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A B S T R A C T   

Purpose: While dose escalation is associated with improved local control (LC) for adrenal gland metastases 
(AGMs), the proximity of gastrointestinal (GI) organs-at-risk (OARs) limits the dose that can be safely prescribed 
via CT-based stereotactic body radiation therapy (SBRT). The advantages of magnetic resonance-guided SBRT 
(MRgSBRT), including tumor tracking and online plan adaptation, facilitate safe dose escalation. 
Methods: This is a multi-institutional review of 57 consecutive patients who received MRgSBRT on a 0.35-T MR 
linac to 61 AGMs from 2019 to 2021. The Kaplan-Meier method was used to estimate overall survival (OS), 
progression-free survival (PFS), and LC, and the Cox proportional hazards model was utilized for univariate 
analysis (UVA). 
Results: Median follow up from MRgSBRT was 16.4 months (range [R]: 1.1–39 months). Median age was 67 years 
(R: 28–84 years). Primary histologies included non-small cell lung cancer (N = 38), renal cell carcinoma (N = 6), 
and melanoma (N = 5), amongst others. The median maximum diameter was 2.7 cm (R: 0.6–7.6 cm), and most 
AGMs were left-sided (N = 32). The median dose was 50 Gy (R: 30–60 Gy) in 5–10 fractions with a median BED10 
of 100 Gy (R: 48–132 Gy). 45 cases (74 %) required adaptation for at least 1 fraction (median: 4 fractions, R: 
0–10). Left-sided AGMs required adaptation in at least 1 fraction more frequently than right-sided AGMs (88 % vs 
59 %, p = 0.018). There were 3 cases of reirradiation, including 60 Gy in 10 fractions (N = 1) and 40 Gy in 5 
fractions (N = 2). One-year LC, PFS, and OS were 92 %, 52 %, and 78 %, respectively. On UVA, melanoma 
histology predicted for inferior 1-year LC (80 % vs 93 %, p = 0.012). There were no instances of grade 3+
toxicity. 
Conclusions: We demonstrate that MRgSBRT achieves favorable early LC and no grade 3 + toxicity despite 
prescribing a median BED10 of 100 Gy to targets near GI OARs.   

1. Introduction 

The adrenal gland is a relatively common site of metastatic disease 
for several cancers, including primary tumors of the lung, breast, 
esophagus, stomach, liver, and malignant melanoma [1,2]. Though 
adrenal gland metastases (AGMs) can cause symptoms, most are diag
nosed incidentally during routine surveillance imaging [2]. Historically, 
local therapies such as surgical resection or external beam radiotherapy 
(EBRT) were reserved for patients with symptomatic AGMs. However, 

select patients with a limited number of metastases are increasingly 
considered for surgery or EBRT, as multiple recent trials have demon
strated a progression-free survival (PFS) and in some cases an overall 
survival (OS) benefit from the addition of local therapy to systemic 
therapy in the oligometastatic [3,4], oligoprogressive [5,6], or oligor
esidual [7] settings. 

Stereotactic body radiation therapy (SBRT) is well-established in the 
treatment of adrenal oligometastases [8–12]. Though a recent meta- 
analysis has established the importance of dose escalation 
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(biologically effective dose (BED10) ≥100 Gy) in SBRT of AGMs in 
improving local control (LC), the proximity of mobile gastrointestinal 
(GI) organs-at-risk (OARs) often limits the dose that can be safely 
delivered using computed tomography (CT) image guidance [13]. 
Magnetic resonance-guided SBRT (MRgSBRT) has several unique ad
vantages including real-time intrafraction tumor tracking, improved soft 
tissue visualization, and online plan adaptation, that can increase the 
precision of SBRT and allow for safe dose escalation [14–17]. Given the 
limited experience with dose-escalated SBRT in this specific setting, we 
hypothesized that MRgSBRT for the treatment of AGMs would facilitate 
safe and effective delivery of ablative dose delivery as assessed across 
multiple institutions. 

2. Materials and methods 

2.1. Patient population 

This is a multi-institutional retrospective review of 57 consecutive 
patients who underwent MRgSBRT on a 0.35-Tesla (T) MR linac to 61 
AGMs from April 2019 to September 2021. The study was approved by 
the institutional review boards at each respective institution contrib
uting data to the multi-institutional dataset with corresponding data 
transfer agreements. Patients with a histologic confirmation of cancer 
and evidence of AGMs treated with MRgSBRT met the inclusion criteria. 
Within oligometastatic disease, cases were classified per ESTRO/EORTC 
guidelines (Table 1) [18]. 

2.2. Stereotactic body radiation therapy 

Patients underwent MR simulation on the 0.35T MR-linac (ViewRay, 
Inc., Denver, CO) with a balanced steady-state free progression (True
FISP) imaging sequence, as described previously [19]. Patients were 
simulated in the supine position without an immobilization device using 
both deep inspiratory breath hold (DIBH) and free breathing techniques. 
Patients were asked to have nothing by mouth 2–3 h prior to simulation. 
A representative slice of the lesion was contoured as a tracking structure 
on a single-plane sagittal cine MRI sequence at 4 or 8 frames per second, 
and a 3 mm gating structure was created for treatment delivery. Patients 
then underwent a breath-hold CT simulation for electron density data in 
the same position. 

Gross tumor volume (GTV) delineation was performed by the radi
ation oncologist utilizing the MR planning scan. A uniform 3–5 mm 
expansion of the GTV was utilized to create the planning target volume 
(PTV). Doses were prescribed to the 95 % isodose line. Per the treating 
radiation oncologist discretion, various dose-painting methods were 
utilized in 18 treatment plans (29.5 %), in which the GTV received a 
simultaneous integrated boost to a higher dose than the PTV. In these 
cases, the highest dose received was used to calculate the BED (assuming 
α/β = 10). 

OAR delineation included the stomach, duodenum, large bowel, 
small bowel, liver, spinal cord, and kidneys. Planning OAR volumes 
(PRVs) were created using a 3 mm margin for GI OARs. Patients were 
treated either on consecutive days or on alternating days with 
MRgSBRT, and prior to treatment delivery, patients underwent an MRI 
scan on the MR-linac. The treating physician made the decision of 
whether to adapt the treatment plan based upon predicted target 
coverage, OAR constraints, and dose distribution. In general, the dose 
constraints utilized for 5-fraction SBRT regimen included the following: 
spinal cord maximum dose <20–30 Gy, bowel, duodenum, and stomach 
maximum dose ≤38 Gy and dose to 0.5 cc ≤ 33–35 Gy, kidney mean 
dose <8–10 Gy, and at least 30 % of the liver volume receiving <10 Gy 
or at least 700 cc of liver receiving ≤21 Gy. However, dose constraints 
were at times customized for each patient as deemed appropriate byte 
treating physician. 

The adaptive process was performed as previously described 
[20,21]. The patient was aligned with daily image (MR-guidance). After 

appropriate alignment, an “OAR eval” structure was used (PTV 
expanded 2 cm sup/inf and 3 cm radially) and the OARs within this 
structure are recontoured daily for adaptive treatment. The original 
radiotherapy plan was applied to the anatomy of the day and dose 
predicted to the critical OARs and tumor. Pre-specified OAR constraint 
violations (and/or tumor coverage) triggered adaptation if violated by 
the original radiotherapy plan. If a new radiotherapy plan was decided 
on, this went through a secondary QA check (gamma analysis) before 
delivery with a 2 % dose error threshold, 2 mm distance-to-agreement 
threshold and 10 % maximum dose analysis cut off threshold. 

Table 1 
Patient and Tumor Characteristics.  

Variable n % 

Age at time of SBRT (years) 
Median (range) 67 (28–84)  

Gender 
Female 26  45.6 % 
Male 31  54.4 %  

KPS 
90–100 33  57.9 % 
70–80 22  38.6 % 
60 2  3.5 %  

Stage at Original Diagnosis 
I 7  12.3 % 
II 5  8.8 % 
III 18  31.6 % 
IV 27  47.4 %  

Primary Histology 
NSCLC 38  66.7 % 
RCC 6  10.5 % 
Melanoma 5  8.8 % 
SCLC 3  5.3 % 
Breast IDC 2  3.5 % 
Angiosarcoma 1  1.8 % 
Rectal Adenocarcinoma 1  1.8 % 
Esophageal Adenocarcinoma 1  1.8 % 
Prostate Adenocarcinoma 1  1.8 % 
Bladder UCC 1  1.8 % 
Merkel Cell Carcinoma 1  1.8 % 
Cutaneous SCC 1  1.8 %  

Oligometastatic Classification 
Synchronous Oligometastatic 4  6.7 % 
Metachronous Oligorecurrence 12  20.0 % 
Metachronous Oligoprogression 5  8.3 % 
Repeat Oligorecurrence 5  8.3 % 
Repeat Oligoprogression 19  31.7 % 
Repeat Oligopersistence 2  3.3 % 
Induced Oligoprogression 8  13.3 % 
Induced Oligopersistence 2  3.3 %  

Laterality 
Right 29  47.5 % 
Left 32  52.5 %  

GTV (cc) 
Median (range) 22.6 (1.1–297)  

Pretreatment maximum diameter (cm) 
Median (range) 2.7 (0.6–7.6) 

Abbreviations: No. = number, SBRT = stereotactic body radiation therapy, KPS 
= Karnofsky performance status, NSCLC = non-small cell lung cancer, RCC =
renal cell carcinoma, SCLC = small cell lung cancer, IDC = invasive ductal 
carcinoma, UCC = urothelial cell carcinoma, SCC = squamous cell carcinoma. 
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2.3. Response evaluation and follow-up 

All patients were evaluated for acute toxicity on a weekly basis 
during treatment. Patients were seen in follow up every 3 to 6 months 
following treatment. Toxicities were graded using the National Cancer 
Institute Common Terminology Criteria for Adverse Events, version 
4.03. For 60 of the 61 treatments, there was available imaging for 
response evaluation at least 3 months after treatment. Unrelated to 
treatment, one patient expired shortly following SBRT, and therefore, 
did not have post-treatment imaging for response evaluation. For the 24 
cases with available positron emission tomography (PET) scans, tumor 
response was determined using the PET Response Evaluation Criteria in 
Solid Tumors (PERCIST), version 1.0 [22]. For the 60 cases with avail
able computed tomography (CT) scans, tumor response was determined 
using the Response Evaluation Criteria in Solid Tumors (RECIST), 
version 1.1 [23]. Overall response rate (ORR) was defined as the pro
portion of patients who had a complete or partial response. 

2.4. Statistical analysis 

The Kaplan-Meier (KM) method was used to estimate time-to-event 
outcomes measured from the end of MRgSBRT, including OS, LC, and 
PFS. The Cox proportional hazards model was utilized for univariate 
analysis of OS, LC, and PFS. Two-tailed p values < 0.05 were considered 
to indicate statistical significance. Statistical analyses were performed 
using JMP 15 (SAS Institute Inc., Cary, NC). 

3. Results 

3.1. Patient, tumor, and treatment characteristics 

The median age for the cohort was 67 years (range: 28–84 years), 
and primary histologies included non-small cell lung cancer (NSCLC, N 
= 38), renal cell carcinoma (RCC, N = 6), and melanoma (N = 5), 
amongst others (Table 1). The median maximum diameter was 2.7 cm 
(R: 0.6–7.6 cm), and most AGMs were left-sided (N = 32). Patients 
received MRgSBRT to a median dose of 50 Gy (range: 30–60 Gy) in 5–10 
fractions with a median BED10 of 100 Gy (range: 48–132 Gy, inter
quartile range 96–100 Gy, Table 2). Most patients (61 %) had received 
prior immunotherapy, and concurrent immunotherapy was utilized in 
16 cases (26 %). There were 5 patients with NSCLC who had received 
prior epidermal growth factor receptor (EGFR) inhibition and 4 patients 
with melanoma who had received prior B-type Raf kinase (BRAF)/ 
mitogen-activated protein kinase (MEK) inhibition. There were 3 cases 
of reirradiation. One patient received 60 Gy in 10 fractions after 
receiving 35 Gy in 5 fractions 8 months prior. Two patients received 40 
Gy in 5 fractions after originally undergoing 37.5 Gy in 15 fractions 4 
years prior and 60 Gy in 5 fractions 6 years prior. 

Of the 61 treated AGMs, 45 cases (74 %) required online adaptation 
for at least 1 fraction (median: 4 fractions, range 0–10 fractions), and in 
29 cases (48 %), online adaption was required in all treated fractions. Of 
the 310 total MRgSBRT fractions, 199 (64 %) required adaption. The 
indications for adaptation were OAR sparing in all cases and improving 
target coverage in 38 %. The BED10 did not significantly vary between 
cases requiring adaptation and those that did not (p = 0.459). Left-sided 
AGMs required adaptation in at least 1 fraction more frequently than 
right-sided AGMs (88 % vs 59 %, p = 0.018), and 65 % of left-sided 
AGMs required adaptation for all fractions. 

3.2. Clinical outcomes 

Median follow up from SBRT was 16.4 months (range: 1.1–39 
months). The ORR was 45 % per RECIST criteria and 67 % per PERCIST 
criteria (Table 2). One-year LC, PFS, and OS were 92 % (95 % CI: 81–97 
%), 52 % (95 % CI: 39–65 %), and 78 % (95 % CI: 65–87 %), respectively 
(Fig. 1A–C). On UVA, melanoma histology predicted for inferior 1-year 

Table 2 
Treatment Characteristics.  

Variable n % 

Prior Local Therapy 
None 56 91.8 % 
XRT 3 4.9 % 
Adrenalectomy 2 3.3 % 
Prior Immunotherapy 
Yes 37 60.7 % 
No 24 39.3 %  

Prior EGFR Inhibitor 
Yes 5 8.2 % 
No 56 91.8 %  

Prior BRAF/MEK Inhibitor 
Yes 4 6.6 % 
No 57 93.4 %  

Concurrent Immunotherapy 
Yes 16 26.2 % 
No 45 73.8 %  

Reirradiation 
Yes 3 4.9 % 

95.1 % No 58  

Radiation Fractionation Scheme 
60 Gy in 5 fractions 13 21.3 % 
50 Gy in 5 fractions 32 52.5 % 
60 Gy in 10 fractions 1 1.6 % 
45 Gy in 5 fractions 2 3.3 % 
40 Gy in 5 fractions 11 18.0 % 
35 Gy in 5 fractions 1 1.6 % 
30 Gy in 5 fractions 1 1.6 %  

BED10 (Gy) 
132 13 21.3 % 
100 32 52.5 % 
96 1 1.6 % 
85.5 2 3.3 % 
72 11 18.0 % 
59.5 1 1.6 % 
48 1 1.6 %  

Percentage of Adapted Fractions 
0 % 16 26.2 % 
20 % 2 3.3 % 
40 % 2 3.3 % 
60 % 5 8.2 % 
80 % 7 11.5 % 
100 % 29 47.5 %  

Reasons for Adaptation 
OAR 22 48.9 % 
Target and OAR 23 51.1 %  

Response per RECIST 
CR 2 3.3 % 
PR 25 41.0 % 
SD 32 52.5 % 
PD 1 1.6 % 
NA 1 1.6 %  

Response per PERCIST 
CMR 9 14.8 % 
PMR 7 11.5 % 
SMD 7 11.5 % 
PMD 1 1.6 % 
NA 37 60.7 % 

Abbreviations: XRT = external radiation therapy, BED10 = biologically effective 
dose assuming α/β = 10, OAR = organ-at-risk, RECIST = response evaluation 
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LC (80 % vs 93 %, p = 0.012, Table 3). Inferior Karnofsky score was also 
predictive for inferior LC. The BED10 prescribed, pretreatment size, and 
laterality of the AGM did not predict for LC. On UVA, reirradiation cases 
were predictive of inferior PFS (HR 3.55, p = 0.042). The Karnofsky 
performance score was the only predictor of OS. 

Of the 57 patients who underwent SBRT, 20 patients (35 %) expe
rienced grade 1 acute toxicity and 4 patients (7 %) experienced grade 2 
acute toxicity, including fatigue, nausea/vomiting, and abdominal pain 
(Supplemental Table 1). There were no instances of grade 3+ acute or 
late toxicity. 

4. Discussion 

Though SBRT has emerged as a relatively safe, non-invasive, and 
effective treatment for AGMs, LC following SBRT is quite variable and 
significantly influenced by dose (1-year LC 66–100 %) [8–13,24–28]. 
However, the proximity of GI OARs often limits the SBRT dose that can 
be safely prescribed to an AGM, particularly on the left side due to the 
stomach, large, and small bowel. There are several advantages of 
MRgSBRT, including improved soft tissue visualization, real time 
intrafraction tumor tracking, and online plan adaptation, that facilitate 
safe dose escalation in the treatment of AGMs. In the largest, multi- 
institutional experience to date, we demonstrate MRgSBRT to be a 
safe and effective treatment for AGM, with favorable LC and low rates of 
acute and late toxicity despite a relatively high median BED10. 

Following MRgSBRT to a median BED10 of 100 Gy (range 48–132 
Gy), we demonstrate a 1-year LC rate of 92 % (Fig. 1A), which compares 
favorably to the literature (66–100 %) [8–13,24–28]. Though the pre
sent study did not demonstrate a significant effect of SBRT dose upon LC, 
this was likely due to a limited sample size and limited BED variations, 
as multiple prior studies have found increased dose predictive of 
improved LC [13,25,26]. In a retrospective review of 49 AGM treated 
with CT-guided SBRT, Chance et al. found no instances of local failure in 
cases treated with doses above a BED10 of 100 Gy [26]. In another study 
of 149 AGM treated with CT-guided SBRT, Scorsetti et al found that 
BED10 was an independent predictor of LC [25]. In a large meta-analysis 
including 1006 patients with AGM treated with CT-guided SBRT to a 
median BED10 of 67 Gy, Chen et al. found a strong association between 
BED10 and LC, as a BED10 of 60 Gy, 80 Gy, and 100 Gy predicted 1-year 
LC of 71 %, 85 %, and 93 %, respectively [13]. Although the experience 
is limited, the median doses prescribed in studies of MRgSBRT for AGM, 
including the present study, are relatively high (median BED10 
89.6–100 Gy) [17,29–31], which likely contributes to the favorable 1- 
year LC rates demonstrated by these studies (92–100 %) [17,31]. 
These data indicate that dose escalation is an important determinant of 
LC, and with the improved precision due to intrafraction tumor tracking 
and online plan adaptation, physicians may feel more comfortable 
prescribing higher doses with MRgSBRT as compared with CT-guided 
techniques. 

The primary histology of the oligometastasis is another important 
factor that can influence LC after SBRT. Prior studies have established 
that the radiosensitivity of liver [32] and lung metastases [33] varies 
significantly by primary tumor histology. Radioresistant primary his
tologies, such as colorectal cancer, melanoma, RCC, and soft tissue 
sarcoma, tend to have radioresistant metastases that are at higher risk 
for local failure following SBRT. Indeed, studies have confirmed that 
patients with these histologies experience higher rates local failure after 
radiotherapy to brain [34], spine [35], liver [32], and lung [33] oligo
metastases. In the present study, we found concordant results, as pa
tients with melanoma were at a greater risk of local failure (Table 3). 
Our data suggests that similar to liver, lung, spine, and brain metastases, 
melanoma AGMs may be more radioresistant than other histologic 
subtypes, and therefore, dose escalation may be warranted in these cases 

criteria in solid tumors, PERCIST = positron emission tomography response 
criteria in solid tumors. 

Fig. 1. Kaplan-Meier curves for (A) local control, (B) progression-free survival, 
and (C) overall survival for patients with adrenal gland metastases treated with 
magnetic resonance-guided stereotactic body radiation therapy. 
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to optimize LC. 
Although dose escalation is important for improving LC, especially 

for radioresistant histologies, increasing dose increases the risk of 
toxicity of AGM SBRT due to the proximity of GI OARs. Overall, the risk 
of grade 3+ toxicity following AGM SBRT is low (1.8 %) [13]. However, 
there have been multiple reports of significant late toxicity following 
high dose CT-guided SBRT to left-sided AGMs. In a retrospective review 
of 10 patients with AGM treated with CT-guided SBRT, Plichta et al. 
reported a single case of GI bleed which occurred 3 months following 
SBRT to 45 Gy in 3 fractions (BED10 112 Gy) of a left AGM [36]. A recent 
study of 27 patients with AGM treated with CT-guided SBRT reported 1 
case of a late grade 5 posterior wall gastric ulcer which occurred 3 
months after SBRT to the left adrenal gland [11]. The maximum dose to 
the stomach was 54.8 Gy delivered in 4 fractions. Onishi et al. reported a 
similar case of a patient who developed a fatal posterior stomach wall 
ulceration which occurred 3 months following CT-guided SBRT of 60 Gy 
in 10 fractions (BED10 96 Gy) with concurrent vinorelbine to a left AGM 
[37]. A variety of SBRT techniques were utilized in these 3 studies, 
including generation of an internal target volume (ITV) from 4-D CT 
scans, respiratory gating, and treatment under breath hold. However, in 
contrast to the present study, none of these 3 studies utilized any 
adaptive planning. Despite a relatively high prescribed dose (median 
BED10 100 Gy), no instances of grade 3+ toxicity occurred following 
MRgSBRT in the present study, which is consistent with the AGM 
MRgSBRT literature [17,38]. Since the majority of cases in the present 
study (74 %) required adaptive planning to meet OAR constraints for at 
least one fraction, it is likely that this feature of MRgSBRT reduced the 
risk of toxicity. Additionally, it is important to note that the fraction
ation schemes utilized were at the discretion of the radiation oncologist 
and varied by the risk of toxicity, with lower BED10 likely utilized for 
cases involving targets nearby OARs or cases of reirradiation, further 
contributing to the low rate of significant toxicity within the present 

study. 
While comparison of clinical outcomes between CT-guided and 

MRgSBRT for AGM is limited by significant tumor and treatment het
erogeneity within the literature, as well as a limited published MRgSBRT 
experience, multiple studies have demonstrated significant dosimetric 
advantages of MRgSBRT. Studies have found significant volume and 
positional changes during the course of AGM SBRT for the GTV [30,39] 
and nearby OARs [15,29]. This variability has significant implications 
for the treatment plan, as a majority of fractions in the present study (64 
%) required adaption to meet OAR constraints and/or target coverage 
goals, which is consistent with the literature (69–99 %) [16,17,38]. 
MRgSBRT adapted plans have been shown to significantly improve PTV 
coverage and reduce the dose to OARs [14,17,29,38]. Rodriguez et al. 
conducted an analysis of 20 patients with AGM who underwent adaptive 
MRgRT who were replanned for volumetric modulated arc therapy 
(VMAT) CT-image guided radiation therapy (IGRT) [16]. Even when a 
breath-hold technique was utilized for the CT IGRT plans, there was a 
72 % frequency of predicted indications for adaptation, and CT IGRT 
plans were nearly 3 times more likely to experience target coverage 
reduction compared with MRgRT. Although larger studies with longer 
follow up are required to confirm that these dosimetric advantages 
translate to significant improvements in clinical outcomes, these data 
suggest that MRgSBRT may provide improved LC with a reduced risk of 
toxicity in the treatment of AGM. 

The present study has several important limitations. Firstly, the re
sults are limited by the study’s non-randomized, retrospective nature 
that causes an opportunity for selection bias. Additionally, there was 
significant heterogeneity of tumor characteristics, particularly for his
tology. There was also significant heterogeneity within the various 
treatment dose and fractionation regimens utilized. There was a rela
tively small sample size which likely limited the statistical analysis, and 
this may have contributed to the lack of an association between 

Table 3 
Univariate analysis for LC, PFS, and OS.   

Local Control Progression-Free Survival Overall Survival 

Variable HR p value HR p value HR p value 

Age at SBRT 0.99 (0.93–1.07) 0.757 1.00 (0.97–1.04) 0.776 1.01 (0.96–1.06) 0.801 
Gender       
Female (Reference) 1.00 – 1.00 – 1.00 – 
Male 2.16 (0.42–11.1) 0.358 1.17 (0.61–2.23) 0.633 0.95 (0.35–2.57) 0.914  

KPS       
90–100 (Reference) 1.00 – 1.00 – 1.00 – 
70–80 5.49 (1.06–28.5) 0.043 1.90 (0.98–3.68) 0.059 4.01 (1.31–12.2) 0.015 
60 – – 3.37 (0.76–14.9) 0.109 11.8 (2.14–65.2) 0.005  

Oligometastatic Classification 
De-novo OMD (Reference) 1.00 – 1.00 – 1.00 – 
Repeat OMD 0.45 (0.07–2.70) 0.381 1.15 (0.56–2.35) 0.706 1.03 (0.30–3.57) 0.965 
Induced OMD 1.64 (0.27–9.84) 0.591 1.44 (0.57–3.62) 0.439 2.76 (0.74–10.3) 0.131  

Histology 
Non-melanoma (Reference) 1.00 – 1.00 – 1.00 – 
Melanoma 6.82 (1.52–30.6) 0.012 1.60 (0.62–4.12) 0.326 – –  

Laterality 
Right (Reference) 1.00 – 1.00 – 1.00 – 
Left 2.42 (0.47–12.5) 0.293 1.16 (0.61–2.19) 0.653 0.76 (0.28–2.05) 0.589 
Pretreatment Maximum Diameter (cm) 0.72 (0.33–1.34) 0.328 1.03 (0.82–1.28) 0.796 1.32 (0.95–1.77) 0.328  

Reirradiation 
No (Reference) 1.00 – 1.00 – 1.00 – 
Yes 4.38 (0.48–39.6) 0.189 3.55 (1.05–12.0) 0.042 1.14 (0.15–8.64) 0.902 
BED10 (Gy) 0.99 (0.96–1.02) 0.587 1.01 (099–1.02) 0.993 1.00 (0.98–1.02) 0.933 

Abbreviations: LC = local control, PFS = progression-free survival, OS = overall survival, HR = hazards ratio, SBRT = stereotactic body radiation therapy, KPS =
Karnofsky performance score, OMD = oligometastatic disease, BED10 = biologically effective dose assuming α/β = 10. 
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reirradiation and LC, as well as the association of reirradiation and PFS. 
There was a limited follow up that limited our evaluation of the risk of 
long-term toxicity following SBRT for AGM. Despite these limitations, 
the multi-institutional component of this study showing consistent re
sults across institutional practices shows that MRgSBRT for AGM is safe 
and effective. Most importantly, MRgSBRT appears to be most beneficial 
for left AGM to spare critical OARs. 

5. Conclusions 

Our results demonstrate that MRgSBRT of AGM achieves favorable 
LC with a low risk of significant acute toxicity despite prescribing a 
median BED10 of 100 Gy to targets in proximity of GI OARs. The unique 
advantages of MR guidance and online adaptive replanning may be 
especially advantageous for safe dose escalation of radioresistant his
tologies such as melanoma. 
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