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Introduction
White matter lesions (WMLs) are the hallmark of 
multiple sclerosis (MS) and the formation of new 
lesions underlies clinical relapses, however, in the 
long-term disability appears to be more closely linked 
with brain and spinal cord atrophy than WML accrual. 
It has become apparent that after their first formation 
some WMLs exhibit chronic activity and that the 
presence of chronic lesion activity is associated with 
clinical progression. Given this, they could represent 
a feature of MS lesions that could be worthwhile 
assessing using magnetic resonance imaging (MRI) in 
clinical trials and practice.

Histopathologically, the main features of WMLs are 
demyelination, axonal transection (in the acute phase) 
and degeneration (chronically), with accompanying 
gliosis. Recognising that lesions go through phases 
and run different course in the longer term, there have 
been several classification systems over the years, 
based on the presence of myelin degradation products 
and the distribution of inflammatory cells (mac-
rophages/microglia, B-cells and T-cells).1–4 Four main 
MS lesion subtypes have been identified: early active; 

chronic active (also referred to as mixed active/inac-
tive, slowly expanding or ‘smouldering’); inactive; 
and remyelinated (sometimes referred to as ‘shadow’) 
lesions. Early in the life of a new MS lesion, as found 
on autopsy in acute MS,5 the blood brain barrier 
(BBB) is breached, and extensive inflammatory activ-
ity and early myelin degradation products within 
macrophages are seen.1–4 Subsequently, some lesions 
remyelinate,6 other becomes inactive and some 
remain demyelinated.7

Chronic active lesions are a subset of MS lesions with 
inactive demyelinated centres, which additionally 
maintain or develop continuous myelin breakdown at 
the edge, with expansion towards the surrounding 
white matter (Figure 1). They represent one of the 
most common lesion types seen in histopathological 
studies of people with primary progressive (PP) and 
secondary progressive (SP) MS and may constitute up 
to ~30% of the total WML burden.8,9 A higher propor-
tion of chronic active lesions has been associated with 
higher overall lesion load and a shorter time to reach 
disability milestones.8 The accumulation of chronic 
active lesions with persistent inflammation provides a 
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plausible missing link between WMLs and longer 
term neurodegeneration.

MRI is the principal method used to support a diagno-
sis of MS and to assess treatment efficacy in early 
phase MS clinical trials. It is highly sensitive in 
detecting WMLs on conventional T2-weighted (T2), 
proton density (PD), fluid attenuated inversion recov-
ery (FLAIR) and T1-weighted (T1) sequences, but 
not specific for histological subtypes/stages.10 New 
T2 lesions correspond with early active lesions and 
early on may show transient contrast enhancement on 
T1 (due to gadolinium leakage, typically lasting 
2–6 weeks).11 Persistent black holes (PBHs), defined 
by T1 hypointensity lasting for at least 6–12 months, 
are associated pathologically with greater reductions 
in myelin and axonal density,10,12 when compared 
with WMLs that are not T1 hypointense.

Despite correlation with relapses,13 the overall WML 
load only partially correlates with disability in long 
term14–16 (r ranging from 0.13 to 0.67), and while var-
iable degrees of remyelination may help to explain 
this,17 neurodegeneration seemingly occurring inde-
pendently of lesions (as depicted on MRI as brain and 
spinal cord atrophy)18,19 appears to be the major driver 
of long-term disability in MS.

Several quantitative MRI techniques have been 
developed that can assess tissue microstructure, such 
as magnetization transfer ratio (MTR) and diffusion-
weighted imaging (DWI), as shown by imaging-
pathological correlations.20–23 PBH,24,25 lesion 
MTR26–28 and DWI-derived measures29 all correlate 
with disability and brain atrophy but the relationship 
of these markers to chronic lesion activity remains 
unknown.

Figure 1. Chronic active lesion pathology-imaging features: Panel (a) shows a cartoon of the iron deposition at the 
edge of a chronic active lesion and panel (b) shows an example of a hypointense rim on a susceptibility-weighted scan 
probably reflecting iron. Panel (c) shows a cartoon of activated microglia/macrophages in the periphery of a chronic 
active lesion and we assume that this inflammatory activity is responsible for low expansion of SEL lesion visible in (d).
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Here, we review developments in the MRI assessment 
of chronic active lesions, focussing on ‘slowly 
expanding lesions’ (SELs) and rim-positive lesions as 
seen on susceptibility MRI and exploring future 
potential applications of dynamic contrast enhance-
ment (DCE) and PET imaging. An effective imaging 
biomarker of chronic lesion activity would offer a 
more comprehensive assessment of ongoing lesion 
activity, potentially allow us to identify people with 
MS at risk of developing progressive MS and provide 
us with tool with which to assess an additional aspect 
of treatment effectiveness.

Methods
We sought to identify all published studies on the 
radiological aspects of chronic active lesions in MS 
adults.

PubMED and EMBASE were separately searched 
using the following terms: ‘chronic active lesion’ or 
‘expanding/smouldering lesion’ combined with ‘mul-
tiple sclerosis’. To this first screening, we added either 
‘imaging’, inclusive of the magnetic resonance imag-
ing and positron emission tomography (PET). All 
studies available in English and published before 1 
April 2020 were included.

From 66 articles initially identified, after excluding 
papers focussing on other neurological conditions 
(e.g. neuromyelitis optica spectrum disorder) or pae-
diatric MS, case reports, animal model or biomolecu-
lar markers studies, we identified 15 studies. A further 
15 studies satisfying our inclusion criteria were iden-
tified by cross-referencing from the 15 studies already 
found.

SELs
Few studies have been published on this topic to date. 
They are based on the premise that ongoing tissue 
injury at lesion edges is associated with lesion expan-
sion and that this can be detected by volumetric 
assessment of WMLs on longitudinal MRI.

Subtraction MRI allows us to more readily assess 
regional tissue changes between scans, when com-
pared with simply visually comparing separate scans 
and so helps us to identify new or enlarging WMLs.30 
However, this method does not allow to accurately 
track chronic lesions as it requires visual assessment 
limited by interobserver variability. Automatic detec-
tion techniques, such as voxel-guided morphometry, 
have proven able to identify chronic enlarging and 
shrinking lesions, finding them to be correlated with 

local brain atrophy,31 reinforcing the view that spe-
cific WML types could make different contributions 
to MS disability progression.

More recent studies have used deformation-based 
techniques to assess tissue deformation (as a Jacobian 
map) at a sub-voxel level and have enabled SELs to 
be defined as WMLs with a constant and concentric 
volume increase.32 Constancy requires that expan-
sion persists over time, as observed by progressive 
volume change over multiple time points. 
Concentricity is determined by a pattern of expan-
sion with a preferential direction towards the external 
boundaries of the lesion. Overall, the sum of the two 
criteria provides a highly specific marker, avoiding 
inclusion of lesions with volume fluctuations. Results 
from pooled trial cohorts33 (n = 2388) indicate that a 
higher proportion of SELs is seen in PPMS compared 
with relapsing-remitting MS (RRMS), in line with 
the pathological findings. Gadolinium enhancement 
was higher in WMLs not classified as SEL (non-
SEL), while SELs had lower T1 intensity at baseline 
with a larger signal decrease at follow-up, suggesting 
presence of myelin and axonal loss.33 In a subsequent 
study in PPMS (n = 732), SELs had the lowest T1 
intensity values and accounted for a higher amount of 
T1 hypointense volume accumulation.34 Moreover, 
SEL volume could predict progression on a compos-
ite disability measure.34

Susceptibility imaging to track chronic active 
lesions: rim-positive lesions
Susceptibility-weighted MRI techniques allow the 
identification of paramagnetic and diamagnetic sub-
stances such as iron-related proteins and myelin. The 
main techniques include simple gradient-echo T2*-
weighted sequences (T2*) and more complex tech-
niques incorporating phase and magnitude information 
such as susceptibility-weighted imaging (SWI) and 
quantitative susceptibility mapping (QSM).

Lesions surrounded by a rim of hypointense signal, 
also referred to as ring-like or rim-positive lesions, 
were first described on visual inspection of T2* and 
SWI.35,36 A dark rim, seen in a subgroup of WMLs, 
corresponds to a peripheral phase shift at 7 T,36,37 and 
this has been translated to 3 T MRI.38 Several histo-
pathological-imaging studies have confirmed an 
association between rim-positivity and chronic active 
lesions.37,39,40

Cross-sectional susceptibility MRI studies in MS 
have reported that between 10% and 20% of lesions 
are rim-positive.36,41 Longitudinal studies describe at 
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least one rim-positive lesion in the majority of 
patients, in both relapsing and progressive MS.42,43 
Rim-positivity is associated to higher overall mean 
WML volume and progressive accumulation of 
T1-hypointensity.44 A recent study on T2* and phase 
MRI stratified MS patients according to number of 
rim-positive lesions45 and found that having ⩾4 rim-
positive lesions was associated with reaching motor 
and cognitive disability milestones at a younger age 
and more rapid brain atrophy. At an individual lesion 
level, rim-positive lesions are also more likely to 
grow compared with lesions that do not have a rim.46

R2* (transverse relaxivity – inverse of T2*) is a sus-
ceptibility-based quantitative measure that correlates 
with both myelin density and tissue iron contents.47 
Increased R2* co-localises with rim-positivity and has 
been linked with peripheral iron deposition in chronic 
active lesions.37 An alternative quantitative approach 
is QSM, a post-processing technique removing phase 
artefacts, which can be computed from all susceptibil-
ity-based sequences. The advantage of QSM is that the 
phase information distinguishes myelin from iron: 
studies of chronic active lesions have found a positive 
QSM value with iron deposition and a QSM close to 
zero associated with a reduction in myelin content.48 
WMLs can be staged according to QSM features: 
phase values are similar to normal appearing white 
matter (NAWM) in new active lesions, progressively 
increase in the early chronic stage and finally return to 
normal values in the late chronic stage.49

DCE
DCE studies, utilising repeated post-contrast 
T1-weighted serial images rapidly acquired during 
and after gadolinium injection, have shown that early 
lesions demonstrate a centrifugal-DCE (nodular) pat-
tern around a central vein, consistent with initial 
opening of BBB. Conversely, older and larger lesions 
are marked by a centripetal-DCE (shell) pattern, 
reflecting capillary recruitment at the lesion edge and 
outward expansion.50,51

By combining DCE and susceptibility-imaging studies, 
chronic non-enhancing MS lesions have been found to 
be more often associated with susceptibility rims.40 
However, ‘transient’ rims have been detected in the ini-
tial stages of lesion formation, reflecting first infiltra-
tion of macrophages/microglia carrying paramagnetic 
substances.43 Both centrifugal and centripetal-enhanc-
ing patterns are associated with rim-positivity and its 
persistence.45,44 Persistence of rim (seen in up to 20% 
of the lesions)44 might represent a further marker of 
chronic active lesion inflammation.

In quantitative susceptibility analyses, nodular-
enhancing lesions have QSM values close to zero, 
while shell-enhancing and chronic lesions show 
increasing QSM values related to lesion age.52 Early- 
and intermediate-age lesions are associated with 
lower R2* values when compared with chronic 
lesions, and shell-enhancing type has the largest R2* 
relative decrease. Since concurrent R2* changes and 
DCE abnormalities are not associated with QSM 
alterations, they probably reflect demyelination, 
while in chronic lesions both measures become abnor-
mal, indicative of iron accumulation.

PET
Using radiolabelled ligands binding specific targets, 
PET imaging can detect chronic MS lesions with 
ongoing inflammatory activity. First and second-gen-
eration PET radioligands are able to bind to the trans-
locator protein (TSPO) expressed by microglia/
macrophages, 18 kDa TSPO and lesser to astrocytes 
in diverse neurological conditions.53 In MS, histo-
pathological studies have shown that TSPO uptake is 
a marker for chronic active lesions and have demon-
strated an association with rim-positivity on suscepti-
bility MRI.54

A recent study combining MRI and PET scans showed 
that rim-positive lesions on QSM showed a higher 
TSPO uptake as compared to rimless lesions.54 QSM 
rim-positivity and PET uptake co-localised to high 
pro-inflammatory activity and iron deposition within 
chronic active lesions.

Discussion
There are now several MRI techniques that can be 
used to identify chronically active lesions in MS. 
Some assess dynamic features, such as lesion expan-
sion, and other characteristics of lesions that are or 
have been active, for example, susceptibility rims.

SEL detection represents a promising marker for 
chronic active lesions, as it can be undertaken using 
routinely acquired MRI scans. However, the SEL 
detection relies on a heuristically determined lesion 
expansion threshold rate, based on Jacobian values, 
and there may still be scope for this to be optimised. 
The second parameter to select SEL, concentricity, 
relies on the hypothesis of homogeneous peripheral 
expansion. However, in pathological descriptions, 
portions of the lesion border might expand without 
involving the whole perimeter.55 In addition, the use 
of various scanner resolutions might affect SEL detec-
tion and the number of scanning time points is also 
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relevant. Despite the limitations of this technique, the 
correlation with disability progression suggests that 
chronic brain inflammation may largely be driven by 
the accumulation of SELs.

Over longer periods of time (5–10 years), it is possible 
that lesions could follow different trajectories, rather 
than all passing through the same stages in a mono-
tonic manner. This may depend on inflammatory and 
atrophic pathological components, which could be 
reflected in lesion morphology features such as their 
shape or size. Volumetric MRI analysis can not only 
detect lesions expansion but also detect shrinkage, and 
recent studies have reported an overall tendency for 
chronic lesions to shrink,56 suggestive of chronic 
lesion degeneration, and the presence of shrinking 
lesions in early MS,57 consistent with the resolution of 
inflammation and associated tissue oedema. More 
recently, WML atrophy has been observed particularly 
in periventricular brain regions58 and has been found 
to correlate with confirmed disability progression59,60 
and higher risk of conversion to SPMS.61

Susceptibility-imaging MRI studies combined with 
post-mortem analysis indicated a linkage between 
rim-positivity and presence of iron-enriched cells44–46 
(mainly ferritin within oligodendrocytes and mac-
rophages/microglia). The percentages of rim-positive 
lesions identified in those studies (~10%–20%) are 
slightly lower than those for chronic active lesions in 
pathological studies (~30%). Susceptibility changes 
are also observed in NAWM, suggesting that variabil-
ity of iron deposition and myelin density is not exclu-
sively a feature of focal WMLs.39 Higher numbers of 
rim-positive lesions are associated to clinical relapses 
in RRMS,62 and their association with clinical disabil-
ity suggests that rim-positive lesions might also repre-
sent a risk factor for MS patients developing clinically 
progressive disease.45 Interestingly, rim-positivity 
was found more often in expanding lesions, which 
might link the two MRI modalities (Figure 1), both 
detecting two different features of chronic inflamma-
tory activity.46

While T2* imaging has proven sensitive in the quali-
tative detection of rim-positive lesions, other meas-
ures can provide valuable additional information. R2* 
is affected by both myelin (diamagnetic) and iron 
(paramagnetic) concentrations, and in isolation, this 
make it difficult to discern the evolution these fea-
tures in chronic active lesions, however, combining 
this with QSM provides additional value, since 
reduced myelin and iron accumulation induce oppo-
site effects on phase-shifts, and it is also substantially 
affected by relatively small amounts of iron.63

DCE studies have shown that initial demyelination in 
active lesions proceeds from a central vein, visualised 
as nodular-enhancing pattern40 and that this is fol-
lowed by opening of the peripheral capillaries corre-
sponding to shell-enhancing pattern, characterised by 
low R2* (consistent with reduced myelin content) and 
increased lesion dimensions in intermediate stages.

Persistence of rims, confirmed by QSM findings, 
might be linked to accumulation of paramagnetic sub-
stances, such as iron, eventually leading to prolonged 
pro-inflammatory environment and failure of tissue 
protection.62 Active inflammatory cells at chronic 
active lesions border have been detected using PET 
imaging and the effects of this persisting inflamma-
tory activity are reflected by volumetric MRI expan-
sion, visualised as SELs. The end-stage phase of 
WMLs might involve a plateau of expansion, with the 
accumulation of atrophic components, favouring tis-
sue collapse and ultimately volume shrinkage.

In conclusion, multiple different imaging approaches 
confirm the presence of chronic active lesions in MS, 
and together they highlight that a substantial propor-
tion of lesions show features of chronic activity (lesion 
volumes changes, the presence of susceptibility rims 
or both). Correlations between volumetric and suscep-
tibility features, supported by findings from DCE and 
PET studies, suggest that robust MRI markers for 
chronic active lesion are becoming available. These 
may provide a novel, and clinically relevant, perspec-
tive on treatment response and so deserve being con-
sidered for use in future clinical trials.
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