
that induces the inflammatory cascade. To identify and assess 
targeted interventions, there is a pressing need to better under-
stand inflammatory signaling along with the cascade of specific 
mechanisms (12) and steps pertaining to the inflammatory 
process. Therefore, studying pro-inflammatory stimuli that 
elicit rapid transcriptional responses via transduced signals 
with the aim to master regulatory transcription factors proves 
determinant for apprehending the response sequences. TNF-α 
can induce a rapid global redistribution of chromatin activators 
to massive de novo clustered enhancer domains, with endothelial 
cells likely to play a major role in this process. Several endothelial 
dysfunction markers such as plasma endocan, a proteoglycan 
excreted by the endothelial cells, could be employed to monitor 
(13) the endothelial response to aggression. In the future, anti-
oxidant enzymes, such as catalase and superoxide dysmutase, 
could represent (14) a strategy designed to protect organs and 
tissues from inflammation and oxidative stress. In addition, a 
recently published paper emphasized the role of monocyte sub-
types Ly6Clow, with these cells routinely patrolling the endothelial 
wall under steady-state conditions (15). These cells were shown 
to precede neutrophil arrival and orchestrate cell extravasation 
in response to TLR7/8-mediated vascular inflammation. The 
relative roles of monocytes and endothelial cells, along with their 
respective production of cytokines and chemokines, have yet to 
be clarified.

GenDeR DiFFeRenCeS in THe 
inFLAMMATORY PROCeSS

Sexual dimorphism is observed in inflammatory conditions all 
along the life course. While estrogens and androgens are sexual 
hormones known to modulate inflammation, their fluctuant 
levels in males and females of any age cannot account for the 
gender differences of the inflammation observed in humans and 
animals from birth to death. No uniform concept covering all 
inflammatory conditions could be found because of highly vari-
able responses of the immune system to sexual hormones (16). 
Although estrogens are clearly known to modulate the immune 
response, in terms of cytokine production, receptors, and clinical 
outcome, these observations cannot fully explain the universal 
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gender differences observed in acute inflammation, found across 
all age groups, from premature infants to geriatric patients.

In acute inflammatory conditions, male gender is associated 
with a higher risk of morbidity and mortality, with females at any 
age exhibiting better prognosis. However, in chronic inflamma-
tory processes, less frequent than acute, females display worse 
prognosis and higher mortality, probably because of collateral 
tissue damages caused by higher inflammation (17). The longer 
the inflammation of a tissue lasts, the more damage is done. This 
could account for the higher mortality observed in females suffer-
ing from cystic fibrosis (18) and chronic obstructive pulmonary 
diseases (19). In chronic inflammation, we also reported worse 
prognosis in girls suffering from chronic asthma, cystic fibrosis, 
or sickle cell anemia (SCA) (20).

These observations have triggered gene analysis on the X 
chromosome, as well as investigating the potential influence of 
sexual steroids on inflammatory responses (21). In females, one 
of the X chromosomes is randomly silenced during X chromo-
some inactivation in the early stage of female embryogenesis, 
whereas the pseudoautosomal region of the X chromosome 
escapes inactivation. This process results in female cellular 
mosaicism, with half of the cells expressing genes derived from 
the maternal X chromosome and the other half expressing those 
derived from the paternal X chromosome. Moreover, spreading 
the inactivation signal on the pseudoautosomal region of the X 
chromosome may cause partial silencing of genes on the border, 
explaining higher gene expression of certain genes of the pseu-
doautosomal regions in males. The diversity in females is further 
increased because, if disadvantageous mutations occur in an X 
chromosome-linked gene, this will result in the functional loss 
of the respective protein in all cells of a male, but only in half of 
the cells in a female, resulting in differing regulatory responses 
and capacities. Finally, many mechanisms can hypothetically 
explain the better prognosis for females in acute inflamma-
tion (as infections), such as the expression of genes located 
on the non-recombining regions of the Y chromosome, sex 
hormone-mediated effects, differences in X-linked gene expres-
sions of maternal or paternal origin, gene-dosage effects of sex 
chromosome-linked genes (namely, those genes that escape X 
chromosome inactivation or are reactivated), non-random X 
chromosome inactivation, and, finally, cellular mosaicism of 
females. The genes encoding some protein members of the TLR 
signaling pathway are linked to the X chromosome, such as IL-1 
receptor-associated kinase 1, NF-κB essential modulator, and 
Bruton’s tyrosine kinase, with the Figure  1 adapted from the 
study by Akira et al.

Prepubescent children, displaying very low levels of sexual 
hormones, prove to represent a good model to evaluate the 
inflammatory response and clinical course of acute or chronic 
inflammatory diseases. We previously showed that in acute 
inflammation caused by pneumonia, pyelonephritis or bronchi-
olitis inflammatory markers (C-reactive protein or erythrocyte 
sedimentation rate) and neutrophil count were higher in females 
(23), suggesting better inflammatory recruitment in females 
during acute inflammation. This sexual dimorphism has been 
observed in all major disease categories, except for diseases of 
the musculoskeletal system and connective tissue in children 

younger than 20 years, with a higher mortality reported in males 
compared to females (24).

As similar observations were made by others in adults 
(25–27), this could explain the high number of studies reporting 
higher infections rates in males of any age, along with worse 
prognosis (28, 29). In septic shock, gender differences have com-
monly been reported, indicating that the males belong to most 
at-risk group (especially black in the United States) (30, 31). In 
other studies, women with sepsis exhibited lower age-specific 
incidence and mortality rates (32), being less frequently affected 
than males although with variable prognosis. This may perhaps 
be accounted for by underlying conditions, such as chronic 
respiratory failure, diabetes, or metastatic cancer, or by infection 
sites (33–35).

In children suffering from severe sepsis, we recently showed 
that girls tended to exhibit higher neutrophilic inflammation, 
longer fever duration, and lower pH on admission (36). In this 
study, the difference in neutrophil counts became significant 
on the third day after admission corresponding to the mean 
generation time of myelocytes. This observation points toward 
the origin of the difference being in the bone marrow rather 
than the marginated pool of neutrophils. In a previous work, we 
showed a different kinetic between males and females in terms 
of inflammatory cytokine production in whole blood stimulated 
with endotoxin, which could account for this gender difference 
becoming significant only on the third day from the beginning 
of the sepsis. The higher level of circulating neutrophils in girls 
could also contribute to the better pathogen clearance in girls 
during the early inflammatory response and consequently their 
better survival of sepsis. This is the first description of gender-
related differences in the acid–base balance of children with 
sepsis. We have observed a significantly lower pH associated with 
a higher base deficit in girls at admission to the PICU. This dif-
ference could enhance the inflammatory response in females by 
increasing the expression of adhesion molecules and production 
of pro-inflammatory cytokines.

In adult patients with SCA, metabolic acidosis was likewise 
found with a much higher prevalence in women (52 versus 27% 
in men; p <  0.001) (35). Such acidosis, associated with several 
hemolytic markers and impaired ammonium availability, might 
contribute to the higher frequency of vasoocclusive crises and 
acute chest syndromes in girls with SCA (37).

GeneS iMPLiCATeD in THe 
inFLAMMATORY PROCeSS

Inflammation is controlled by a highly coordinated gene expres-
sion program (37), involving numerous transcription factors, 
being potentially influenced by specific variables of the internal 
milieu like acid–base imbalance. This essential defense mecha-
nism has developed early in metazoan evolution, as indicated by 
typical inflammatory responses to wounds in invertebrates like 
the starfish. This mechanism protects and organizes the symbiotic 
life of various cells in multicellular animals. While inflammation 
is a strong determinant for restoring the homeostatic balance in 
the body, it can, however, exceed its usual goals and cause major 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Protein kinases (circled in red) encoded by X-linked genes and involved in the TLR4 signaling pathway, adapted from the study by Akira et al. (22). An 
example of TLR4 signaling pathways is shown to highlight the implication of key X chromosome-linked kinases in the triggering of the inflammatory response. AP1, 
activator protein 1; BTK, Bruton’s tyrosine kinase; c/EBPβ, CCAAT/enhancer-binding protein β; ECSIT, evolutionary-conserved signaling intermediate in Toll pathway; 
ERK, extracellular signal-regulated MAP kinase; IKK, IκB kinase; IκB, inhibitor kappa B; IRAK, interleukin-1 receptor-associated kinase; JNK, c-Jun N-terminal 
kinase; MAL, myelin and lymphocyte; MAP, mitogen-activated protein; MD2, lymphocyte 96 antigen; MEKK, MAP/ERK kinase kinase; MKK, MAP kinase kinase; 
MSK, mitogen- and stress-activated kinase; MYD88, myeloid differentiation primary response 88; NEMO, NF-κB essential modulator; NF-κB, nuclear factor kappa 
B; p38, p38 MAP kinase; p50, NF-κB subunit 1; p65, NF-κB subunit 3 or RELA, v-rel avian reticuloendotheliosis viral oncogene homolog A; RIP2, receptor 
interacting protein-2; TAB, TAK1-binding protein; TAK, TGF-β-activated kinase; TIR, Toll/interleukin-1 receptor; TRAF, tumor necrosis factor receptor-associated 
factor; TRAM, translocating chain-associating membrane; TRIAD3/RNF216, ring finger protein 216; TRIF, TIR-domain-containing adapter-inducing interferon-β; 
TOLLIP, Toll interacting protein; UBC13, ubiquitin-conjugating enzyme 13; UEV1A, ubiquitin-conjugating enzyme variant 1A.
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tissue damage such as in the event of shock sepsis. Such excessive 
inflammatory processes have accounted for the development of 
chronic inflammatory and autoimmune diseases. Therefore, an 
active knowledge and understanding of inflammatory processes 
appear essential, not only for improving the mechanisms’ effi-
ciency in several acute diseases but also for preventing deleterious 
complications in a chronic setting.

In the presence of harmful agents that likely alter the organism’s 
integrity, a highly complex response is set in motion to restore the 
organism’s homeostasis (38). Genes involved in environmental 
and inflammatory responses have been shown to display an 
unusually high rate of duplication and loss during evolution (39). 
Recent technological advancements provide a clearer picture 
of the organizational principles underlying inflammatory gene 
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expression. During the inflammatory response triggered upon 
stimulation (infection, burn, surgical procedure, etc.), several 
hundred genes are activated in a kinetically complex manner, 
either synchronously or only after many hours for some of them. 
Inducible recruitment of target genes, such as NF-κB, can appar-
ently be influenced by a pre-existing chromatin state (40). The 
requirement for a chromatin-remodeling step at inflammatory 
genes has been shown to cause slower activation kinetics, while 
imposing the presence of additional transcription factors that 
induce the initial remodeling step. Many of these transcription 
factors involved in inflammatory processes can be selectively 
stimulated by a specific inflammation trigger, which lays the 
groundwork for stimulus specificity in genetic inflammation 
expression.

It seems now clear that genes activated by an identical trigger 
may differ extensively depending on cell types, even when the 
same cytokines are involved. The genomic regions that are active 
as enhancers in different cell types show only a slight overlap (41). 
Macrophages contain at least 35,000–45,000 identifiable genomic 
regions that are presently classified as enhancers. Regulatory 
mechanisms that control the inflammatory process designed to 
lessen potential tissue damage must have been positively selected 
in the course of evolution. A central role is played by the B-cell 
lymphoma 6 protein (BCL6), a sequence-specific transcriptional 
repressor known for its role in both B-cell differentiation and 
B-cell lymphomas. The BCL6 has been shown to prevent excessive 
production of a large fraction of lipopolysaccharide-inducible 
genes (42). Currently, the entire set of players involved in the 
inflammatory response is still incompletely defined and thus 
largely unknown.

In immune challenges, especially if acute, females exhibit a 
better prognosis and survival than males at any age. In inflamma-
tory processes, the immune response relies on the heterogeneity 
of immune cells, along with their ability to respond to pathogen 
challenges (43), with lymphocytes displaying a highly diverse 
antigen receptor repertoire that matches pathogen diversity. In 
addition, the inflammatory response is under the influence of epi-
genetic regulation, which requires flexible adaptation to diverse 
environmental challenges like pH variations.

COnCLUDinG ReMARKS

There is evidence favoring the existence of links between acid–
base balance and cytokine concentrations, with acidosis as poten-
tial unifying factor for the trigger threshold of the inflammatory 
response. Gender differences in the inflammatory response could 
be linked to the acid–base balance of the cellular environment 
that influences the expression of genes related in particular to 
the X chromosome. Endothelial cells may play a fundamental 
role in this process by sensing acid–base fluctuations. Further 
understanding of their potent role in the initiation of the inflam-
matory cascade could help design new strategies to interfere with 
the inflammatory process.
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