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Abstract

Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and
confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59
for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the
nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1
and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane
heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their
alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to
generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced
artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4uC, and
provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly,
our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at
mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts
provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.
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Introduction

It has long been recognized that cold/chilling can dramatically

induce the morphological change or even activation of human

blood platelets[1,2]. Although not as sensitive to chilling as

platelet, other cell types are always questioned as to whether cold

casts effects on the ultrastructures in their plasma membranes

especially the extensively-studied tiny structure, lipid raft (LR)[3,4]

or membrane raft[5]. It has been reported that GM1/GM3 (two

types of lipid raft markers) clusters in plasma membrane of

fibroblasts were susceptible to chilling[6]. Cold even induced the

activation of signaling pathways by coalescing membrane micro-

domains on T cells[7]. However, since the cold-induced

alternations in plasma membranes are too tiny (at nanoscale) to

be detected by conventional fluorescence microscopy, the cold-

induced spatial reorganization of lipid rafts or the lateral

rearrangement/coalescence of raft-related membrane heterogene-

ity remains unclear.

Near-field scanning optical microscopy (NSOM) has been used

to visualize microdomains or lipid rafts in model membranes[8,9]

or cell membranes[10–13]. Recently, we have upgraded the

NSOM application in two aspects: i) in combination with

fluorescent quantum dot (QD) labeling, the resolution (down to

40 nm) and reproducibility of NSOM imaging has been

remarkably improved [14]; ii) nanoscale fluorescence-topographic

NSOM imaging has been developed to determine the peak or

mound versus depression localization of molecules in cell

membrane fluctuations[15].

In this study, we took advantages of our upgraded NSOM

imaging and confocal microscopy to precisely visualize and

quantify the distribution pattern as well as the cold-induced

microscale and nanoscale re-distributions of two types of putative

lipid raft markers, GM1 (a lipid marker) and CD59 (a protein

maker), to investigate lipid raft-related membrane heterogeneity.

In addition, we employed fluorescence-topographic NSOM

imaging to determine where lipid raft markers or lipid rafts

distribute and redistribute at T-cell membrane fluctuations.

Results

Formaldehyde (FA) pre-fixation has distinct effects on the
fluorescence staining of GM1 and CD59 in cell plasma
membranes

Since imaging studies of cold-induced effects on lipid rafts

require formaldehyde (FA) pre-fixation for immune staining of

lipid raft-enriched Jurkat T cells, we first examined effects of FA

on the fluorescence staining of various types of molecules in

plasma membranes. Surprisingly, we found that FA pre-fixation

posed significant effects on GM1 (a lipid marker of LR), CD59 (a
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protein marker of LR), and CD71 (transferrin receptor, a non-raft

protein). The confocal images of GM1 on Jurkat T cells pre-fixed

with different concentrations of FA showed that the fluorescence

staining of GM1 on cell surface was evidently impaired when FA

concentrations increased to 4–10% (Fig. 1A). The results were

confirmed by mean fluorescence intensity (MFI) analyses of the

Figure 1. Distinct effects of FA fixation on cell surface fluorescence staining of lipid raft markers on Jurkat T cells. (A) Confocal images of
GM1 on Jurkat T cells pre-fixed with or without formaldehyde (FA) of increasing concentrations prior to cell surface staining of biotinylated CTB followed
with streptavidin-conjugated QD655. Left/right panel: focus is on the central/surface stack of the same cells. It is evident that the fluorescence staining of
GM1 on 10% FA-fixed cells is much worse than other groups. (B) Confocal images of CD59 on Jurkat T cells pre-fixed by 2% or 10% FA, showing a better
fluorescence staining of CD59 on 10% FA-fixed cells. (C) Mean fluorescence intensity (MFI) of the central stacks of individual cells (,200 cells/group in the
first graph; ,350–450 cells/group in graphs 2 and 3) imaged by confocal microscopy under various fixation conditions. (D) MFI of whole cells detected
by flow cytometry (Mean6SEM). Here, FITC-conjugated CTB, anti-CD59, and anti-CD71 were used to exclude the possibility that the distinct effects of
fixation were caused by its effects on the labeling or fluorescent properties of QD dyes. (All procedures done at 4uC).
doi:10.1371/journal.pone.0005386.g001
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cells (first panel of Fig. 1C), and consistent with the flow cytometric

data (first panel of Fig. 1D). In contrast, higher concentration (e.g.

10%) of FA enhanced the fluorescence staining of CD59 on cell

surfaces compared to 2% FA (Fig. 1B, second panels of Figs. 1C

and 1D). Interestingly, however, the effect of FA fixation on the

fluorescence staining of CD71, a non-raft protein, was similar to

GM1 as indicated by MFI analyses (third panel of Fig. 1C), and

flow cytometric data (third panel of Fig. 1D). Thus, FA pre-

fixation has distinct effects on the fluorescence staining of GM1,

CD71, and CD59 in cell plasma membranes.

A MFI ratio-based method for evaluating the effects of
fixation or cold on the re-distribution of molecules within
individual microdomains under confocal microscopy

To quantitatively analyze and compare the fixation-related or

cold-induced distribution changes of GM1 or CD59 within

individual microdomains, we developed a MFI ratio-based

method using confocal imaging since a size/intensity analysis of

individual microdomains can not evaluate the difference between

different parts within individual microdomains. For this method,

individual GM1 or CD59 microdomains on cell surface were

artificially divided into two parts: central and peripheral parts

(Fig. 2). Here, MFI ratio is defined by the formulation that the

MFI of central part (an area of ,0.29 um2; radius = ,300 nm)

minus MFI of background divides the mean MFI of peripheral

part (i.e., the mean value of the MFIs of four areas surrounding

central part) minus MFI of background. An increase in MFI ratio

indicates an increased molecule amount in the central part of

individual microdomains compared to the molecule amount in the

peripheral part of the same microdomains. Therefore the change

of MFI ratio also implies the re-distribution of molecules or

nanoclusters from peripheral part to central part within individual

microdomains. When the MFI ratio is getting very close to 1.0,

there are two scenarios: i) the molecules or nanoclusters distribute

uniformly on the whole cells, therefore actually there are no

confocal-microscopy-detectable microdomains on cell surfaces or

the whole cell plasma membrane can be regarded as a single

microdomain; ii) the microdomains are very big (.. 2 mm) in

which molecules or nanoclusters uniformly distribute.

2% FA pre-fixation prevents the re-distribution of GM1
from the peripheral part to the central part of
microdomains but allows them to move from outside to
the peripheral part

Fig. 3A shows the confocal images of GM1 microdomains on

Jurkat T cells pre-fixed by10%, 4%, 2%, 1%, 0.5%, 0.1%, or 0%

FA at 4uC for 30 min, and subsequently stained by biotinylated

Cholera Toxin subunit B (CTB) and QD655-conjugated strepta-

vidin. Evidently, the microdomains became larger and brighter

due to the decrease in fixation strength and the cross-linking effects

of the staining reagents, implying a significant enrichment of GM1

molecules or nanoclusters into microdomains or a fusion among

microdomains.

Fig. 3C shows the alternations of the MFI ratio (Y axes) and the

MFI of the central part (X axes) of all individual GM1

microdomains (each dot represents a GM1 microdomain in the

dot graphs) on upper surface of 20 cells in each group under

various fixation conditions. An increase in the MFI ratio of GM1

microdomains was evident when the fixation strength decreased:

1.5660.29 (Mean6SD; 10% FA), 1.8560.59 (4%), 1.9260.52

(2%), 2.0360.65 (0.5%), and 2.3160.86 (0.1%), respectively

(P,0.0001 for each pairs; Fig. 3D). The drop of MFI ratio

(1.7560.75; Mean6SD) in the no-fixation (0% FA) group was due

to the formation of many large-size GM1 microdomains as

reasoned above.

Interestingly, there were no significant changes (P = 0.157) in

the mean MFI of the central part of GM1 micoromains between

the 2% (63.9627.8) and 10% (61.3625.4) groups, implying that

less GM1 molecules or nanoclusters entered into the central part

of the domains from the peripheral part. Based on the data from

the MFI ratio and the MFI of the central part of microdomains,

we concluded that the 2%-FA fixation stopped the redistribution

Figure 2. The MFI ratio-based method for evaluating the
effects of fixation or cold on the redistribution of molecules or
nanoclusters of lipid raft markers within individual microdo-
mains by confocal. Upper panel: the upper surface/stack of a Jurkat
T cell is shown here, on which many microdomains are evident. In the
MFI ratio-based method, each microdomain was divided into central
and peripheral parts, and the measurement and calculation of MFI ratio
of microdomains are as follows: A: MFI of the central circle (,0.29 um2;
radius = ,300 nm) on the center of each microdomain; B: Mean of the
MFIs of the peripheral four circles on the peripheral areas of each
microdomain; C: Mean of the MFIs of the background (generally 7
circles). MFI of the central part of each microdomain = A–C; MFI Ratio of
each microdomain = (A–C)/(B–C). Bottom panel: the schematic
diagram shows the distribution alternations of microdomains. The left
and most-right graphs show the two potential scenarios for the MFI
ratio to be very close to 1.0: (left graph) the molecules or nanoclusters
distribute uniformly on the whole cells, therefore actually there are no
confocal-detectable microdomains on cell surfaces or the whole cell
membrane can be regarded as a single microdomain; (most-right
graph) the microdomains have a very big size (.. 2 mm), in the central
part of which the molecules or nanoclusters distribute uniformly. The
two middle graphs show that the increase of MFI ratio indicates the
increase of the molecule amounts in the central part of individual
microdomains compared with the molecule amount in the peripheral
part of the same microdomains, therefore implying the redistribution of
molecules or clusters from peripheral part to central part within
individual microdomains.
doi:10.1371/journal.pone.0005386.g002
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of GM1 from the peripheral part of microdomains to the central

part but did not completely stop the redistribution from outsides

into the peripheral part of microdomains.

2% FA pre-fixation could not completely stop the
redistribution of CD59 and CD71 from the peripheral part
to the central part of microdomains

Similarly, a dramatic decrease (P,0.0001) in MFI ratio of

CD59 microdomains from 2.9261.24 (Mean6SD) down to

1.8760.50 was detected when the fixation strength was enhanced

from 2% to 10% FA. The mean MFI of the central part of CD59

microdomains slightly but significantly (P,0.0001) decreased from

82.2633.5 (Mean6SD) to 66.0624.1. The data implies that 2%

FA fixation could not stop a slight redistribution of CD59 from the

peripheral part to the central part of CD59 microdomains or a

dramatic redistribution from the outside to the peripheral part. In

another word, 10% FA had much better efficiency for fixing CD59

than 2% FA. Since 10% FA fixation also enhanced the

fluorescence staining of CD59 (Fig. 1B–1D), the 10%-FA fixation

condition was used for subsequent NSOM studies of cold-induced

changes in CD59.

A weaker but still significant change (P,0.01) in MFI ratio of

CD71 microdomains also occurred between 2%- and 10%-FA

fixation groups. However, the 4uC/37uC temperature change did

not significantly alter the MFI ratio (P = 0.774 and P = 0.497 for

2%- and 10%-FA fixation group, respectively) of CD71 micro-

domains (Figs. 3H, 3I). The mean MFI of the central part of CD71

microdomains also significantly (P,0.0001) decreased from

82.3638.1 (Mean6SD; 2% FA) to 64.1625.5 (10% FA) to the

similar extent as CD59.

The 2% FA fixation strength is enough for preventing the
clustering of GM1 molecules or nanoclusters

High resolution NSOM was then used to visualize and quantify

the increase in size (from nanoclusters to microclusters) in the

presence of enhanced cross-linking (or impaired fixation):

Figure 3. Confocal microscopy coarsely visualizes and quantifies the distinct effects of fixative on lipid raft markers on Jurkat T
cells. (A) shows confocal images of GM1 on individual Jurkat T cells pre-fixed without or with increasing concentrations of FA as shown at Fig. 1A.
Cells in left panel were the same cells in right panel, focusing on the central parts (left panel) or upper surfaces (right panel) of the cells. (B) shows
confocal images of GM1 on cells pre-fixed with 2% FA at 4uC or 37uC. (C, F, H) The Ratio-versus-MFI dot graphs quantify the crosslinking- and cold-
induced redistributions of GM1 (C; 20 cells/group), CD59 (F; 25 cells/group), and CD71 (H; 15 cells/group) microdomains on cell surface (the data of all
measured microdomains on every cell were displayed in the graphs). (E) shows confocal images of CD59 on individual cells pre-fixed with 2% or 10%
FA at 4uC or 37uC. (D, G, I) The corresponding histograms (Mean6SEM) quantifies the cold-induced redistributions of them at cell surfaces,
respectively. Mark ‘‘*’’ shows the significant difference (P,0.01).
doi:10.1371/journal.pone.0005386.g003
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165.0649.0 nm (Mean6SD; 2% FA), 287.86241.7 nm (0.5%),

580.36644.8 nm (0.1%), and 999.16925.1 nm (0%), respectively

(P,0.0001 for each pairs; Fig. 4A, 4D). Interestingly, we found

that the size (163.8673.3 nm; Mean6SD) of GM1 nanoclusters

on cells pre-fixed by 10% FA was similar (P = 0.6153) to that

(165.0649.0 nm) on cells pre-fixed by 2% FA (Fig. 4D). It implied

that 2%-FA fixation was sufficient for preventing the clustering of

GM1 molecules or nanoclusters although there were many GM1

clusters that tended to approach the confocal-microscopy micro-

domains containing nanoclusters of various sizes. Since 10%-FA

fixation dramatically impaired the fluorescence staining of GM1

(Fig. 1A, 1C, 1D), the 2%-FA fixation condition was used for the

subsequent NSOM studies of cold-induced changes in GM1.

Cold induces the microscale centralization of GM1 or
CD59 within individual microdomains, and the nanoscale
coalescence of GM1/CD59 nanoclusters

The confocal data showed that the MFI ratio of GM1 (Figs. 3C,

3D) or CD59 (Figs. 3F, 3G) not CD71 (Figs. 3H, 3I) increased at a

cold temperature (4uC) compared to the physiological temperature

(37uC). The MFI ratio of GM1 microdomains on cells pre-fixed by

2% FA increased from 1.5160.29 (37uC) to 1.9260.52 (4uC) due

to chilling (Fig. 3D); the MFI ratio of CD59 microdomains

(Fig. 3G) on cells fixed by 2% FA increased from 2.6360.94

(37uC) to 2.9261.24 (4uC); the MFI ratio of CD59 microdomains

on cells fixed by 10% FA increased from 1.6160.31 (37uC) to

1.8760.50 (4uC). All P values of them are less than 0.0001. The

data implies that cold induced a microscale redistribution or

centralization of lipid rafts within individual microdomains.

NSOM images showed that the nanoclusters of GM1 or CD59

at 4uC (left panel of Fig. 4A for GM1; Fig. 4F for CD59) were

larger than those at 37uC (Fig. 4B for GM1; Fig. 4E for CD59).

Quantitative analyses indicate that chilling induced a nanoscale

enlargement (1/3–2/3 time; P,0.0001) of the mean size of the

nanoclusters from 97.8630.0 nm (37uC) to 165.0649.0 nm (4uC)

for GM1 (Fig. 4D), or from 130.1629.4 nm (37uC) to 179.7652.1

nm (4uC) for CD59 (Figs. 4G, 4H). The method of size analysis has

been described previously[15], and all NSOM-detectable features

were counted. The very irregular shapes shown in the NSOM

images were the minority features (,5% of total features), and

therefore, their sizes did not affect the analytical result although we

treated the irregular shapes as a round shape for analytical

convenience. The dramatic size decrease of GM1 nanoclusters

induced by the treatment of 10 mM MbCD (a cholesterol-

depletion reagent) for 30 min prior to fixation implies the

cholesterol-sensitivity/association of lipid rafts (see Fig. S1 in

Supplementary materials for related confocal images).

NSOM visualizes the distribution of GM1/CD59 on fixed
cells in a nearly-natural state of live cells

2% FA at 37uC (physiological temperature) for GM1 and 10%

FA at 37uC for CD59 appeared to be the best conditions for fixing

the two types of lipid raft markers, which minimized their moving

from the peripheral parts to the central parts of GM1/CD59

micordomains and the clustering or enlarging of the molecules or

nanoclusters, although it is impossible to completely avoid the

effects of FA fixation on them. Thus, under these best conditions,

GM1/CD59 molecules or nanoclusters on the fixed cells are very

close but not identical to their natural or original status on live

cells. We then sought to image the organization of GM1/CD59 in

this nearly-natural state by high-resolution NSOM.

In order to balance the blinking effects of fluorescent QD (on/off

switching of QD fluorescence)[14] and weaken the interference of

randomly distribution background, a series of 3 or 4 NSOM

fluorescence images were taken by repeatedly scanning a same area

(1.5 mm61.5 or ,1 mm61 mm) on cell surfaces and were merged

into one image. Quantitative analysis (Fig. 5) showed a mean GM1

nanocluster size of 97.8630.0 nm (Mean6SD) ranging from 44 nm

to 164 nm (Fig. 4D) and a mean CD59 nanocluster size of

130.1629.4 nm ranging from 48 nm to 269 nm (Fig. 4H). Clearly,

the distribution of GM1/CD59 was not uniform (Fig. 5). Many

GM1/CD59 nanoclusters of various sizes (,100 nm) were loosely

confined within individual nanoscale regions (,200 nm; the

boundaries of the regions are indicated by the dashed circles in

Fig. 5C), which were surrounded by randomly-distributed smallest

nanoclusters or maybe single-QD-bound molecules. Individual

nanoscale regions have the trend to form single denser nanoclusters

by concentrating the small nanoclusters within or surrounding the

nanoscale regions, or to form large nanoclusters by aggregating

adjacent nanoscale regions (Figs. 5D, 5E).

Two-color NSOM visualizes the cold-induced
colocalization of GM1 and CD59

By evaluating the colocalization status of GM1 with CD59 or

CD71 on the same cells with or without treatments of GM1-

crosslinking, CD59-crosslinking, and PHA-stimulating, we found

that, under relatively-low-resolution confocal microscopy, GM1

microdomains always colocalized with CD59 not CD71 micro-

domains except that both CD59 and CD71 microdomains stayed

together with GM1 microdomains upon PHA stimulation due to

the cross-linking effect of PHA (Fig. S2 in Supplementary materials).

Here, the colocalization statue of GM1 and CD59 was at the level of

microdomain but not nanocluster under the confocal. Since

confocal was unable to detect the colocalization of individual

nanoclusters or lipid rafts, we used higher-resolution, two-color

NSOM to investigate the colocalization of GM1 and CD59 and to

see if chilling had impact on the co-localization of them.

The cells were pre-fixed with or without 2% FA at 4uC or 37uC,

stained by GM1 reagents, fixed second-time, stained by anti-

CD59, fixed last time, and then imaged by two-color NSOM.

Here, multiple fixation steps were utilized to reduce the

disassociation of reacted reagents/antibodies/QDs from cell

surfaces during multiple washes of the samples. No significant

effects of post-fixation treatments on cell surface staining and

membrane structures (or GM1/CD59 distribution) were detected

according to our study (data not shown). Consistent with the

confocal data (Fig. S2 in Supplementary materials), the micro-

clusters (hundreds of nanometer or even .1 mm) of GM1 and

CD59 almost overlaid with each other in the membranes of non-

prefixed cells (Fig. 6C).

Interestingly, we found that at physiological temperature the

majority of the tiny GM1 and CD59 nanoclusters (,100 nm or

smaller) on cells pre-fixed by 2%-FA did not overlay/overlap with

each other although most of them were neighboring/adjacent

(Figs. 6A, 6D). However, after chilling from 37uC to 4uC, most

GM1 and CD59 nanoclusters colocalized (Figs. 6B, 6E, 6F) with

each other. The colocalization manner was that several smaller

nanoclusters in one of the two types of lipid raft markers distributed

in or around a relatively-larger nanocluster of the other type of raft

marker (Fig. 6F). The data implies that cold induced or enhanced

the redistribution and colocalization of GM1 and CD59.

Our experiments have to be performed using fixed cells due to

the limitations of the reagents and the equipment. Labeling raft

antigens, either by antibodies or toxins, always results in some

degree of clustering[16]. Due to the experimental limitations, the

plasma membrane of fixed cells differs more or less from that of

live cells. Under the best fixation conditions, the membrane
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Figure 4. Accurate NSOM imaging and quantification of GM1/CD59 on Jurkat T cells pre-fixed by FA of various concentrations and
at various temperatures. (A) NSOM images (merged from the NSOM fluorescence images in red and the corresponding topographic images in
gray) show the size enlargement of GM1 clusters from nanoclusters to microclusters with the decrease in fixation strength from 2% FA to 0% no
fixation. (B, C) The NSOM images of GM1 from representatives of Jurkat cells pre-fixed by 2% FA at 37uC (B) or treated with 10 mM MbCD for 30 min
followed by pre-fixation with 2% FA at 4uC and fluorescence staining (C). (D) Dot graph (bottom) and X-Y plot (top; SEM6SD) of the diameters
(FWHM) of the GM1 micro/nanoclusters on cells (5 cells/group) pre-fixed with 0%, 0.1%, 0.5%, 2%, 10% FA at 4uC, and 2% FA at 37uC, respectively. (E,
F) NSOM images of CD59 on a representative cell (Left) pre-fixed by 10% FA at 4uC (E) or at 37uC (F) and the boxed part (right) of it; (G) The
fluorescence profiles of the cross sections across the centers of the two CD59 nanoclusters indicated by numbers 1 and 2 in Fig. E (left of Fig. G) or F
(right). (H) Dot (left) and bar (right; Mean6SD) graphs of the diameters (FWHM) of the CD59 nanoclusters on cells (5 cells/group) pre-fixed with 10%
FA at 4uC and at 37uC, respectively). Scan size: (A: left to right) 14614 mm2; 15.5615.5 mm2; 17617 mm2. (B, C) 20620 mm2; (E: left to right) 18618 mm2;
,464 mm2; (F: left to right) 15615 mm2; ,464 mm2. Scale bar/resolution: (A–C, and left panels of E and F) 1 mm/5006500 pixel2; (right panels of E and
F) 500 nm/3006300 pixel2. Integration time: (all) 30 ms.
doi:10.1371/journal.pone.0005386.g004
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features of fixed cells were kept closest but not identical to their

natural state of live cells. Actually, just like snapshots, the fixation

treatments capture the various moments of lateral rearrangement

of membrane heterogeneity and other dynamic processes. To

some extent, the co-existence of the GM1/CD59 nanoclusters of

various sizes and the nanoscale regions confining small GM1/

CD59 nanoclusters on the same plasma membrane planes on the

fixed cells under the best fixation conditions reflects some degree

of the live cell phenomenon.

Fluorescence-topographic NSOM visualizes the
localization and redistribution of GM1/CD59 mainly at
the mounds of T-cell membrane fluctuations

Recently, we have developed the nanoscale fluorescence-

topographic NSOM imaging method to detect the localization

of membrane molecules on cell membrane fluctuations through

combining fluorescence molecule information and topographic

information in local membrane fluctuations[15]. Here, we used

this method to elucidate the localization of GM1 and CD59 at

plasma membrane fluctuations of Jurkat T cells. Interestingly, in a

nearly-natural state, both GM1 and CD59 nanoclusters mainly

localized at the mound not depressions of the plasma membrane

fluctuations (Figs. 7A and 7B). After chilling (Fig. 7C) or reagent/

antibody-induced crosslinking of GM1 (Fig. 7D), the nanoclusters

or microclusters still stayed mainly at the mound sites of

membrane fluctuations.

Generally, the outer diameter of a NSOM probe tip is around

250 nm. Therefore, a NSOM probe tip can not enter a small

depression with an entry of less than 250 nm in diameter.

However, the results show that there are no GM1/CD59

nanoclusters in most large depressions (diameter .300 nm) as

Figure 6. Two-color NSOM directly visualizes the cold-induced colocalization of GM1 and CD59 nanoclusters. (A–C) NSOM-imaged
distributions of GM1 (psudocolor: blue; streptavidin-conjugated QD605) and CD59 (red; goat anti-mouse IgG-conjugated QD655) on Jurkat T cells
pre-fixed without (C) or with 2% FA at 4uC (B) or at 37uC (A) prior to cell surface staining. (D), (E) and (F) were enlarged from (A), (B), and (E),
respectively, showing the details of the distribution/redistribution. In the left panels of (D, E) and the upper panel of (F), the blue color is above the
red color; in the right panels of (D, E) and the lower panel of (F), the two colors were merged to show the nanoclusters in which the two raft marker
types co-localize (pink). Scan size: (A) 10610 mm2; (B) 11611 mm2; (C) 18618 mm2. Scale bar: (A–C) 1 mm; (D–F) 200 nm. Resolution: (A–C) 5006500
pixel2. Integration time: (all) 30 ms.
doi:10.1371/journal.pone.0005386.g006

Figure 5. Direct NSOM visualization of the distribution of lipid raft markers at nearly-natural state under best fixation conditions.
(A) The NSOM image of GM1 (merged from the NSOM fluorescence images in red and the corresponding topographic images in gray) was magnified
from the boxed area on the cell in Fig. 4B (Inset: the fluorescence profile of the cross section across the center of the two nanoclusters indicated by
numbers 1 and 2). (B) The NSOM image was magnified from the boxed area in Fig. A. (C, D) The NSOM images, corresponding to the upper (C) and
lower (D) boxed areas in Fig. B, were merged from three (C) and four (D) repeatedly-scanned fluorescence images of the same areas to balance the
blinking effect of fluorescent QD. (E) The NSOM image of CD59 (merged from three repeatedly-scanned fluorescence images of the same area) was
magnified from the boxed area on the cell in the right image of Fig. 4E. Scan size: (A–E) 10610 mm2; 464 mm2; 1.561.5 mm2; 1.561.5 mm2; ,1.061.0
mm2. Scale bar/resolution: (A) 1 mm/5006500 pixel2; (B) 500 nm/4006400 pixel2; (C–E) 100 nm/1006100 pixel2; Integration time: (all) 30 ms.
doi:10.1371/journal.pone.0005386.g005
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Figure 7. Fluorescence-topographic NSOM directly visualizes the location/distribution and cold- or crosslinking-induced re-
distribution of GM1/CD59 nano/microclusters at the mounds not depressions of plasma membrane fluctuations of Jurkat T cells. (A,
C, D) NSOM images of GM1 on membrane surface of Jurkat cells pre-fixed without (D) and with 2% FA at 4uC (C) or 37uC (A). (B) NSOM images of
CD59 on membrane surface of Jurkat cells pre-fixed with 10% FA at 37uC. (A–C) The upper panels show the NSOM topographic images in gray; In the
middle and bottom panels, the topographic information was pseudo-colored for the mound of membrane protrusions in yellow and for the planar
membrane or the depression between membrane protrusions in blue; In the middle fluorescence-topographic images, the fluorescence information
(in red) was above but not merged with the topographic information (in yellow/blue), highlighting all nanoclusters in red; In the bottom
fluorescence-topographic images, the topographic and fluorescence information was merged, highlighting the depression-localizing nanoclusters in
pink. Scale bar: 500 nm. (D) Upper: fluorescence information is above but not merged with the pseudo-colored topographic information; middle:
fluorescence information is merged with the pseudo-colored topographic information; lower: color-merged image enlarged from the area indicated
by the dashed box (Inset: the corresponding fluorescence-topographic image in which the topographic information in gray is not color-merged with
the fluorescence information in red). Scale bar: 2 mm. (E, F) Topographic profiles of the cross sections along the dashed lines in the middle images of
panels A (E) and B (F). Long arrows show the large depressions ($500 nm), in which there are no GM1/CD59 nanoclusters. A few GM1/CD59
nanoclusters also distribute, at least partially, in smaller depressions (#300 nm) shown by short arrows.
doi:10.1371/journal.pone.0005386.g007
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shown by the long arrows (Figs. 7E, 7F) and the large blue areas

(Figs. 7A–7D). On the other hand, the optical information from a

location , 100 nm away from the NSOM probe tip can also be

detected, although the information gradually weakens with the

increase of distance. This suggests that molecules/nanoclusters in a

small depression whose depth is less than 100 nm are likely

detectable, even though NSOM probe tips do not enter the

depressions. The GM1/CD59 nanoclusters in a few small

depressions whose diameter is less than 300 nm (indicated by

the short arrows in Figs. 7E, 7F) were still detected by NSOM

probe tips. It is possible that the sensitivity to detecting GM1/

CD59 in the lower membrane regions, whose diameter is less than

250 nm and depth is more than 100 nm, may be little lower.

However, smaller depressions are shallower. The topographic

NSOM images and cross sections (Figs. 7E, 7F and data not

shown) show that almost all depressions have a depth of less than

100 nm and that most depressions with a diameter of less than 300

nm have a depth of less than 50 nm. Therefore, our study does not

significantly underestimate GM1/CD59 in the lower membrane

regions.

Discussion

It is well known that reagent/antibody-induced cross-linking of a

lipid raft component causes dramatic clustering of lipid rafts on living

cells[17,18] or phase separation in model membranes[19]. To avoid

the reagent/antibody-induced cross-linking, cells were fixed by

formaldehyde (FA) prior to fluorescence staining. Therefore, we first

performed experiments to see the effects of FA on the fluorescence

staining and the organization of two types of putative lipid raft

markers (GM1, a lipid marker, and CD59, a protein marker).

The data indicated that 10%-FA pre-fixation dramatically

impaired the fluorescence staining of GM1, and that 2%-FA pre-

fixation was strong enough for preventing the microscale

redistribution of GM1 from the peripheral part of GM1

microdomains to the central part and the nanoscale clustering of

GM1. Therefore, 2%-FA pre-fixation was utilized for the studies

of cold-driven changes in GM1. In contrast, 2%-FA pre-fixation

could not completely prevent the redistribution of CD59 from the

peripheral part of CD59 microdomains to the central part, and the

fixation of higher-concentration (10%) FA significantly enhanced

the fluorescence staining of CD59. Based on this, 10%-FA pre-

fixation was used for the studies of cold-induced changes in CD59

nanoclusters.

We found that GM1/CD59 nanoclusters of various sizes (the

smallest nanoclusters may be single molecules since it is hard for

NSOM to distinguish single molecules from single nanoclusters of

tens nanometer) co-exist in the same membrane planes at nearly-

natural state (under the best fixation conditions). And piles of

nanoclusters of various sizes are loosely confined within individual

nanoscale regions (,200 nm) surrounded by randomly-distributed

smallest nanoclusters. This distribution pattern of lipid raft

markers at nearly-natural state is likely the early intermediate

stage between the even distribution at natural state and the cold-/

crosslinking-induced uneven distribution.

Interestingly, after chilling the redistribution of the raft lipid/

protein markers GM1/CD59 occurred at two levels: their

microscale centralization within individual microdomains, and

the nanoscale coalescence of nanoclusters with a 1/3–2/3 size

increase (from 97.8630.0 nm to 165.0649.0 nm for GM1, or

from 130.1629.4 nm to 179.7652.1 nm for CD59). In contrast,

cold did not induce a significant redistribution of the control non-

raft marker CD71. Our results imply that membrane chilling

reveals the self-associative properties of raft lipids and their

interactions with raft proteins, as proposed in model mem-

branes[20]. Surprisingly, two-color NSOM indicated that cold

even induces the colocalization of GM1 and CD59. These findings

help to propose a model in which the self-associative raft lipids

associate themselves and interact with protein interactions to

generate functional membrane heterogeneity. On the other hand,

the cold-induced coalescence and colocalization of lipid raft

markers provide implication that strict liquid-ordered (Lo)/liquid-

disordered (Ld) phase transitions do not holistically account for

raft-related membrane heterogeneity on live cells[21]. Chilling

also increases the propensity conferring membrane condensation

and lateral separation of more ordered from less ordered

membrane heterogeneity.

In most reported studies on lipid rafts, a detergent resistance-

based biochemical technique is used to extract plasma membrane

in the nonionic detergent Triton X-100 at 4uC, and thus to sort

soluble and insoluble components via sucrose density gradient

centrifugation. This most widely-used method makes it possible to

demonstrate the existence, residence, and co-localization of lipid

raft markers. However, this method has long been argued and

controversial [22–25]. The domain-inducing effects of detergents

on lipid rafts have extensively been studied [26–28]. The reduction

in temperature from 37uC to 4uC is also suspected to potentially

induce alternations in the organization of lipid rafts[6,22]. To

date, the cold-induced nanoscale morphology of lipid rafts that

leads to potential changes in cellular function remains unknown.

Our data provides direct evidence for the potential temperature-

related artifact in the widely-used, detergent resistance-based

biochemical assay that operates at 4uC. Generally, the redistribu-

tion or rearrangement of lipid raft-resident components may

trigger the occurring of some related or downstream

events[19,29,30]. Therefore, it is not surprising that the cold-

induced microscale and nanoscale redistribution or colocalization

of lipid raft markers causes the activation of raft-related[31]

signaling pathways in T cells[7].

Where lipid rafts localize and where lipid raft-related events

occur at membrane fluctuations are important questions. Howev-

er, due to a lack of useful techniques, these questions are poorly

addressed. Here, using fluorescence-topographic NSOM imaging,

we found that GM1/CD59 localized at the mounds of membrane

fluctuations of Jurkat T cells. Interestingly, our recent study

showed that GM1 localizes at the depressions of membrane

fluctuations on polarized MDCK cells[15]. However, the fact that

GM1 generally are not expressed on MDCK cells implies that

GM1 has no function on MDCK cells (or GM1 is a resting

molecule). But GM1 is an active molecule on T cells. The data

provides an implication that resting molecules or rafts are hidden

at depressions of membrane fluctuations and active molecules or

rafts are exposed at mounds/peaks of membrane fluctuations for

easier reaching the molecules or rafts on neighboring cells for cell-

cell interaction. However, further studies are needed to support

this hypothesis.

Materials and Methods

Cell Culture and Reagents
Jurkat (E6-1) T cell line was purchased from ATCC. Cells were

cultured in RPMI-1640 medium supplemented with 10% heat-

inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 1%

sodium pyruvate, and basal medium eagle (BME). Cell cultures

were maintained at a cell concentration between ,56105 viable

cells/ml and refreshed every 2–3 days depending on cell density.

The reagents/antibodies used are as follows: biotinylated CTB,

FITC-conjuaged CTB, PHA, and MbCD were purchased from
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Sigma-Aldrich (St Louis, MO, USA); fluorescent QD655-conju-

gated streptavidin, QD605-conjugated strepavidin, and QD655-

conjugated goat anti-mouse IgG antibody (H+L) were from

Invitrogen (Carlsbad, CA, USA); biotinylated anti-CD59 antibody

and FITC-conjugated CD59 were from EXBIO Praha (Vestec,

Czech Republic) or BD Biosciences (San Jose, CA, USA); FITC-

conjugated CD71 antibody from BD Biosciences.

In all experiments, streptavidin-/antibody-conjugated QD

particles were spin at 5,0006g for 5 min and then supernatants

were filtered through an 80–100 nm filter at 12,0006g for 5 min

prior to use.

Confocal Microscopy
For single color imaging, Jurkat cells were harvested and pre-

fixed by FA of various concentration (0%–10%) in PBS at various

temperatures (4uC or 37uC) for 30 min, followed by 36 washes

with 5% FBS in PBS. Then fixed cells were stained by biotinylated

CTB or biotinylated antibody (anti-CD59 or anti-CD71) at the

same temperature as fixation for 20 min. After 36washes with 5%

FBS in PBS, streptavidin-conjugated QD655 dyes were incubated

with the cells at corresponding temperature for 20 min, followed

by 36washes with 5% FBS in PBS. Finally, the samples were post-

fixed by 2% FA at corresponding temperatures for 30 min and

then subject to confocal microscopy on a Carl Zeiss LSM510

Meta5 laser scanning confocal microscope equipped with a

10061.30 oil-immersion objective. A 405 nm diode laser, LP650

filter, and PMT equipped with the instrument were applied for

excitation, filtering and detection, respectively.

Of note, in order to make the confocal data (for statistical use) of

different experiments or various groups in a same independent

experiment comparable, the confocal settings were always kept

identical by reusing previous settings (laser power: 20.8%; pinhole

W= 1.00 airy units; detector gain = 940; frame size: 1024; line step:

1; scan speed: 7; data depth: 8 bit; mode: line; method: mean; scan

number: 8: Zoom: ,7 for single-cell images).

For two-color confocal imaging in colocalization or crosslinking

experiments, similar processes were performed, except that all

steps were done at 4uC and only 2% FA was used for cell fixation,

and that biotinylated CTB in CTB-crosslinked group, biotinylated

CD59 in CD59-crosslinke group, and PHA in PHA-stimulated

group were incubated with Jurkat cells for 30 min in CO2

incubator prior to fixiaton and QD staining.

Flow Cytometry
Cell processing was similar to that in confocal microscopic

experiments. The difference was that only FITC-conjugated

reagents (CTB, anti-CD59, and anti-CD71) were utilized to stain

pre-fixed cells. Single-color flow cytometry was conducted on

CyAn ADP high-performance research flow cytometer (Dako

North America, Carpinteria, CA).

NSOM Imaging
The information on the NSOM instrument and imaging has

been described previously[14,15]. As we always did, each cell

sample was divided into two fractions after pre-fixation, immuno-

staining, and post-fixation, one of which was used for confocal

microscopic observation for confirming a good staining status, and

the other one of which was for NSOM imaging. For NSOM

imaging, the fixed and stained cells were washed twice by double

distilled water. A drop of the cell suspension was deposited onto

the 0.1% poly-L-lysine (Sigma-Aldrich, St Louis, MO)-coated

fresh coverslips. After air drying for 1 hour, the cells were

subjected to Aurora 3 NSOM (Veeco, Santa Barbara, CA). In the

study, continuous wave semiconductor laser (Coherent, Cube, 404

nm), 50 nm-aperture NSOM probes, 650/40 nm bandpass filter

for fluorescent QD655 and 605/40 nm bandpass filter for

fluorescent QD605, and avalanche photon detector (SPCM-

AQR-14; PerkinElmer, Vaudreuil, QC) were utilized.

Data processing and statistics
The data processing has been described previously[15]. Statistic

analyses were performed using Student t test. It was regarded as

significant difference when P,0.05.

Supporting Information

Figure S1 Confocal microscopy visualized the polish of lipid

rafts or the damage of cells due to the cholesterol depletion by M

bCD in cell membranes. Jurkat cells were treated without or with

10 or 25 mM M bCD at 37uC for 30 min prior to cell fixation and

surface staining of GM1. Upon 10 mM M bCD treatment that

was widely used for cholesterol-depletion experiments, a few cells

were dead and degraded; the plasma membranes of some cells

were partially damaged and the membrane boundaries became

indistinct; on the cells with entire plasma membrane, most

confocal-resolved microdomains dramatically disassemblied or

even disappeared. Upon 25 mM M bCD treatment, the damage

became worst: there were full of cell debris in the cell solution, and

the dyes entered into the cells that already have no entire plasma

membranes.

Found at: doi:10.1371/journal.pone.0005386.s001 (1.24 MB TIF)

Figure S2 Two-color confocal microscopy visualizes the colo-

calization of GM1 and CD59 microdomains. The colocalization

(merged color: pink) of GM1 microdomains (pseudocolor: blue;

streptavidin-conjugated QD605) with CD59 microdomains (red;

goat anti-mouse IgG-conjugated QD655) not CD71 microdo-

mains (red in the first panel: goat anti-mouse IgG-conjugated

QD655; green in the 2nd and 4th panels: FITC) was observed on

Jurkat T cells treated without or with GM1-crosslinking or CD59-

crosslinking prior to cell fixation. Upon PHA stimulation for 30

min prior to fixation, both CD59 and CD71 microdomains

colocalized with GM1 domains. All cells were fixed by 2%

formaldehyde at 4uC prior to staining in no-treatment group or

after crosslinking/stimulating in GM1-linked, CD59-linked, and

PHA-stimulated groups, and a second-round fixation was

performed after staining.

Found at: doi:10.1371/journal.pone.0005386.s002 (2.43 MB TIF)
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