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ABSTRACT

CRISPR–Cas systems provide bacteria with adaptive
immunity against invading DNA elements including
bacteriophages and plasmids. While CRISPR tech-
nology has revolutionized eukaryotic genome en-
gineering, its application to prokaryotes and their
viruses remains less well established. Here we re-
port the first functional CRISPR–Cas system from
the genus Listeria and demonstrate its native role
in phage defense. LivCRISPR-1 is a type II-A sys-
tem from the genome of L. ivanovii subspecies
londoniensis that uses a small, 1078 amino acid
Cas9 variant and a unique NNACAC protospacer
adjacent motif. We transferred LivCRISPR-1 cas9
and trans-activating crRNA into Listeria monocyto-
genes. Along with crRNA encoding plasmids, this
programmable interference system enables efficient
cleavage of bacterial DNA and incoming phage
genomes. We used LivCRISPR-1 to develop an effec-
tive engineering platform for large, non-integrating
Listeria phages based on allelic replacement and
CRISPR-Cas-mediated counterselection. The broad
host-range Listeria phage A511 was engineered to
encode and express lysostaphin, a cell wall hydro-
lase that specifically targets Staphylococcus pepti-
doglycan. In bacterial co-culture, the armed phages
not only killed Listeria hosts but also lysed Staphy-
lococcus cells by enzymatic collateral damage. Si-
multaneous killing of unrelated bacteria by a single
phage demonstrates the potential of CRISPR–Cas-
assisted phage engineering, beyond single pathogen
control.

INTRODUCTION

CRISPR–Cas loci encode adaptive defense systems de-
signed to protect bacteria from bacteriophage (phage) in-

fection and other invading DNA elements. These systems
comprise a protein machinery that incorporates short se-
quences of incoming phage DNA (known as protospac-
ers) into a bacterial sequence repeat array locus called
CRISPR (1,2). Once integrated into the CRISPR array,
the phage-derived sequences are referred to as spacers. Pre-
CRISPR RNA (pre-crRNA) is transcribed from the array
and processed to yield short, phage-derived RNA-templates
(crRNA) to be integrated into a nuclease-targeting com-
plex. This RNA-guided interference complex recognizes
and cuts corresponding phage DNA in a sequence-specific
fashion, thereby conveying immunity to the bacterium (2–
5). To date, six CRISPR–Cas types have been described,
which feature highly diverse cas gene content and operon
organization. To prevent targeting of the CRISPR array,
many systems require a protospacer adjacent sequence mo-
tif (PAM) for interference, which is found in the targeted
DNA, but absent from the genomic CRISPR locus. With
only three to four cas genes (cas9, cas1, cas2 and cas4
or csn2), type II systems belong to the simplest CRISPR-
Cas loci known. They are defined by characteristic operon
organization, presence of the cas9 nuclease gene, and a
small trans-activating crRNA (tracrRNA). For interfer-
ence, type II systems require cas9, tracrRNA, crRNA and
host RNAseIII, while cas1, cas2 and cas4/csn2 are dispens-
able (5,6). Type II systems have been adapted for man appli-
cations, especially for the targeted modification of eukary-
otic genomes (7,8). Based on the rapid development of the
technology, CRISPR–Cas is now being used in eukaryotic
and prokaryotic systems and is expanding to functions be-
yond DNA-cleavage, including targeted transcriptional reg-
ulation and DNA modification (9–12). Even though phages
are natural CRISPR targets, only few CRISPR–Cas sys-
tems for targeted modification of phage genomes have been
reported (13–19). This is surprising, especially considering
that genome engineering of strictly lytic, non-integrating
phages is a difficult and labor-intensive process (reviewed
by Pires et al. (20)).
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Bioinformatics reveal putative CRISPR–Cas systems in
approximately 10% of bacterial genomes (21) (or in 40–50%
of cultivatable bacteria (22,23)), yet experimental proof of
in vivo activity is scarce. With respect to the intracellular
pathogen Listeria monocytogenes, a comparative analysis of
128 strains showed that 41.4% contain putative cas genes,
and a recent study by Rauch et al. demonstrated weak ac-
tivity of a Listeria type II CRISPR–Cas system against plas-
mids carrying cognate spacer and PAM sequences (24,25).
However, activity of native Listeria CRISPR–Cas systems
against naturally occurring phage has not been demon-
strated, possibly because L. monocytogenes strains fre-
quently contain prophage-encoded anti-CRISPR proteins
(25). CRISPR–Cas systems have also been identified in the
animal pathogen L. ivanovii but their functionality has not
been tested (26,27).

In this study, we report the characterization of two
CRISPR loci (LivCRISPR-1 and LivCRISPR-2) identified
in the genome of L. ivanovii subspecies (ssp.) londonien-
sis WSLC 30167 and provide evidence that LivCRISPR-1
contributes to phage resistance in this strain. In addition,
we constructed a LivCRISPR-1-based, programmable,
sequence-specific nuclease system that is transferable to
other species of the genus Listeria. The small LivCRISPR-1
Cas9 protein allows for efficient, targeted cleavage of Liste-
ria and phage DNA and enables editing of virulent Listeria
phage genomes. Using LivCRISPR-1, we produced a genet-
ically armed Listeria phage that induces the production and
release of a Staphylococcus-specific cell wall hydrolase from
infected cells, and thus allows for control of both bacteria
in co-culture. In the future, this approach should be useful
for the control and modification of complex bacterial en-
vironments, including the possibility to balance and shape
specific microbiomes.

MATERIALS AND METHODS

Bacterial strains, bacteriophages, plasmids, and primer

L. monocytogenes and L. ivanovii strains were cultivated
in 1/2 BHI medium at 30◦C. E. coli XL1-blue and S. au-
reus ATCC19685 were cultivated in LB medium at 37◦C.
Phages B025, B035, B056, P40, and A511 were propagated
on L. ivanovii WSLC 3009 at 30◦C, B054 was propagated on
WSLC 3009 at 19◦C, and P35 was propagated on L. mono-
cytogenes Mack at 20◦C. Phage infection assays were car-
ried out using the soft agar overlay method. Briefly, 10 �l
phage dilution was mixed with 200 �l stationary host cul-
ture in 4 ml LC soft agar (10 g/l tryptone, 5 g/l yeast extract,
10 g/l glucose, 7.5 g/l NaCl, 10 mM CaCl2, 10 mM MgSO4,
0.4% agar) at 46◦C and poured onto agar plates (1/2 BHI
plates for B025, B035, B054, B056, P40 and A511; LC plates
for P35). Plaque-forming units (pfus) were quantified at six
(B054) or one (all other phages) days post infection. All
plasmids and primers can be found in Supplementary Ta-
bles S1 and S2.

Phage adsorption assays

To quantify phage adsorption, 490 �l of SM-Buffer con-
taining 0.02% Tween20 and 2 mM CaCl2 were mixed with
109 Listeria cells. 10 �l of phage dilution containing 107

phages and 500 �l 1/2 BHI medium were added. Tubes
without Listeria cells served as phage input control. Sam-
ples were incubated for 10 min on an overhead rotator at
20◦C and centrifuged for 2 min (12 000 × g, 4◦C). Super-
natants were transferred to new reaction tubes and pellets
suspended in 1 ml SM buffer on ice. Serial dilutions of both
fractions were prepared and pfus quantified.

Cell wall decoration with fluorescent affinity proteins

Cell wall-binding domains (CBDs) derived from the en-
dolysins of Listeria phage A500 and S. aureus phage 2638A
have previously been engineered as GFP (GFP-CBD500) or
dsRed (dsRed-CBD2638A) fusion proteins that allow for
selective staining of their respective host (see (28)): 0.5 ml
bacterial culture (OD = 1) was harvested (1 min, 7500 g,
4◦C), resuspended in 100 �l SM-buffer containing 10 �g
of dsRed-CBD or GFP-CBD protein, incubated for 2 min
at RT on an overhead rotator, washed twice with 1 ml cold
SM-buffer, and finally suspended in 50 �l SM-buffer. 4 �l of
stained cultures were spotted onto a microscopy slide and
visualized on a Leica TCS SPE confocal system (Leica Mi-
crosystems, Germany) equipped with a HCX PL FLUO-
TAR 100.0 × 1.30 oil objective.

Bioinformatics

Homology searches were performed using BLAST (29), we-
blogo was used for visualization of the PAM (30), and
cas gene homologies were identified using HHPred (31).
To identify putative tracrRNA sequences, CRISPR re-
peats were aligned with the complete cas-gene region us-
ing BLASTn. Identified regions of homology were analyzed
for the presence of a bacterial promoter (using BPROM,
a sigma70 promoter prediction software) and terminator
(using the ARNold software, http://rna.igmors.u-psud.fr/
toolbox/arnold) in the 5′ and 3′ regions, respectively (32–
35). Multiple alignments of Cas9 proteins were performed
using CLC Workbench (version 9.5.4; Qiagen; settings: pro-
gressive alignment, gap open cost = 10, gap extension cost
= 1, end gap cost = as any other). Information on the pro-
teins used to create the alignment can be found in Supple-
mentary Table S4. Phylogenetic trees were constructed us-
ing CLC Workbench (tree construction method = neighbor
joining, protein distance measure = Jukes-Cantor, boot-
strap analysis = 100 replicates).

Transformation of Listeria

Listeria electrocompetent cells were prepared according to
a modified protocol by Monk et al. (36). 40 ml 1/2 BHI +
0.5 M sucrose were inoculated with 2 ml stationary phase
culture and incubated at 30◦C (shaker, 180 rpm) until an
OD600nm of 0.2 was reached. Each liquid culture was dis-
tributed into four 10 ml aliquots and cells were grown for
2 h at 30◦C in the presence of different concentrations of
penicillin G (5, 10, 25, 50 �g/ml). For transformation of
WSLC 3009, WSLC 1042, and Mack, 10 �g/ml lysozyme
was added during the last 10 minutes of incubation. Cells
were chilled on ice for 5 min, transferred to a 50 ml Fal-
con tube, and pelleted by centrifugation (4000 × g, 10 min,

http://rna.igmors.u-psud.fr/toolbox/arnold


6922 Nucleic Acids Research, 2018, Vol. 46, No. 13

4◦C). The pellet was washed once with 1.5 ml and once with
1 ml of cold sucrose-glycerol washing buffer (SGWB; 0.5 M
sucrose, 10% glycerol, pH 7.4) before final resuspension (60
�l SGWB per transformation). 1.5 �g plasmid DNA were
mixed with 60 �l of electrocompetent cells and transferred
to a cold 2 mm electroporation cuvette. Listeria cells were
electroporated (2.2 kV/cm 400 Ohm, 25 �F) using a Gene
Pulser™ (BioRad Laboratories) and recovered with 1 ml
warm 1/2 BHI + 0.5 M sucrose at 30◦C for 90 min. Cultures
were plated on 1/2 BHI agar plates supplemented with an-
tibiotics (50 �g/ml kanamycin, 5 �g/ml erythromycin, or
10 �g/ml chloramphenicol).

Gene deletion in Listeria

Generation of cas gene deletion mutants (�Cas(LivCR-1),
�Cas(LivCR-2) and ��Cas(LivCR-1/2)) was performed
using splicing-overlap-extension (SOE) PCR (37,38), fol-
lowed by allelic exchange mutagenesis. SOE primers were
designed to amplify ∼500 bp sequences flanking the cas
gene regions of interest. Flanking fragments were fused us-
ing SOE-PCR with primer P76/P79 for �Cas(LivCR-1)
and P80/P83 for �Cas(LivCR-2). Editing templates were
digested, ligated into the pAULA, and transformed into
E. coli XL1 blue (39). The editing template to construct
the WSLC 30167 �BREX mutant was synthesized (Ther-
mofisher Scientific), amplified with primers P100 and P101,
and cloned into pAULA. Sequenced editing vectors were
transformed into WSLC 30167 by electroporation. Ho-
mologous recombination of the plasmid with the genome
was selected for by shifting to non-permissive conditions
(39◦C). After six passages, the antibiotic resistant strains
were inoculated into 1/2 BHI without antibiotics at permis-
sive temperatures (30◦C). After another five passages, single
colonies were screened for loss of erythromycin resistance.
Sensitive colonies were screened by PCR for deletion of tar-
get genes and PCR products sequenced.

Construction of LivCRISPR-1 pre-crRNA expressing vector
pLRSR scr

A DNA fragment containing the endogenous leader se-
quence of LivCRISPR-1 (220 bp sequence upstream of the
first repeat unit of LivCRISPR-1) followed by one repeat-
spacer-repeat (RSR) unit and 350 bp of sequence down-
stream of the last endogenous repeat unit was synthesized.
This synthetic CRISPR array was cloned into the E. coli-
Listeria shuttle vector pLEB579 (40) using restriction en-
zyme XbaI to yield the pre-crRNA vector pLRSR scr. The
spacer region of pLRSR scr contains two BsaI sites that
enable incorporation of any spacer sequence of choice us-
ing annealed oligonucleotides, essentially as described by
Jiang et al. (41). Appropriate BsaI overhangs need to be re-
constituted to generate functional RSR units upon ligation
with BsaI-digested pLRSR scr (see Figure 3A). For anneal-
ing, 50 �l oligonucleotide pairs (4 �M each) were mixed
in T4 ligase buffer, heated to 100◦C for 10 min, and slowly
cooled to RT in a heating block. Annealed spacers were lig-
ated with BsaI-digested pLRSR scr, transformed into E. coli
XL-1 blue cells, and grown on LB plates supplemented with
300 �g/ml erythromycin. All pLRSR-derived plasmids and

oligonucleotide sequences can be found in Supplementary
Tables S1 and S2.

Transfer of cas9 and tracrRNA into Listeria

For genomic expression of LivCRISPR-1 cas9 and tracr-
RNA from their endogenous promoter, the cas9 5′-region
(360 bp), cas9 gene, and tracrRNA were amplified from us-
ing primers P1 and P2 and cloned into the integrative plas-
mid pIMK (42) to yield pIMK Pend cas9. For overexpres-
sion, cas9 and tracrRNA were amplified without the cas9 5′
region using primers P3 and P4 and cloned into pIMK2 to
yield pIMK2 Phelp cas9. Listeria strains were transformed
with both plasmids and integration selected for with 50
�g/ml kanamycin.

CRISPR-Cas-mediated targeting of bacterial and phage ge-
nomic DNA

To target bacterial gDNA, Listeria cells were electroporated
with 1.5 �g of pLRSR plasmid expressing a pre-crRNA
that targets the DNA polymerase I gene of the transformed
Listeria strain (self-targeting vector). As control, 1.5 �g of a
non-targeting pre-crRNA plasmid (pLRSR scr) was used.
Transformed cells were grown on 1/2 BHI plates supple-
mented with 5 �g/ml erythromycin for 48 h at 30◦C, colony
forming units quantified by plating serial dilutions, and rel-
ative transformation efficiencies calculated. To target phage
genomic DNA, LivCRISPR-1 cas9 and tracrRNA express-
ing propagation strains were transformed with pre-crRNA
plasmids targeting late genes of phages P40 (pLRSR P40;
targets the putative tail tape measure protein gp14), A511
(pLRSR A511; targets the putative tail tip protein gp028),
and P35 (pLRSR P35; targets the putative tail tape measure
protein gp14). Plasmids were constructed as described in
Supplementary Tables S1 and S2. Artificial bacteriophage-
insensitive mutants (BIMs) were tested for phage sensitiv-
ity using spot-on-the-lawn assays: 200 �l over-night culture
was mixed with 4 ml soft-agar and poured on bottom-agar
in a 10 cm petri dish. Once solidified, serial phage dilutions
(10 �l) were spotted on this plate and incubated over-night.

LivCRISPR-1-assisted site-directed mutagenesis of phage
A511

Eight editing plasmids with homology regions flanking
both sides of the protospacer and PAM sequence were con-
structed using shuttle vector pSK1 as a backbone. Four
plasmids contained one mutation in the PAM (NNACAC
to NNATAC) and 400, 250, 150 or 50 bp homology arms
on each side. The remaining four plasmids contained four
additional silent mutations (see Figure 5B) and the same
homology arms. Flanking regions were amplified by PCR
using primers containing the mutated spacer/PAM se-
quences, purified, and assembled with the pSK1 plasmid
backbone using the Gibson Assembly method (NEBuilder
HiFi DNA Assembly Cloning Kit) to yield the editing plas-
mids. A511 gp97 crRNA targeting construct was cloned
by incorporation of annealed oligonucleotides P13 and P14
into BsaI-digested pLRSR scr to yield pLRSR A511. Mu-
tant phages were isolated using a one-step protocol: The
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WSLC 3009::Phelp cas9 strain containing pSK1-derived
editing plasmids and the A511-targeting pre-crRNA plas-
mid (pLRSR gp97) was infected with serial dilutions of
A511 wild type phages using the soft-agar overlay assay.
Two phage plaques were sequenced to validate genotype.

Construction of lysostaphin-encoding A511::lst phages

Pre-crRNA expression plasmids targeting the endolysin or
major capsid gene of A511 were constructed as described
above using primers P62 and P63 (pLRSR A511 ply) or
P64 and P65 (pLRSR A511 cps), respectively. The edit-
ing plasmids containing flanking homology arms and the
lysostaphin-hexahistidine (his6) gene sequence (771 bp +
ribosomal binding site: GAGGAGGTAAATATAT) were
assembled into the pSK1 backbone as described in Sup-
plementary Tables S1 and S2. Silent mutations were sub-
sequently introduced into the PAM motif of these edit-
ing plasmids using site-directed mutagenesis to allow for
CRISPR escape of recombinant phage genomes. The final
editing plasmids pSK1 ply511 lst-his6 and pSK1 cps511
lst-his6 mediate integration of the lysostaphin-his6 gene
downstream of the A511 endolysin (ply511) and major
capsid gene (cps511), respectively. First, L. ivanovii WLSC
3009 was transformed with either of the two editing plas-
mids and infected with A511 wild type phage using the
soft-agar overlay technique to obtain semi-confluent ly-
sis. The obtained phage lysate was subsequently titered
on WSLC 3009::Phelp cas9 pLRSR A511ply or WSLC
3009::Phelp cas9 pLRSR A511 cps. Four candidate plaques
were picked for each phage and assayed for the correct geno-
type using PCR and sequencing (see Supplementary Figure
S6).

Infection of Listeria and Staphylococcus co-cultures

Stationary phase cultures of WSLC 3009 and/or
ATCC19685 were diluted in 1/2 BHI to obtain an
OD of 0.1 (OD = 0.05 of each strain for co-culture infec-
tions). 15 ml of the cultures were incubated at 30◦C for 1 h
before phage addition (t = 0) at a multiplicity of infection
(moi) of 0.03. Infected cultures were incubated (30◦C) and
optical density monitored for 320 minutes. In addition,
serial dilutions were plated on selective Oxford (Listeria)
and Baird-Parker (Staphylococcus) agar plates (biolife) at
0, 100, 200 and 300 min post infection. Cfus were counted
after 24 h incubation at 30 or 37◦C, respectively.

Purification of lysostaphin-his6 from phage infected cultures

One liter of prewarmed 1/2 BHI medium was inoculated
with 20 ml of a WSLC 3009 overnight culture. Phages
(A511::lst1 or A511::lst2) were added to a final concentra-
tion of 1 × 105 pfu/ml. After 3–4 h at 30◦C more phages
were added to a final concentration of 1 × 107 pfu/ml and
incubated for another 3 h. Cleared lysates were centrifuged
(10 000 × g, 10 min) and supernatants incubated with 10
ml Ni-NTA Superflow resin (Qiagen) at 4◦C for 30 min on
an overhead rotator. Resin was transferred to MicroBiospin
columns (Bio-Rad) and washed extensively with buffer A
(500 mM NaCl, 50 mM Na2HPO4, 5 mM imidazole, 0.1%

Tween 20 [pH 8.0]). His-tagged lysostaphin was eluted us-
ing Buffer B (500 mM NaCl, 50 mM Na2HPO4, 250 mM
imidazole, 0.1% Tween 20 [pH 8.0]). Pooled fractions were
dialyzed twice against dialysis buffer (NaH2PO4, 120 mM
NaCl [pH 8.0], 0.01% Tween 20) and samples assayed by
SDS-PAGE.

RESULTS

Listeria ivanovii ssp. londoniensis are highly resistant to
phage infection

Listeria strains are grouped into serovars, based on both H
(flagellar) and O (cell surface-associated) antigens (43,44).
L. ivanovii strains all belong to serovar 5 and thus share
similar cell-wall architecture (45). The primary differences
between the two L. ivanovii subspecies (spp. londoniensis
and spp. ivanovii) are the lack of ribose fermentation and,
more interestingly, a high degree of intrinsic phage resis-
tance observed for ssp. londoniensis isolates (26,46). Using
the API test (Supplementary Figure S1), we identified four
ssp. londoniensis strains (WSLC 3060, WSLC 30130, WSLC
30151 and WSLC 30167) from our collection. Soft-agar
overlay infection assays with Listeria phages A511, B025,
B035, B054 and B056 (47) were performed to determine the
susceptibility of four ssp. londoniensis and five ssp. ivanovii
strains (Figure 1A). While the strictly lytic, broad host-
range Myovirus A511 (48) infected all strains, the other tem-
perate Siphoviruses either failed to plaque, or revealed a
markedly reduced efficiency of plating (eop) on Listeria ssp.
londoniensis. This led us to hypothesize that ssp. londonien-
sis strains might employ specific defense mechanisms not
found in other L. ivanovii strains.

Multiple phage resistance mechanisms are active in L.
ivanovii ssp. londoniensis

To escape phage predation, mutations are frequently found
in bacterial genes that mediate the glycosylation of wall
teichoic acids (WTA), which constitute the binding lig-
ands for most Listeria phages (49–51). To test whether host
cell binding of B025, B035, B054 and B056 is affected in
phage-resistant ssp. londoniensis strains, we employed ad-
sorption assays using ssp. ivanovii strain WSLC 3009 as
positive control (Figure 1B). Surprisingly, only WSLC 3060
and WSLC 30151 showed abrogated phage binding, while
phages bound normally to the surface of the other ssp. lon-
doniensis strains. This suggests that strains WSLC 30130
and WSLC 30167 possess intracellular mechanisms that in-
terfere with productive phage infection. Therefore, phage
resistance of the analyzed ssp. londoniensis strains is con-
veyed by at least two different mechanisms.

Two different type II-A CRISPR–Cas systems in L. ivanovii
WSLC 30167

To identify intracellular phage resistance mechanisms in
ssp. londoniensis, we compared the genome sequences
of phage-permissive WSLC 3009 and phage-resistant
WSLC 30167 strains (26,27). We identified two indepen-
dent CRISPR–Cas systems in WSLC 30167 (designated
LivCRISPR-1 and LivCRISPR-2) that feature distinct
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Figure 1. Different mechanisms mediate phage resistance of L. ivanovii ssp.
londoniensis. (A) Sensitivity of five L. ivanovii ssp. ivanovii and four ssp. lon-
doniensis strains to broad host-range phage A511 and serovar-specific tem-
perate phages B025, B035, B054, and B056 was determined at the optimal
propagation condition of each phage. Plating efficiencies were determined
from soft-agar overlay infection assays with serial dilutions of the indicated
phages. (B) Binding of B025, B035, B054, and B056 to phage-sensitive ssp.
ivanovii and phage-resistant ssp. londoniensis strains was determined using
phage adsorption assays. Data are presented as mean ± SD from three bi-
ologically independent experiments. Eop = efficiency of plating relative to
WSLC 3009; SD = standard deviation.

direct repeat sequences and cas genes. In contrast, no
CRISPR–Cas system was found in the genome of WSLC
3009. LivCRISPR-1 is large, comprising a 6284 bp CRISPR
array (nucleotide positions 534 160–540 443). It contains
95 spacers, 29–32 bp in length, of which seven showed
100% sequence identity to known Listeria phage genomes
(Figure 2A (red bars); more details in Supplementary Fig-
ure S2A and Supplementary Table S4). The CRISPR ar-
ray of the second CRISPR–Cas system (LivCRISPR-2) is
significantly smaller (1056 bp, positions 2 761 818–2 762
873) and encodes only 16 spacers, 30 bp in length, none
of which shared full sequence identity with any known
phage (Figure 2A, bottom). Upstream of both CRISPR ar-
ray regions, we identified cas9, cas1, cas2 and csn2 genes,
as well as tracrRNA elements, classifying them as type
II-A systems (Supplementary Figure S2B and C, Supple-
mentary Table S3). We performed a phylogenetic analy-
sis of representative type II-A Cas9 orthologs (52) (Fig-
ure 2B, Supplementary Figure S3, and Supplementary Ta-
ble S4) and found that LivCRISPR-2 Cas9 clusters with
other Listeria CRISPR systems. In contrast, LivCRISPR-
1 Cas9 is not closely related to previously known Liste-
ria CRISPR-systems but rather clusters with small Cas9
variants from Staphylococcus, Eubacterium, and Clostrid-
ium, including a previously described, highly active Cas9
protein from S. aureus (53,54). To identify a PAM for

LivCRISPR-1, we aligned the protospacer-flanking regions
of six known target genomes (see Supplementary Table S5).
We found a conserved NNACAC motif immediately down-
stream of the protospacer sequences (Figure 2C), which has
not previously been reported for other CRISPR–Cas sys-
tems (30,55,56).

LivCRISPR-1 contributes to native phage resistance in L.
ivanovii ssp. londoniensis

To assess the functionality of LivCRISPR-1 and
LivCRISPR-2 as potential phage resistance mechanisms in
WSLC 30167, we designed several cas gene deletion mu-
tants (39). First, the cas gene cassettes (cas9, cas1, cas2 and
csn2) of each WSLC 30167 CRISPR–Cas system were
deleted individually, resulting in strains �Cas(LivCR-1)
and �Cas(LivCR-2). Next, a ��Cas(LivCR-1/2) double
deletion mutant was constructed, which is devoid of all
cas genes. We challenged the mutants with phage B054,
for which a spacer with 100% identity was identified in
the LivCRISPR-1 array. Deletion of LivCRISPR-1 cas
genes led to complete restoration of phage sensitivity,
while LivCRISPR-2 was not required for B054 interference
(Figure 2D). This finding demonstrates that LivCRISPR-1
is actively involved in B054 resistance in-vivo. It was not
possible to determine the putative relevance of native
LivCRISPR-2 in this assay, because no spacer sequence
with identity to any known Listeria phage is present and
because its PAM could not be determined with certainty.
Even though LivCRISPR-1 contains two B025-targeting
spacers, all cas-gene deletion mutants remained insen-
sitive to this phage, suggesting that additional defense
mechanisms are restricting this phage.

Functional LivCRISPR-1 can be transferred to and engi-
neered in L. monocytogenes

Our findings demonstrate that LivCRISPR-1 is actively in-
volved in L. ivanovii phage defense. To assess whether the
system can be engineered as a programmable, sequence-
specific nuclease, we designed a LivCRISPR-1-based
CRISPR-RNA plasmid encoding a leader-repeat-spacer-
repeat unit with exchangeable spacer sequence (pLRSR
scr), which allows for the expression of small custom-
designed pre-crRNAs (Figure 3A) (17). In a self-targeting
assay (25), pLRSR was directed against the DNA-
polymerase I gene of the LivCRISPR-1-encoding strain
WSLC 30167 (pLRSR 30167 DNA pol.I). The transfor-
mation efficiency with this self-targeting pLRSR plasmid
dropped to ∼3%, compared to the non-targeting control
(pLRSR scr, Figure 3B). The 3% escapers were not due
to weak interference activity but instead featured dele-
tions of the repeat-spacer-repeat unit in pLRSR 30167
DNA pol.I (Supplementary Figure S4). Transformation
efficiency of the self-targeting plasmid was rescued in
�Cas(LivCR-1) and ��Cas(LivCR-1/2) strains, confirm-
ing that self-targeting was dependent on cas genes of
LivCRISPR-1 (Figure 3B). To determine the minimal re-
quirements for CRISPR interference, cas9 and tracrRNA
of LivCRISPR-1 were transferred to the genome of WSLC
30167 �Cas(LivCR-1) using integrative, pIMK-based plas-
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mids (42). Cas9 and tracrRNA expression was driven ei-
ther from the putative, endogenous cas9 promoter region
(Pend cas9), or from a strong, constitutive promoter (Phelp
cas9). Self-targeting assays demonstrated that chromoso-
mal expression of cas9 and tracrRNA was sufficient to res-
cue CRISPR-activity in WSLC 30167 �Cas(LivCR-1), as
long as cas9 was expressed from Phelp (Figure 3B). This min-

imalized CRISPR–Cas system was transferred to L. ivanovii
ssp. ivanovii (WSLC 3009) and L. monocytogenes (WSLC
1042), again using integrative pIMK-based plasmids. Self-
targeting assays directed against their respective DNA poly-
merase I genes demonstrated that LivCRISPR-1 was fully
active in these related species as well (Figure 3C and D). Ex-
pression from the endogenous cas9 promoter region did not
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mean ± SD from three biologically independent experiments.

result in detectable activity, suggesting that cas genes were
expressed from a large operon, or are subject to context-
dependent regulation in WSLC 30167. Collectively, these
experiments demonstrate that Listeria genomes can be tar-
geted using pre-crRNA expression plasmids and that het-
erologous expression of cas9, tracrRNA, and pre-crRNA is
sufficient for full interference activity in both L. ivanovii and
L. monocytogenes.

Engineered CRISPR–Cas9 can control infection by non-
integrating bacteriophages

The engineered CRISPR–Cas9 system was tested for its
ability to confer resistance to infection by strictly lytic,
non-integrating Listeria phages. Three pre-crRNA plas-
mids (pLRSR-based) were constructed, which contained
spacers that target late genes of the virulent Siphoviruses
P35 (pLRSR P35) and P40 (pLRSR P40), as well as
the Myovirus A511 (pLRSR A511) (see Materials and
Methods) (48,57). We generated phage propagation strains
that express the required tracrRNA and cas9 gene from
their genomic DNA. These strains were transformed with
phage-targeting crRNA plasmids, and subsequently in-
fected with the respective viruses using spot-on-the-lawn as-
says (Figure 4A–C). Wild-type propagation strains (i.e. de-
void of LivCRISPR-1 cas9/tracrRNA) and strains carry-
ing non-targeting crRNA plasmids (pLRSR scr) served

as controls. All phages were efficiently targeted by the
engineered LivCRISPR-1 system, and plaque formation
was drastically reduced by at least five orders of magni-
tude. Control experiments demonstrated that crRNA and
cas9/tracrRNA were required for interference, and the lack
of one of these components led to complete loss of activ-
ity. We performed phage adsorption assays as an additional
control to ensure that binding was not affected in any of the
engineered strains (Supplementary Figure S5). It was previ-
ously shown for other type II systems that phages can escape
CRISPR interference by mutation of protospacer sequences
or PAMs (17). To identify the mechanism Listeria phages
use to escape LivCRISPR-1-mediated interference, we chal-
lenged the engineered, P35- and A511-resistant strains with
high multiplicities of phage and isolated a subset of natu-
rally occurring CRISPR escape mutants (CEMs). Sequenc-
ing of the protospacer region of nineteen P35 CEMs and
twenty A511 CEMs revealed frequent point mutations at
nucleotide (nt) position 29 of the protospacer, and nt po-
sitions four and six of the NNACAC PAM in the CEM
isolates (Figure 4D). Overall, mutations in the PAM were
more frequent than in the 3′-region of the protospacer. No
nucleotide changes in PAM nt position five were identified
within the analyzed subset of CEMs, even though silent mu-
tations would have been possible. This indicates that base
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pairing at position five may not be required for interference
(see Figure 4D).

LivCRISPR-1 assisted introduction of point mutations in
phage A511

LivCRISPR-1 can be programmed to cleave specific bac-
teriophage sequences with high efficiency. This prompted
us to develop a phage genome-engineering protocol based
on homologous recombination of target phage DNA using
a plasmid-encoded recombination template (editing plas-
mid, pSK1-based). In this assay, LivCRISPR-1 is used as
a negative selection tool to remove wild type genomes that
have not undergone recombination, thereby enriching de-
sired recombinants (see workflow in Figure 5A). CRISPR-
mediated counter-selection is required due to low recombi-
nation frequencies typically observed for on-the-fly allelic
replacement during replication of phage genomes in the in-
fected host cell (58–60). The applicability of this approach

for the introduction of single and multiple silent nucleotide
substitutions into the large, 135 kilobase (kb) genome of
phage A511 (48) was evaluated. For this purpose, the
A511-targeting strain L. ivanovii 3009::Phelp cas9 pLRSR
A511(see Figure 4B) was transformed with editing plasmids
that contain homology arms of varying length flanking the
A511 protospacer sequence (50–400 bp on each side). In ad-
dition, these editing plasmids contained one or five silent
point mutations in the protospacer and PAM region (see
Figure 5B). In all cases, one mutation (C→T) was intro-
duced at nucleotide position four of the NNACAC PAM
motif that allows recombinant phages to escape CRISPR
interference. All strains were subsequently challenged with
A511 phage using the soft-agar overlay technique and pfus
were quantified (Figure 5C). A511 plating efficiency on the
cas9-deficient control strains was approximately 108 pfu/ml
regardless of the editing plasmid carrier state. Phage counts
dropped ∼105-fold when CRISPR-interference was active,
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Figure 5. LivCRISPR-1-assisted site-directed mutagenesis of virulent phage genomes. (A) Schematic representation of the CRISPR-assisted phage genome
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independent experiments.
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and no editing template provided (pSK1 control, 0 bp).
These plaques represent the background of spontaneously
occurring CEMs. When providing a functional editing plas-
mid, phage counts increased proportionally to the length of
the flanking homology arms, and reached a maximum of 6.1
× 105 and 6.2 × 105 pfu/ml for the introduction of either
one or five point mutations, respectively. For each editing
plasmid used in combination with CRISPR counter selec-
tion, phages recovered from single plaques were sequenced
and the presence of the desired point mutations confirmed.
In conclusion, we demonstrate that CRISPR-assisted ge-
netic editing enables highly efficient introduction of multi-
ple point mutations into virulent Listeria phage genomes,
using a simple one-step infection protocol.

Engineering of phages for dual pathogen control

In addition to the introduction of point mutations, we tested
the CRISPR engineering workflow for directed insertion of
additional genes into the genome of phage A511. For this
purpose, the lysostaphin gene from Staphylococcus simulans
was selected. Lysostaphin is a metallo-endopeptidase that
specifically cleaves the penta-glycine crossbridges in Staphy-
lococcus peptidoglycan, and is known for its robust and se-
lective anti-staphylococcal activity (61). We hypothesized
that phage-directed production and release of lysostaphin
from A511-infected Listeria cells would result in collateral
damage, i.e. kill S. aureus cells present in co-culture of the
two unrelated bacteria. CRISPR–Cas9 counter-selection
(Figure 5A) was used to insert a hexahistidine-tagged ver-
sion of lysostaphin (lysostaphin-his6) (62) either down-
stream of the A511 major capsid gene (yielding phage
A511::lst1), or downstream of the A511 endolysin gene
(yielding phage A511::lst2) (Figure 6A). Because we were
unable to obtain recombinant phage in a one-step reaction,
the protocol previously applied to introduce point muta-
tions was further developed. First, A511 phage was prop-
agated in the presence of the editing plasmid and the mix-
ture of wild type and recombinant phage isolated. Sub-
sequently, this phage lysate was used to infect a corre-
sponding CRISPR interference strain for counter-selection
(workflow shown in Figure 5A). Again, the editing plas-
mids contained single silent nucleotide substitution in one
of the homology arms that allow for CRISPR escape. Us-
ing this two-step protocol, A511::lst1 and A511::lst2 were
efficiently isolated (see Supplementary Figure S6). We show
that both phage mutants infect and kill Listeria, but do
not affect growth of S. aureus in single culture infection
assays (Supplementary Figure S7A). Upon infection with
A511::lst1 or A511::lst2, we purified lysostaphin-his6 from
bacterial lysates and demonstrated that both phages induce
comparable levels of lysostaphin production (Supplemen-
tary Figure S7B). Next, we assessed whether the recom-
binant phages would be able to affect the growth of S.
aureus in mixed cultures. Listeria WSLC 3009 and S. au-
reus ATCC19685 cells were co-cultured and infected with
A511 wt, A511::lst1 or A511::lst2 at an moi of 0.03. Turbid-
ity measurements over time demonstrated that lysostaphin-
encoding phages were able to clear Listeria/Staphylococcus
co-cultures within 4 h of infection (Figure 6B–C). Plating on
selective media confirmed the complete eradication of both

types of bacteria at approximately 6 h post infection with
either A511::lst1 or A511::lst2. As expected, native A511
selectively removed only Listeria cells, but did not affect
the growth of S. aureus (Figure 6D). A non-infected con-
trol culture showed similar growth of both strains in co-
culture (Figure 6E). To provide visual proof, we employed
fluorescently labelled cell wall-binding proteins to specifi-
cally decorate Listeria (GFP-CBD500) or Staphylococcus
(dsRed-CBD2638A) cells during the experiments (28). Con-
focal microscopy at 0 and 5 h post infection confirmed that
destruction of Staphylococcus cells only occurs following in-
fection of Listeria cells by the engineered A511::lst phages
(Figure 6F).

In conclusion, the LivCRISPR-1 assisted phage engi-
neering platform represents a fast and efficient method for
targeted insertion of genetic information into large, non-
integrating Listeria phage genomes. This allows for the con-
struction of recombinant phages with a large degree of free-
dom, including phages that encode additional antibacte-
rial properties for indirect killing of bacteria by enzyme-
mediated collateral damage.

DISCUSSION

Although putative CRISPR–Cas loci have been previously
identified in Listeria (24,25), we report the first func-
tional CRISPR–Cas interference system directly contribut-
ing to phage resistance in this organism. Interestingly, while
LivCRISPR-1 cas gene deletion mutants became suscepti-
ble to phage B054, they remained insensitive to infection
by other phages such as B025, B035 and B056, all of which
bind WSLC 30167 cells (Figure 1). Recently, several new
phage defense systems have been described (63–65), and
some of these seem widespread in microbial genera. Doron
et al. (63) reported several defense systems homologs in
Listeria, predominantly in L. monocytogenes. However, we
were unable to identify corresponding homologs in WSLC
30167, with the exception of a putative BREX system up-
stream of LivCRISPR-1. However, this system is incom-
plete, and its genetic deletion did not alter phage sensitiv-
itiy (Supplement Figure S8, Supplementary Table S6). Col-
lectively, this data suggests that other, yet undefined intra-
cellular defense mechanisms await identification in this or-
ganism. It remains unclear to which extent the genus Lis-
teria generally relies on CRISPR–Cas to counteract phage
predation. In laboratory experiments performed under op-
timal growth conditions, Listeria BIMs isolated from high-
multiplicity infection experiments most often acquire resis-
tance by modifying cell-surface receptors. In Listeria, most
phages bind to WTAs that provide serovar-specific glyco-
sylation patterns (50,51). As a result of virus predation,
phage-resistant WTA glycosylation mutants are rapidly se-
lected (49). However, such alterations in cell wall structure
seem to be associated with reduced environmental fitness
and bacterial virulence (49–51,66). Thus, it is reasonable
to assume that intracellular defense mechanisms, including
CRISPR-Cas, may represent an attractive and more impor-
tant defense strategy outside laboratory settings. The recent
identification of anti-CRISPR proteins encoded by Listeria
prophages (67–70) further supports this assumption.
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Figure 6. Lysostaphin-encoding Listeria phages mediate complete lysis of Listeria / Staphylococcus co-cultures. (A) Schematic representation of the re-
combination and counter-selection strategy for the construction of lysostaphin-his6 gene insertions into A511 genomes. The protospacer and PAM regions
in the wild type A511 genome that were targeted by LivCRISPR-1 are shown in red. Editing plasmids for the integration of lysostaphin downstream
of the A511 major capsid gene cps or the A511 endolysin gene ply511 are shown. Homologous recombination is indicated with dashed lines. Blue bars
represent silent mutation in PAMs that allow recombinant phages to escape CRISPR interference. Co-cultures of L. monocytogenes WSLC 3009 and S.
aureus ATCC19685 were infected with (B) A511::lst1 (C) A511::lst2 or (D) A511 wt using a non-infected culture as control (E). Growth of co-cultures was
quantified by measuring the optical density over time (left panels) for 320 minutes and the composition of these bacterial mixtures was quantified using
Listeria- and Staphylococcus-selective media (right panels). Dashed red lines indicate the detection limit of selective plating. (F) The composition of the
infected co-cultures were visualized at time of infection (t0) and 300 min post infection (t300) using species-specific cell wall affinity proteins (GFP-CBD500
for Listeria and dsRed-CBD2638A for Staphylococcus). Data are presented as mean ± SD from three biologically independent experiments (turbidity
reduction) or from a technical triplicate (selective plating). Scale bar is 4 �m.
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Based on LivCRISPR-1, we developed a simple, pro-
grammable, vector-based interference system that efficiently
targets and cleaves genomic DNA of Listeria strains and
Listeria phages, and is active over a broad range of tem-
peratures (Supplementary Figure S9). We also show that
LivCRISPR-1 from L. ivanovii is active as a heterologous
interference system in L. monocytogenes (Figure 3). Fur-
thermore, we developed a two-step protocol for genome
editing of non-integrating Listeria phages that combines
homology-based allelic exchange with LivCRISPR-1 me-
diated counter-selection. To enable negative selection, the
recombination template contains silent point mutations in
the protospacer or PAM region that allow the recombinant
phage to escape CRISPR interference. Sequence analysis of
naturally occurring CEMs (Figure 4) enabled identification
of the protospacer and PAM positions that are important
for interference. In order for CRISPR counter-selection to
work, recombination frequencies need to be higher than the
frequency of naturally occurring CEMs. We provide a quan-
titative analysis for phage A511 and demonstrate that ho-
mology arms as short as 50–150 bps in length are sufficient
to enrich recombinant phages above the background level
of naturally occurring CEMs (Figure 5C).

Other than homology-directed allelic replacement, re-
cently developed synthetic approaches also allow for rapid
modification of phage genomes (71,72). To engineer phages
that infect Gram-positive bacteria, virus genomes can be
assembled in-vitro from synthetic DNA and subsequently
rebooted in replicating, cell wall-deficient Listeria L-forms
(72). However, in-vitro assembly of phage genomes larger
than 100 kb is experimentally challenging, effectively ex-
cluding some biotechnologically relevant phage families
such as the large Myoviruses, the Spounavirinae (73). This
family also includes the broad host-range Listeria phages
A511 and P100 (74). By using the CRISPR-based engineer-
ing protocol presented in this study, these highly relevant
phages are now also amenable to marker-free genetic ma-
nipulation.

We applied LivCRISPR-1 to introduce additional ‘pay-
load’ genes into Listeria phage A511. Delivery of heterol-
ogous proteins has previously been achieved in E. coli and
S. aureus, using phagemids or phages (72,75–77). These ap-
plications aimed at increasing the ability of recombinant
phages to kill their host strains, at re-sensitizing host bac-
teria to antibiotics, at creating non-replicative, antimicro-
bial phage particles, at targeting phage-resistant cells, or
at removing antibiotic resistant bacteria (78,79). In this
study, we engineered phages to deliver genes that do not
directly affect the host, but instead utilize the phage as a
vector and the host bacterium as a production compart-
ment that releases a phage-encoded, heterologous effec-
tor protein upon host lysis. The effector subsequently acts
on non-related bacteria that occupy the same niche, e.g. a
biofilm, the gut, skin, mouth, or any other complex multi-
species consortium. As proof-of-concept for this approach,
we constructed Listeria phage A511 derivatives that carry
a Staphylococcus cell wall-hydrolase as genetic payload and
demonstrate the ability of these Listeria phages to kill S.
aureus cells by collateral damage. Similar approaches could
be applied to reshape more complex consortia such as mis-
balanced gut microbiomes that are associated with disease

(80,81). Overall, our study offers an effective and simple
method for scarless genetic editing of large virulent Listeria
phage genomes, which have previously been very difficult to
engineer, also by synthetic methods.

The LivCRISPR-1 system will also be useful for RNA-
guided editing of bacterial genomes. CRISPR-mediated
editing of bacterial DNA has previously been achieved
with Cas9 variants from S. pyogenes that are functional
across genus barriers (e.g. in Staphylococcus), and even
allow targeting in Gram-negative bacteria (82,83). Since
LivCRISPR-1 Cas9 shows homology to Cas9 proteins from
Staphylococcus and others (see Supplementary Figure S3),
it will likely be transferrable to and active in other genera as
well. Small and efficient Cas9 nucleases are highly desirable
but still scarce (84). Thus, LivCRISPR-1 Cas9 may repre-
sent a particularly useful extension of the existing toolbox.
It is one of the smallest active cas9 genes known to date (3.2
kb) and requires a novel PAM sequence (NNACAC). Be-
cause the LivCRISPR-1 PAM occurs frequently (4.67 and
6.57 PAM motifs/kb in the WSLC30167 and phage A511
genomes, respectively), it is reasonable to assume that tar-
geting of all ORFs within a typical Firmicutes or bacte-
riophage genome is feasible. CRISPR–Cas type II systems
have been adapted and widely used for genome editing in
eukaryotes (5,7,82,85) and it will be important to assess
LivCRISPR-1 activity in eukaryotic systems in the future.
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