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The contributions of entorhinal cortex and
hippocampus to error driven learning
Shih-pi Ku 1,2✉, Eric L. Hargreaves3, Sylvia Wirth 4 & Wendy A. Suzuki 1✉

Computational models proposed that the medial temporal lobe (MTL) contributes impor-

tantly to error-driven learning, though little direct in-vivo evidence for this hypothesis exists.

To test this, we recorded in the entorhinal cortex (EC) and hippocampus (HPC) as macaques

performed an associative learning task using an error-driven learning strategy, defined as

better performance after error relative to correct trials. Error-detection signals were more

prominent in the EC relative to HPC. Early in learning hippocampal but not EC neurons

signaled error-driven learning by increasing their population stimulus-selectivity following

error trials. This same pattern was not seen in another task where error-driven learning was

not used. After learning, different populations of cells in both the EC and HPC signaled long-

term memory of newly learned associations with enhanced stimulus-selective responses.

These results suggest prominent but differential contributions of EC and HPC to learning

from errors and a particularly important role of the EC in error-detection.

https://doi.org/10.1038/s42003-021-02096-z OPEN

1 Center for Neural Science, New York University, New York, NY, USA. 2 Leibniz Institute for Neurobiology, Magdeburg, Germany. 3 Division of Neurosurgery,
Rutgers University -- Robert Wood Johnson Medical School, New Brunswick, NJ, USA. 4 Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron
Cedex, France. ✉email: shihpi@gmail.com; ws21@nyu.edu

COMMUNICATIONS BIOLOGY |           (2021) 4:618 | https://doi.org/10.1038/s42003-021-02096-z | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02096-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02096-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02096-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02096-z&domain=pdf
http://orcid.org/0000-0001-7397-4752
http://orcid.org/0000-0001-7397-4752
http://orcid.org/0000-0001-7397-4752
http://orcid.org/0000-0001-7397-4752
http://orcid.org/0000-0001-7397-4752
http://orcid.org/0000-0001-7002-329X
http://orcid.org/0000-0001-7002-329X
http://orcid.org/0000-0001-7002-329X
http://orcid.org/0000-0001-7002-329X
http://orcid.org/0000-0001-7002-329X
http://orcid.org/0000-0003-2205-7377
http://orcid.org/0000-0003-2205-7377
http://orcid.org/0000-0003-2205-7377
http://orcid.org/0000-0003-2205-7377
http://orcid.org/0000-0003-2205-7377
mailto:shihpi@gmail.com
mailto:ws21@nyu.edu
www.nature.com/commsbio
www.nature.com/commsbio


A large body of behavioral work supports the idea that
feedback from errors is an important teaching signal to
help supervise learning, adjust behavior and achieve

learning goals1–4. Generally, errors are defined as the difference
between the received and expected outcome after the execution of
a particular behavior. Seminal work by Rabbitt and colleagues in
the mid-1960s5–8 first raised the importance of a system that
detected errors to adjust performance. Evidence for neural signals
that processed errors first appeared in the early 1990s with the
observation of negative electrical potential that occurred in the
medial frontal region of the brain, about 50 to 100ms after
making an error, termed error-related negativity9,10. Combining
error-related negativity measurement and functional magnetic
resonance imaging (fMRI), a prominent error-detection network
has been described in humans11,12. Areas including anterior
cingulate cortex (ACC), anterior insular (operculum), ventral
lateral prefrontal cortex, dorsal lateral prefrontal cortex and
parietal lobe have been reported to contain signals sensitive to
errors, with the ACC most consistently found to be involved in
error detection. Using behavioral neurophysiology, various
groups have also identified prominent error-detection signals in
the ACC of non-human primates10,11,13–20, consistent with
human literature.

Recent work suggests that this error-detection network may
extend to structures within the medial temporal lobe (MTL).
Parallel findings in humans, monkeys, and rats suggest that
structures of MTL not only participate in encoding both error
and correct signals (termed outcome-selective cells) but that a
subset of these outcome-selective cells also signal learning as well.
Using an object-place associative learning task (OPT), Wirth
et al.21 reported that half of the neurons recorded in the monkey
hippocampus differentiated between correct and error trials
during the inter-trial interval period of the task. While about half
of the outcome-selective hippocampal neurons responded pre-
ferentially to erroneous outcome (error-up cells) the other half
responded preferentially to correct outcome (correct-up cells).
Further analysis showed that while the correct-up cells also
increased their stimulus-selective response after learning, the
error-up cells did not, suggesting that the correct-up but not the
error-up cells also participate in the learning process. Another
study reported prominent trial outcome signals in both the
entorhinal cortex (EC) and hippocampus (HPC) in monkeys and
humans performing the same associative learning task using local
field potentials and blood-oxygen-level-dependent (BOLD) fMRI
approaches22, respectively. In that study, however, the relation-
ship between outcome signals and learning was not examined.
Similarly in rodents, Ahn and Lee23 reported error-related
activity in another medial temporal area, the perirhinal cortex,
during the performance of an object-target association task. In
contrast to the Wirth et al.21 finding, this group showed that
error-up outcome cells carried more information about the
learned associations immediately after error trials than after
correct trials.

Work by Lorincz and Buzsaki24 and Ketz et al.25 suggest a
computational framework with which to understand these reports
of error detection and learning signals throughout the MTL.
Their models outline an anatomically specific three-step process
underlying error-driven learning. It starts with error detection in
the EC. The EC error signals then induce synaptic modification in
areas CA3 and CA1 of HPC to correct for the errors as the second
step. Third, that modified hippocampal synaptic output is pro-
posed to entrain long-term memory traces in the EC. The idea
that a memory trace is first rapidly formed in HPC then trans-
ferred to EC is consistent with system consolidation theory26–30.
The goal of the present study is to examine the role of the EC and
HPC in error-driven learning and the early consolidation process

and to test the predictions of the models of Lorincz, Buszaki24,
and Ketz25. We examined the behavioral and neurophysiological
responses in these areas as monkeys performed an associative
learning task in which they used an error-driven learning strategy
(i.e., they performed significantly better after an error trial relative
to after a correct trial). We report that during the task in which
the animals used an error-driven learning strategy, we observed
both error-detection signals as well as associative learning signals
in both HPC and EC that are consistent with some, but not all of
the predictions from Lorincz, Buszaki, and Ketz24,25. By contrast,
when we examined neural activity in HPC from a different
associative learning task where animals used a correct-based
learning strategy (i.e., animals perform significantly better after a
correct trial than after an error trial), we did not find the same
prominent error-based learning signal.

Results
An error-driven learning strategy was used in the location-
scene task. To test whether and how MTL was involved in error-
driven learning, we recorded HPC and EC in three and two
monkeys, respectively while they performed a conditional motor
associative learning task (location-scene associative learning task,
or LST; Fig. 1a). In this task, each day, monkeys learned to
associate a visual cue to a particular rewarded target location
through trial-and-error (Fig. 1b). Across 373 sessions, the five
monkeys saw 1556 new scenes, of which they learned 1015. They
learned in average 3.1 (SD= 0.11) location-scene associations
per session and needed on average 10.6 (SD= 0.55) trials to learn
each new association to criteria.

To determine whether animals used an error-driven learning
strategy to perform the LST, we asked whether the monkeys
performed better on the trials immediately following errors
compared to the trials immediately following correct responses
(Fig. 1c), excluding all trials the animals aborted or did not make
a target selection31. Because there were almost always fewer error
trials than correct trials in one session (99% of cases), and most of
the errors occurred during the early acquisition stage of learning,
we used the same number of correct trials as error trials from the
beginning of the session to calculate the mean behavioral
performance immediately after either correct or error trials. We
termed this period of learning the “memory acquisition stage”
(see below). We included 282 behavioral data sets from five
monkeys where they learned at least one location-scene
association and made at least 20 error trials in one session.
Across all sessions, the averaged performance immediately after
error trials was 74.46% (SD= 12.26%), which was significantly
better (paired t-test, t(281) = 4.62, p < 0.001, d= 0.39) than the
performance seen after correct trials (M= 69.76%, SD= 11.77%,
Fig. 1c, individual data points are shown in Supplementary
Fig. 7a), suggesting that monkeys used an error-driven learning
strategy to perform this task.

Error-detection signals in EC and HPC. Since the animals used
an error-driven learning strategy to perform LST, we asked
whether we could see evidence for an error-detection signal in the
neurophysiological responses of EC or hippocampal neurons in
the same 5 monkeys used in the behavioral analysis. We pre-
viously showed that many hippocampal cells signaled trial out-
come during the inter-trial interval of an object-place associative
learning task21 by either increasing their firing rate on correct
trials relative to error trials (correct-up cells) or by increasing
their firing on error trials relative to correct trials (error-up cells).
To examine the correct-up and error-up signals in the HPC and
EC during the performance of the LST, we analyzed 135 hippo-
campal neurons and 143 entorhinal neurons (recording sites see
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Supplementary Fig. 1). Similar to a previous publication21, we
defined outcome-selective cells based on their mean firing rate
during the first and second 1000 ms of the inter-trial interval
(ITI) separately. We determined whether the neurons responded
significantly more to correct or error outcome during either of

these periods by performing a paired t-test. To correct for mul-
tiple comparisons, the significance threshold was set to p < 0.025.
In EC, we found 46.85% (67/143) of the recorded cells were
outcome-selective (i.e., neurons responded significantly differ-
ently to correct versus error outcome during the ITI). Of these,
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Fig. 1 Location-scene task (LST), performance, and outcome-selective signals. a Schematic illustration of the LST. b Estimated performance of one example
LST session. The red dots at the top of the graph indicate error trials and the blue dots indicate correct trials. The teal dashed lines indicated the 95% confidence
intervals of the estimate. Prob.: probability c Averaged performance immediately after error trials is significantly better than after correct trials during LST
(averaging across 282 sessions, 5 monkeys. Central red marks indicate the median, and the bottom and top edges of the boxes indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the “+”

symbol. Notches of the boxes indicate the 95% confidence intervals of the estimated median. Individual data points are shown in Supplementary Fig. 7a and
data points are listed in Supplementary Data 1). d Time courses of one representative error-up cell in EC. The time courses are averaged across either error trials
(red) or correct trials (blue). e Averaged and normalized time courses of population EC error-up cells. f Time courses of one representative correct-up cell in EC.
g Averaged and normalized time courses of population EC correct-up cells. h Time courses of one representative error-up cell in HPC. i Averaged and
normalized time courses of population HPC error-up cells. j Time courses of one representative correct-up cell in HPC. k Averaged and normalized time courses
of population HPC correct-up cells. ****p < 0.0001. The light-blue and light-red lines indicate the SD of averaged time courses.
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67.16% (45/67 cells) signaled errors by responding to error out-
comes with a significantly higher firing rate than correct out-
comes, while the remaining 32.84% (22/67 cells) responded
significantly higher to correct outcomes relative to error out-
comes. By contrast, in the HPC, only 21.48% (29/135) of the
hippocampal cells were outcome-selective with 72.41% (21/29
cells) signaling errors and the remaining 27.59% (8/29 cells)
signaling correct trials. In both EC and HPC, the proportion of
error-up cells was significantly higher than correct-up cells (chi-
square test of two proportion difference, X2(1) = 10.31, p=
0.0013 for EC, and X2(1) = 6.53, p= 0.01 for HPC).

The representative time courses of one example error-up and
one example correct-up cell in EC and HPC are shown in Fig. 1d,
f, h, j, respectively. The averaged time courses of all error or all
correct detecting cells in the EC or HPC are shown in Fig. 1e, g, i,
k, respectively. To quantify the strength of error-up and correct-
up cells to differentiate correct and error outcome, we used
receiver–operating characteristic (ROC) analysis to estimate the
information carried by each population in both the EC and HPC.

The averaged time courses and area under the ROC curve (AU-
ROC) of all error-up (Supplementary Fig. 2a) and correct-up cells
(Supplementary Fig. 2b) in EC showed that the outcome-selective
signals in both groups were sustained, not transient signals. The
differential response of the error-up cells was even maintained
throughout the entire two second ITI included in the analysis. By
contrast, the separation in hippocampal subtypes was relatively
weak. The AU-ROC of error-up cells in HPC was significantly
higher than 0.5 (Supplementary Fig. 2c, t(22) = 2.26, p= 0.003),
however, it was significantly smaller than in EC (t(63) = 6.46, p <
0.0001, d= 1.89). The AU-ROC of correct-up cells in HPC was
barely greater than 0.5 (Supplementary Fig. 2d, t(7) = 1.05, p=
0.33). The results show that outcome-selective signals (including
error-detection signals) exist in both EC and HPC with a stronger
overall representation in EC.

Error-driven learning signals in EC and HPC. Given the
striking error-driven learning seen at the behavioral level, we next
searched explicitly for error-driven learning signals in the neural
activity of entorhinal and hippocampal cells. Given that behavior
improves significantly more after error but not after correct trials
during the memory acquisition stage (as defined previously,
details in “Methods” section), we hypothesized that early in the
learning process, cells in the EC or HPC might reflect this
behavioral improvement with higher stimulus-selective visual
responses during the scene or delay periods of the task imme-
diately after error trials relative to correct trials. We analyzed a
total of 114 entorhinal neurons from two monkeys and 168
hippocampal neurons from three monkeys recorded during the
same 282 sessions used for the behavioral analysis (see “Methods”
section for rational for the cell counts used). We found that
during the memory acquisition stage (see definition above),
hippocampal neurons showed significantly higher visual selec-
tivity following error trials relative to correct trials during the
scene period (paired t-test, t(166) = 2.405, p= 0.0173, Fig. 2a)
but not in the delay period of the task (paired t-test, t(166) =
0.918, p= 0.36, Fig. 2b). In EC, the selectivity was not different
following error trials relative to correct trials during either scene
or delay periods (paired t-test, t(126) = 0.969, p= 0.334 for scene
and t(125) = 1.96, p= 0.052 for delay, Fig. 2c, d). These results
are consistent with predictions from computational models24 that
the error signals induce early plasticity in HPC.

To test the sensitivity of our selectivity analysis, we used a
permutation test in which we permutated the labels 1000 times
during the scene period of the task. Of the 168 hippocampal
neurons, the SI of 102 out of 168 cells surpassed the 95% quantile
threshold. Analyzing only these 102 neurons, the difference in the
SI between post-error trials and the post-correct trials was clear (t
(101) = 2.79, p= 0.0062, Supplementary Fig. 3a). Performing the
same selection procedure to the delay period for hippocampal
neurons, to EC neurons during either the scene or delay period
yielded a differential SI that did not differ from zero
(Supplementary Fig. 3b–d).

To test whether the shift of selectivity after error trials in the
hippocampus was due to one single subject, we separately plotted
the post-error vs. post-correct SI of individual subjects (Supple-
mentary Fig. 4). We also performed the chi-square test of
independence to see whether the variances of SI within subjects
were consistent across subjects. The results were X2(166) = 45.2,
p < 0.001 for post-correct SI and X2(166) = 45.1, p < 0.001 for
post-error SI, indicating no-dependency of SI on different
subjects and suggested that the increased SI after error compared
to correct trials was consistent across subjects.

To test the specificity of this early hippocampal error-driven
learning signal during the LST, we examined the behavior and

Fig. 2 Illustration of selectivity index (SI) immediately after error trials
versus after correct trials. a, b The SI during scene and delay period in
HPC. c, d The SI during scene and delay period in EC. The distribution of
differential selectivity index (after correct—after error) is also plotted below
each scatter plot. During the scene period in HPC the SI after error trials is
significantly higher than after correct trials (t(166) = 2.405, p = 0.0173,
paired t-test). All data points are shown in Supplementary Data 1.
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neurophysiological responses in the HPC as two monkeys
performed another associative learning task, the object-place task
(OPT; Fig. 3a, b; one example learning curve in Fig. 3c, EC
recordings were not done). This task has been described in detail
before21. Briefly, monkeys learned to associate an object-place
combination to one of two possible bar-release responses (early
vs. late) to obtain rewards. Among the 133 sessions, the OPT was
significantly more difficult than the LST task with animals
learning significantly fewer object-place combinations per OPT
session (M= 1.99, SD= 0.1) relative to the LST (M= 3.1, SD=
0.11, t(299) = 90.48, p < 0.00001, d= 10.56). Also consistent with
this idea, animals took significantly more trials on average to
learn each new associations in the OPT (M= 16.08, SD= 1.34
trials) than for the LST (M= 10.57, SD= 0.55 trials, t(299) =
48.41, p < 0.00001, d= 5.38).

We analyzed 86 behavioral data sets from two monkeys in
which they made at least 20 error trials within each session and
learned at least one object-place association (same criteria as for
LST). Using the same trial sorting strategy as we used for the LST,
we calculated the mean performance of trials immediately after
error trials and after the same number of correct trials from the
beginning of the learning session during the memory acquisition
stage. The averaged performance immediately after correct trials
across all sessions was 70% (SD= 1.7%), which was significantly
better than that after error trials (M= 61%, SD= 1%, t(170) =
42.32, p < 0.00001, d= 6.45, Fig. 3d. Individual data points are

shown in Supplementary Fig. 7b). These findings suggested that,
unlike the LST, these animals used a correct-trial-based strategy
to learn the OPT. When we examined the selectivity of
hippocampal cells after both correct and error trials, we found
no increase in stimulus-selectivity after either correct or error
trials (differential selectivity M= 0.02, SD= 0.18, Z(170) = 0.53,
p= 0.599, paired t-test for scene andM= 0.01, SD= 0.15, Z(170)
= 0.43, p= 0.667 for delay period; Fig. 3e, f). This suggests that
the hippocampal shift in selectivity seen in the LST was specific to
a task where an error-driven, but not a correct-driven learning
strategy was used. Note EC cells were not recorded during the
OPT task.

Long-term associative learning signals in EC and HPC. The
third prediction of Lorincz and Buzsaki’s24 error-driven learning
model indicates that the new learning signal generated by the
HPC induced by entorhinal error inputs will train long-term
memory traces in the EC. To test this hypothesis, we asked
whether there were long-term memory signals seen in either the
EC or HPC after learning occurred towards the end of the
sessions21. We previously reported that during the performance
of the OPT (in which animals used a correct-trial based learning
strategy), correct-up cells signaled long-term memory for the
learned object-place combinations by increasing their stimulus-
selective visual response after learning relative to before learning,

Fig. 3 Object-place task (OPT), performance, and selectivity index (SI). a Schematic illustration of the OPT. b Illustration of the object-place response
contingencies used each day. c Estimated performance of one example OPT session. The red dots at the top of the graph indicate error trials and the blue
dots indicate correct trials. The dashed lines indicate the 95% confidence intervals. d The averaged performance immediately after correct trials (0.7 ±
0.017) is significantly better than after error trials (0.61 ± 0.01) for the OPT (***p < 0.001, t-test. The labels of the boxplots are the same as in Fig. 1c.
Individual data points are shown in Supplementary Fig. 7b). The SI immediately after error trials is not significantly different from after correct trials during
either the scene (e) or delay (f) period of the task. All data points are shown in Supplementary Data 1.
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presumably signaling a more precise memory signal for the
learned associations21. Based on these findings, we examined
correct-up, error-up and non-outcome-selective cell populations
in the EC and HPC during the LST for similar long-term memory
signals. In HPC, neither the error-up, correct-up nor the non-
outcome-selective cells changed their selectivity index with
learning (p > 0.05, paired t-test, exact statistics see Supplementary

Table 1, Fig. 4f–j, Supplementary Fig. 6c, d). However, in the EC,
we found that during the delay but not the scene period of the
task, error-up cells increased their stimulus-selective response
significantly after learning relative to before learning while the
animals learned at least one scene-location association (33 ses-
sions, t(64) = 2.89, p= 0.0053, d= 0.71, 2-sample t-test for the
delay. Differential selectivity M= 0.1, SD= 0.19, t(32) = 3.02, p

Fig. 4 Error-up cells in EC increased their selectivity index (SI) after learning. The SI during the delay period before versus after learning of the same
error-up (a), correct-up (b), or non-outcome-selective neurons (c) in HPC are plotted against each other. The distribution of differential SI before and after
learning for the error-up and correct-up cells (d) and non-outcome-selective cells (e) in HPC are also plotted to indicate no significant shift in the
differential SI in HPC. The same information for cells in the EC is shown in f–j. In i the differential SI of error-up cells shows a significant right-ward shift.
Arrows indicate the averaged differential selectivity of each population. **p < 0.005. The vertical dashed lines in d, e, i, and f indicate no differential
selectivity. All data points are shown in Supplementary Data 1.
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= 0.0049, paired t-test for delay (Fig. 4b, d). For scene: differential
selectivity M= 0.02, SD= 0.18, t(32) = 0.62, p= 0.534, Supple-
mentary Fig. 6a). To demonstrate the increase of selectivity after
learning was not due to the neural activity of a single subject, we
separately plotted the SI before and after learning of each indi-
vidual subject (Supplementary Fig. 5). By contrast, neither the
entorhinal correct-up cells (differential selectivity M= 0.035, SD
= 0.167, t(18) = 0.92, p= 0.371, paired t-test for delay (Fig. 4a,
d). For scene: differential selectivity M=−0.084, SD= 0.226, t
(18) = 1.62, p= 0.123, Supplementary Fig. 6a) nor the entorhinal
non-outcome-selective cells changed their selectivity indexes
(differential selectivity M=−0.032, SD= 0.207, t(98) = 1.51, p
= 0.1334, paired t-test for delay, Fig. 4c, e and for scene: differ-
ential selectivity M= 0.0024, SD= 0.21, t(98) = 0.11, p= 0.909,
Supplementary Fig. 6b).

We also previously reported that cells in the HPC signaled
long-term memory for learned location-scene associations by

changing their stimulus-selective activity correlated with learning
the LST (changing cells32). Here we show that the same pattern of
changing cells was seen in 17% of the newly recorded
hippocampal cells used for this study (23/135 cells; Fig. 5a, b).
This proportion is not different from the 17.24% of hippocampal
changing cells previously reported in Wirth et al.32 (25 changing
cells from 145 recorded neurons, derived from Table 1 in Wirth
et al., X2(1) = 0.0021, p= 0.96, chi-square test of two proportion
difference). Among the newly recorded hippocampal changing
cells three are correct-up cells and three others are error-up cells.
By contrast, only 8% (15/179, Fig. 5c, d) of entorhinal neurons
were changing cells, which was significantly lower than in HPC
(X2(1) = 5.65, p= 0.017, chi-square test of two proportion
difference). Among the entorhinal changing cells two are correct-
up cells and three are error-up cells. Taken together, these results
suggest that at the later stage of the learning sessions when
performance is significantly above chance levels, neurons in both

Fig. 5 Estimated learning curves and firing rates of example changing cells. The estimated trial-by-trial firing rates (purple lines) superimposed on
estimated learning curves (teal lines) of an example sustained changing cell in HPC was plotted in a, a baseline sustained changing cell in b, an example
sustained changing cell in EC in c, and a baseline sustained changing cell in d. The blue-filled circles on top of each subplot indicate correct trials and the
red asterisks indicate the error trials. The 95% confidence bounds of estimated learning curves were plotted in teal dashed lines. The trial-by-trial firing
rates plotted here were estimated with the same state-space algorithm used to estimate behavioral performance33 to avoid the difficulty of recognizing the
correlation between the firing rates and the behavior performances due to the noisy neural spiking with inherited variability. Performances are shown in
Supplementary Data 1.
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the EC and HPC provide long-term representations of learned
associative information.

Discussion
Here we showed that neurons in the macaque EC and HPC play
prominent but distinct roles in error-driven learning. First, we
showed that in a task that used an error-driven learning strategy,
error-detection signals (error-up cells) were observed in both the
EC as well as HPC. However, we found significantly more error-
detection cells and an overall stronger (i.e., more differential)
error-detection signals in the EC relative to HPC. Second, we
report early error-driven learning-related increases in stimulus-
selective responses in the population of hippocampal cells but not
the EC. This hippocampal shift in selectivity was specific to a task
where animals used an error-driven learning strategy and were
not seen in another associative learning task in which they used a
correct-based learning strategy. Third, we show evidence for
different types of long-term memory signals in the EC (enhanced
selectivity in the error-up cells) and HPC (changing cells) after
learning. We discuss each of these findings with respect to the
time course of behavioral learning (Fig. 6a) and predictions from
the computational models of error-driven learning in the
MTL24,25.

Error detection in EC-HPC and its relation with other brain
areas. Perhaps the most surprising finding reported here is the
prominent error-detection signals in EC (45/143 cells, 30% of
recorded neurons in EC), with a smaller proportion of EC neu-
rons signaling correct outcome (correct-up cells, 22/143 cells,
15%). These prominent EC error-up signals support the first
prediction of computational models of error-driven learning
signals24 and suggest that EC is part of the error-detection net-
work identified in the human and non-human primate
brains11,13,34 with the best-studied error-related activity described
in ACC13,35. In monkeys, the early studies showing error-
detection signals did not use learning tasks but still identified
error-detection signals in ACC. Using a saccade-countermanding
task, a substantial proportion of neurons recorded in ACC
showed selective and sustained activity after the animals made an
erroneous saccade17. During a voluntary movement selection
task, a subset of rostral cingulate motor area cells (part of ACC)
fired spikes persistently over several hundred milliseconds for
decreased reward relative to the previous trials36. Recently a study
recording ACC and lateral habenula in monkeys performing a
reversal-learning task reported about half of the neurons in ACC
encoded trial outcomes, and nearly 80% of lateral habenula
neurons preferred negative relative to positive outcome37. In this
study, the animals needed to use the trial outcome history in
order to know which saccade target was associated with higher
reward probability in the current trial. Similarly, in the present
study, the monkeys needed to estimate which saccade target was
associated with a specific visual stimulus by learning the reward
contingency through a trial-and-error procedure. The error-
detection neurons in lateral habenula in Kawai’s study show
increased responses with no reward trials and the same neurons
decreased their responses with reward trials. In contrast, and
similar to the pattern of activity seen in the EC in the present
study, ACC neurons tended to fire preferentially to either positive
or negative outcomes and did not decrease their firing rate during
opposite outcome periods. Timing differences between ACC and
EC, however, have been reported. For example, several previous
studies in ACC reported that the error outcome signals seemed to
rise within 200 ms after an error response16,38. By contrast, we
report that in EC cells, a clear separation between an error from
correct outcome started only about 500 ms after the erroneous

choice of saccade direction (Supplementary Fig. 2a) suggesting
that the EC outcome signal may originate in the ACC. The
anatomical connections between the ACC and EC are strongly
bidirectional39–42 with ACC projections terminating in the mid-
to deep layers of EC. Previous studies suggest that that ACC
might play a role in mediating mnemonic functions in MTL by
gating the input-output efficiency between EC and perirhinal
cortex43. Further studies involving simultaneous recording of the
ACC and EC will be of great interest to determine how these
regions might interact with each other to regulate the mnemonic
or further cognitive functions.

There is also a detectable but decidedly smaller error signal in
HPC relative to the EC (Supplementary Fig. 2 and Fig. 6b vs.
Fig. 6c). Unlike the strongly bidirectional projections between the
ACC and the EC, the projections between the HPC and ACC are
largely unidirectional with HPC neurons projecting to the ACC44.
Similar to the present study, Wirth et al. also reported error-

Fig. 6 Schematic diagram and time courses of error-detection and
learning signals in the EC and HPC. Based on the performances of the
animals (a), learning could be divided into early and late stages: During the
early stage of learning (left panel), also termed the memory acquisition
stage in the present study, the performance has not reached the learning
criteria and the animals still made a lot of behavioral errors. Error signals in
EC (b, yellow) and HPC (c, blue) are prominent and do not change over the
course of learning, though the error singles are stronger in EC relative to the
HPC. The population selectivity in HPC increased after error trials readily in
this early stage (d) and cannot be determined during the later stage of
learning because there are not enough error trials (usually fewer than 10
errors). Late in learning (right panel), also termed the memory maintenance
stage, the performance surpasses the threshold and the error signals in
both EC and HPC maintained high (b, c). The learning signals in HPC
develop into a sparser representation as changing cells (e) while in EC
learning signals also emerged in the error-up cells, which are at the same
time the error-detection cells (f). perf: performance.
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detection signals in HPC while the monkeys performed the
object-place associative learning task (OPT, Fig. 321). Previous
studies also reported hippocampal error signals in humans and
rodents. For example, intracranially human EEG recording
studies reported hippocampal error signals in multiple tasks45.
Deadwyler et al.46 applied population analysis to hippocampal
CA1 and CA3 recordings while rats performed a two-lever
operant version of a spatial delayed-nonmatching-to-sample task.
They found that errors contributed to a significant portion of the
variance of the population neural activity in both hippocampal
CA-fields. In addition to the previous studies, the present study
shows not only the error signals in HPC but also provides a direct
comparison to EC, and suggests that EC might play a more
prominent role than HPC in error detection during error-driven
learning.

Beyond the EC and HPC, other studies suggest the involve-
ment of neuromodulatory systems in error detection. For
example, serotonin has long been suggested to play a major role
in responding to unwanted outcomes and provoke inhibitory
responses47. Previous studies have shown that serotonergic
neurons in the dorsal raphe nucleus signal either the positive or
negative reward value48,49. The serotonergic cells in these studies
resemble the EC-HPC outcome-selective neurons in that they
encode reward value with a stable response amplitude. This
contrasts with the well-studied, reward-predicting dopaminergic
neurons of the ventral tegmental area that respond maximally to
unpredicted reward with a gradually diminishing response as the
reward contingency becomes more predictable or learned50,51.
Other studies have shown that acute depletion of serotonin
impairs reversal learning, which is mainly based on negative
feedback information52. In addition, the dorsal raphe nucleus
sends extensive projections to both EC and HPC53, and evidence
shows that the serotonergic inputs to the MTL influence learning
performances. All 18 types of serotonin receptors are expressed in
HPC, and pharmacological manipulation of different types of
receptors highly influences the learning behavior in different
manner54,55. These findings suggest that the error-related or
reward-value-related information originating from the dorsal
raphe nucleus may influence the error signals observed in the EC
and HPC.

Assessing the effect of different learning strategies on neural
activity. One key realization we made during the course of our
analysis is that the monkeys used in our studies were not using
the same learning strategy across the two different associative
learning tasks we have used in the lab21,32,56,57. First, we found
clear evidence that the LST animals used an error-driven learning
strategy defined as better behavioral performance after error trials
relative to after correct trials. This led us to ask which learning
strategy animals were used during an object-place associative
learning task (OPT) in which we also had extensive hippocampal
recordings. To our surprise, in this latter task, animals used a
correct-driven learning strategy (i.e., better performance after
correct relative to after error trials). We report that for the error-
driven learning task (LST), we saw a clear population selectivity
shift during the early stage of learning in HPC (Fig. 2a and
Supplementary Fig. 5d), that was not seen during OPT where
animals used a correct-driven learning strategy (Figs. 3a, d
and 6f). Differential neural signals associated with distinct
behavioral strategies were also reported in a study in infer-
otemporal cortex (IT) showing striking shifts in recognition-
related signals with a subtle shift in task demand which required a
different behavioral strategy58. Taken together our results suggest
that the hippocampus plays differential roles in error-driven
relative to correct-based learning. Future studies comparing the

neural signals in the EC across both types of learning strategies
will be of interest.

Timing of new associative learning in HPC and EC. One of the
questions we were most interested in was comparing and con-
trasting the time course of error-driven learning-related signals
between the HPC relative to the EC (Fig. 6). Consistent with
predictions by Lorinz and Buzsaki24 that the earliest selectivity
shift would take place in HPC, we found enhanced stimulus-
selectivity following error relative to correct trials in the hippo-
campus before behavioral learning criterion was reached (Figs. 2a,
6d and Supplementary Fig. 3a), but no such early learning signals
in the EC (Figs. 2c, 6f and Supplementary Fig. 3c). A finding by Li
et al.59 also supported early learning signals in the rodent hip-
pocampus, though parallel recordings in the EC were not done. In
that study, Li et al. monitored activity in the mouse hippocampus
as they performed an odor-based associative learning task. Using
a combination of optogenetic and electrophysiology, they showed
that hippocampal pyramidal neurons acquired olfactory selec-
tivity before the animals reached learning criteria and that
selectivity continued to increase as animals continued to learn.
Two additional learning-related signals were seen in the present
study, one in the HPC and the second in the EC. In HPC, nearly
20% of the recorded neurons increased or decreased their firing
rates in parallel with learning (the changing cells, Figs. 1b, 5a, b
and 6e) as we have reported before32. By contrast, in EC, the
error-up cells increased their stimulus-selectivity after learning
relative to before learning (Fig. 4a and Supplementary Figs. 5, 6f).
Igarashi et al.60 also reported cells in both dorsal CA1 and lateral
EC acquired odor-selectivity as rats learned to associate an odor-
cue to a specific location over 3 days of training, though in that
study they reported the lateral EC selectivity shifts occurred
slightly earlier than HPC. Task and species differences between
the present study and the Igarashi study may underlie the dif-
ference in timing of the associated learning signals reported by
the two studies.

Figure 6 summarizes the time course of both the error-
detection signals and the various learning-related signals we
observed during the LST. These findings suggest a strong
interplay between the EC and HPC during new learning and
future studies doing simultaneous recordings in both MTL areas
during associative learning will be essential to further specify the
nature of these interactions.

Conclusion
Many computational models have hypothesized that the MTL is
critical for error-driven learning61–63, however, few behavioral
physiology studies have been done to directly characterize
predictions from these models. Here we identify an associative
learning task in which animals used a clear error-driven
learning strategy to characterize, compare and contrast the
neural signals in the EC and HPC. While it is not surprising
that EC and HPC are involved in associative learning, this study
highlights the prominent error-detection signals and the strong
error-related learning signals in the EC. Similarities of the EC
error-detection signals to those described in the ACC13,35

suggests a more prominent functional link between the EC and
the classical error-detection network centering at the ACC than
previously appreciated. But this is not the first time that the EC
and ACC have been functionally linked. Many previous studies
have studied the relationship between these two structures in
long-term consolidation64–66. The findings we report here
suggest that connections between the EC and ACC39–42 are not
only involved in the consolidation of long-term memories but
those connections may also be involved in the earliest stages of

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02096-z ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:618 | https://doi.org/10.1038/s42003-021-02096-z | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


new long-term associative learning through their strong error-
detection signals. Following the time course of the interactions
between these two areas from the very first trial of learning
through long-term consolidation will be of great interest in
future studies.

Methods
Subjects. All procedures and treatments were done in accordance with NIH
guidelines and were approved by the NYU animal welfare committee. Six male and
one female macaque monkeys were used in this study. The data sets acquired from
the entorhinal cortex (EC) and hippocampus (HPC) of monkey A (rhesus, 11.5 kg)
and B (bonnet, 7.8 kg) were previously described in Hargreaves et al.22. The data
acquired in the HPC of monkey A (the same monkey as EC recording but in different
sessions) and C (rhesus, 13 kg) were from the same data set as described in Wirth
et al.32. The hippocampal neurons recorded in monkey EI (rhesus, 6.0 kg) have not
been previously published. The data set from Wirth et al.32 was only used for cal-
culating the stimulus-selectivity shift but not for calculating the outcome-selective
signals because the neural activity during inter-trial intervals (ITI) were not recorded.
The data acquired in the HPC of monkey M (rhesus, 14.2 kg) and Er (bonnet, 6.3 kg)
performing the object-place task was the same data set as in Wirth et al.21.

Recording and surgery. The recording and surgical methods have been described
previously21,22,32. The animals were implanted with a headpost prior to their
behavior training. After they were familiar of the tasks, a recording chamber was
placed stereotaxically during the surgery after identifying the recording sites in
each of the animals’ brain using magnetic resonance imaging (acquired prior to the
implantation surgery). The same images were used to identify the recording sites.
The electrodes used include single tungsten electrodes (Epoxylite insulation, FHC,
USA), glass-coated tungsten electrodes (Alpha-Omega, Israel), or tetrodes (plati-
num-tungsten, quartz insulated, Thomas Recording, Germany). The electrodes
were inserted into the brain through a stainless guide-tube (23 G) positioned in a
grid-recording system (Crist Instrument, USA).

The recording sites of newly recorded hippocampal neurons in monkey A, B,
and El were plotted in Supplementary Fig. 1a. The recording sites in HPC of
monkey A and C performing LST (where activity during the inter-trial intervals
was not recorded) are shown in Wirth et al.32. The recording sites in HPC of
monkey M and E performing OPT were shown in Wirth et al.21. The recording
sites of EC neurons were plotted in Supplementary Fig. 1b. The recording sites in
the hippocampus in monkey A ranged from AP 8 to 19, in monkey B from AP 8 to
12, in monkey C from AP 8 to 19, in monkey El from AP 8 to18, in monkey M
from AP 11 to 21 and in monkey E from AP 6 to 16. The recording sites in EC in
monkey A ranged from AP 12 to 16, ML 9 to 12, and in monkey B from AP 13 to
16, ML 7.5 to 12. The coordinates are all calculated from Frankfurt zero (the
crossing of interaural line and midline of the brain) in mm and listed in
Supplementary Data 1.

To address the possibility that the effects described in the present study could be
explained by the specific anatomical location of the neurons, we performed
correlation analysis between the selectivity indices and the recording sites along
three dimensions: AP, ML, and relative depth dimensions. In EC, we found no
significant correlation between the differential selectivity of error-up, correct-up, or
non-outcome-selective neurons. Similarly, in hippocampus, we found no
significant correlation between the recording sites and the selectivity either.

Behavioral tasks
Location-scene task (LST, Fig. 1a). The LST has been used extensively in previous
studies from our laboratory22,32,56,57. Briefly, each trial starts with a baseline period
where animals were required to fixate a central fixation spot (300–750 ms; Fig. 1a).
Then four targets superimposed on a novel, natural, colorful scene were presented
(500–750 ms). After a delay (700–1000 ms) the fixation spot disappeared, cueing
the animals to make a saccade to one of the four targets. Fixation was required
from the beginning of the baseline period until they were cued to make an eye
movement, and only one of the targets was rewarded for each visual scene. Each
day 2–4 novel scenes were presented and animals learned to associate each new
scene with a specific rewarded target location through trial and error. Randomly
intermixed in with the new scenes were 2–4 highly familiar “reference” scenes
presented to control for the eye movement or reward-associated neural activity.

Object-place task (OPT, Fig. 3a, b). This task has been described in detail before21.
Here, monkeys learned to associate an object-place combination to one of two
possible bar-release responses (early vs. late) to obtain rewards. The animals
initiated each trial by holding a bar and fixating a central fixation spot (Fig. 3a).
After a 500 ms baseline period one of the two novel objects was shown for 500 ms
at one of the two locations (that changed daily) on the screen (4 combinations
total). After a 700 ms delay the animals could release a bar either during the 500 ms
presentation of an orange cue stimulus (“early” release) or continue holding until a
green cue stimulus was presented (for 500 ms) immediately afterward to make a
“late” release. If the response was correct, an auditory feedback tone was played,
and after a random delay (30–518 ms) 2–4 drops of juice were delivered as rewards.

The animals were required to fixate from the beginning of the baseline period until
the early or late bar release. The associations between the object-place combina-
tions to the bar-release responses were counterbalanced as illustrated in Fig. 3b.

Data analysis. All data analysis was done with custom-written Matlab programs
(Mathworks, Natick, MA, USA). The outcome-related criteria and selectivity index
analysis were the same as a previous publication21 with several modifications to
accommodate the present data set. The same as the previous study, the baseline period
was defined as the 300ms before the scene onset and the scene period was the 500ms
duration from the onset of the scene. Slightly different from the previous study, the
delay period was defined from scene offset to 600ms afterward (instead of the entire
700ms period). The outcome period started at the end of the subject’s 30ms fixation
of the chosen target (after making a saccade from the central fixation spot) and
continued for the following 2000 ms. We used only 600ms instead of the full 700ms
delay period in the calculation of the scene selectivity index because another study67

using a similar behavioral paradigm reported eye-movement direction-related changes
of cortical spiking activity during the 100ms right before the eye movement so we did
not include this time period in our analysis.

Estimating learning performance. We defined whether learning took place and
the trial at which learning occurred using a dynamic logistic regression algo-
rithm as described in Writh et al.21,32. Learning sessions were defined as those
in which animals made at least seven consecutive correct responses for at least
one location-scene association. To estimate the learning curve, we para-
meterized the performance of each trial into a binary sequence (“1” for correct
responses and “0” for incorrect responses). We then constructed the learning
curve with this binary performance sequence together with 95% confidence
bounds using a Bayesian state-space model68. The behavior learning trial was
defined as the first trial that the lower 95% bound of the estimated learning
curve crossed the random choice threshold and stayed above the threshold for
the next three trials. The random choice threshold was defined according to how
many targets were given in each session. For example, for 4-target LST the
threshold was 0.25 and for 3-target LST the threshold was 0.33. The analysis
codes for estimating the behavior are available.

The animals performed at least 200 trials each day even when they reached
learning criteria early in the session. For those sessions when the animals
learned at least one location-scene association, 75% of error trials happened
before the animals finished 57% of the trials on average. During the second half
of the sessions, the animals made significantly fewer mistakes than the first half
(p < 10−6).

Estimating learning strategy. We determined if animals used either an error-
driven or a correct-driven learning strategy by asking whether they performed
better immediately after error trials (post-error trials) compared to after correct
trials (post-correct trials). In a learning session containing in total n trials (n
was typically ~200), there were p error trials and q correct trials (n= p+ q). If
the vector P(1,p) denoted all the error trials in this learning session and the
vector Q(1,q) denoted all the correct trials, p was usually much smaller than q
(99% of the cases). After parameterized the performance of each trial into
binary series (“0” indicated error and “1” indicated correct trials), we compared
the performance of (P(1,p) +1)th trials (post-error trials) and (Q(1,p) +1)th trials
(post-correct trials) using a two-tail t-test. We discarded the last error trial if
P(p)= n. If the performance of post-error trials was significantly higher than
post-correct trials, we defined this as an error-driven strategy to learn. If the
performance of post-correct trials was significantly higher than post-error trials,
this was defined as a correct-driven strategy.

For these calculations, we used only the performance of the first p (i.e., the
total number of error trials) post-correct trials and discarded the (Q(p+ 1,q) + 1)
th post-correct trials to compare with that of the same number of post-error trials
((P(1,p)+ 1)th trials). As we mentioned previously, this is because the animals
performed at least 200 trials for each session, even though they have usually
reached learning criteria (as defined in LST session) after about 100 trial. For
about the second half of each session, the animals were usually performing at
ceiling with very few if any error trials. Thus, our calculations for defining either
an error-driven- or a correct-driven- learning strategy were based exclusively on
this early stage of learning using the same number of correct and error trials.

Outcome-selective signals. The outcome-selective signals (correct-up and error-
up cells) were defined based on a previous publication21 with two slight mod-
ifications (see below). As in the previous study, we analyzed spiking activity from
the end of the 30 ms fixation of the target (after making a saccade from the central
fixation spot) and for the following 2000 ms of the inter-trial interval (ITI). We
calculated the mean firing rate during the first and second 1000 ms of the ITI
interval separately, normalized by subtracting the mean firing rate during the
baseline period, and compared whether the neurons responded significantly more
to correct or error outcome during either of these periods by performing paired t-
test. To correct for multiple comparisons the significance threshold was set to p <
0.025. In our previous study21, we separately reported neurons that increased their
firing rates during either half of the ITIs compared to baseline after correct trials as
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correct-up cells and those that decreased their firing rates after error trials as error
down cells. Because there was no error down cells in either EC or HPC while
animals performed LST, the first difference with previous studies21 was that
correct-up cells were defined as those cells whose normalized mean firing rate in
either of the two halves of the ITIs after correct trials were significantly higher than
after error trials (first difference). Also, slightly different from previous studies21,
here error-up cells in this study were defined as the normalized mean firing rate
during either half of the ITI after error trial was higher than correct trials,
regardless of where the difference came from. All error-up neurons in HPC
increased their firing rates during either half of the ITIs compared to baseline after
error trials. Of 43 error-up cells in EC, 37 neurons increased their firing rates after
error responses compared to baseline, and six neurons decreased their firing rates
after correct responses.

In a previous study, we found that neither correct-up nor error-up cells changed
the magnitude of their neural responses over the course of learning OPT21. Here
we also examined whether the amplitude of the neural responses of the outcome-
selective cells changed over the course of learning the LST. As in the previous
study, we used one-way ANOVA with the time period (early, middle and late
period of the session) as the main factor to examine the amplitude of the correct-up
and error-up signals over time. We analyzed the first 1000 ms and the second 1000
ms after the saccade separately and found no difference in the amplitude of the
correct-up and error-up signals.

Defining changing cells. In a previous publication using the same LST, we defined
a population of changing cells in the HPC that signaled new associative learning by
changing their stimulus-selective response correlated with learning32. We followed
the same criterion described in Wirth et al.32 to identify changing cells in the HPC
and EC in this study. Briefly, for those neurons recorded during successful learning
sessions, we extracted the raw firing rates of the cells during the scene and delay
period then correlated the trial-by-trial mean firing rates with the estimated
learning curves in the same session. Those cells significantly correlated with the
learning curves were defined as changing cells, and the significance level was set to
p < 0.025 to correct for multiple comparisons. Consistent with the previous study,
we found two categories of changing cells both in the HPC (Fig. 5a, b) and EC
(Fig. 5c, d). Sustained changing cells increased their firing rate correlated with the
animal’s behavioral learning curve while baseline sustained changing cells typically
decreased their firing rate anti-correlated with behavioral learning.

Selectivity index. The selectivity index (SI) was calculated as in Wirth et al.21. We
extracted the normalized mean firing rates of scene and delay periods by sub-
tracting the mean baseline firing rate for each individual neuron. The following
equation was used to calculate the selectivity index:

SI ¼ n� ∑
n

i¼1

λi
λmax

� �� �
=ðn� 1Þ;

where n was the total number of location-scene combinations, λi was the nor-
malized mean firing rate of the neuron to the ith combination and λmax was the
normalized maximum firing rate of all the combinations. The SI was calculated for
each individual neuron before and after the monkeys learned the first scene-
location association to the criteria. To estimate the sensitivity of the SI, we have
performed the permutation test by permuting the labels of the scenes 1000 times
and took the 95% quantile as the threshold to select those neurons whose SI
surpasses the threshold. The performance of learning was estimated by the Baye-
sian State-Space Model as used in our previous studies21,32,56. After the differential
SI (defined as SI after – SI before learning) was obtained for each individual
neuron, a one-sample t-test was applied to population differential SI for each group
of neurons to estimate whether the neurons changed their SI depending on
learning.

Area under receiver–operating characteristic (ROC) curve. To quantify how
well the outcome-selective neurons can differentiate correct from error outcomes,
we calculated the time courses of area under receiver–operating characteristic curve
(area under ROC) of the mean firing rates during the inter-trial intervals. As the
outcome-selective signals, we analyzed spiking activity from the end of the 30 ms
fixation of the target (after making a saccade from the central fixation spot) and for
the following 2000 ms of the inter-trial interval (ITI). For each outcome-selective
neuron, we calculated the ROC curve using the mean firing rates of all correct and
error trials every 300 ms, with a sliding step of 50 ms. The area under the ROC
curve is then calculated for each neuron over the 2000 ms inter-trial-interval time.
The averaged time courses of the area under the ROC curve are then plotted
separately for all the correct-up and error-up cells in EC or HPC to show the
strength of differentiating correct from error outcomes.

Statistics and reproducibility. All data presented in the text are shown adhering
to APA style by reporting the t-values with a degree of freedom and spelled out all
the exact p-values beside the cases while p < 0.001. Sample sizes are indicated in
detail in each figure caption, main text, and corresponding method sessions.
Exclusion criteria, if applied, are specified in each corresponding method section.

Data availability
Data available upon request to S.K.

Code availability
Accession of codes (Matlab) is available via the Github repository https://github.com/
kushihpi/Ku_error_driven_Learning_CommBiol2021.
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