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Abstract: Polymorphonuclear neutrophils (PMNs) are innate immune cells, which represent 50% to
70% of the total circulating leukocytes. How PMNs adapt to various microenvironments encountered
during their life cycle, from the bone marrow, to the blood plasma fraction, and to inflamed or
infected tissues remains largely unexplored. Metabolic shifts have been reported in other immune
cells such as macrophages or lymphocytes, in response to local changes in their microenvironment,
and in association with a modulation of their pro-inflammatory or anti-inflammatory functions.
The potential contribution of metabolic shifts in the modulation of neutrophil activation or survival
is anticipated even though it is not yet fully described. If neutrophils are considered to be mainly
glycolytic, the relative importance of alternative metabolic pathways, such as the pentose phosphate
pathway, glutaminolysis, or the mitochondrial oxidative metabolism, has not been fully considered
during activation. This statement may be explained by the lack of knowledge regarding the local
availability of key metabolites such as glucose, glutamine, and substrates, such as oxygen from
the bone marrow to inflamed tissues. As highlighted in this review, the link between specific
metabolic pathways and neutrophil activation has been outlined in many reports. However, the
impact of neutrophil activation on metabolic shifts’ induction has not yet been explored. Beyond
its importance in neutrophil survival capacity in response to available metabolites, metabolic shifts
may also contribute to neutrophil population heterogeneity reported in cancer (tumor-associated
neutrophil) or auto-immune diseases (Low/High Density Neutrophils). This represents an active field
of research. In conclusion, the characterization of neutrophil metabolic shifts is an emerging field that
may provide important knowledge on neutrophil physiology and activation modulation. The related
question of microenvironmental changes occurring during inflammation, to which neutrophils will
respond to, will have to be addressed to fully appreciate the importance of neutrophil metabolic shifts
in inflammatory diseases.

Keywords: neutrophils; energetic metabolism; infection; inflammation; nutrient availability;
oxygen sensing

1. Introduction

Polymorphonuclear neutrophils (neutrophils, PMNs) like all migratory cells face various
microenvironments during their lifecycle from their site of production to their site of action or clearance
(view Figure 1). Neutrophils are the most abundant leukocytes in the circulation, which represent 50%
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to 70% of circulating leukocytes. Circulating neutrophils are fully differentiated cells and are believed to
have a relatively short lifespan, which is likely largely dependent on environmental parameters. Bone
marrow and blood plasma homeostasis are expected to play a central role in maintaining neutrophils in
a quiescent state under basal conditions, even though the parameters involved in this process remain
largely undefined. In eukaryotic cells, energy is produced by glycolysis in the presence of glucose,
mitochondrial respiration (oxidative phosphorylation) in the presence of oxygen, and the tricarboxylic
acid (TCA) cycle, in the presence of oxygen and pyruvate, glutamine, or free fatty acids. Under a
basal condition, neutrophils are mainly glycolytic and contain few mitochondria [1]. However, the
contribution of mitochondrial respiration or the TCA cycle to neutrophil energy production has not
been fully investigated upon activation. We have demonstrated that oxygen exposure has a deleterious
effect on neutrophil viability [2–4], even though the potential involvement of mitochondria in this
process has not been established. As a consequence, the respective abundance of metabolites and
substrates, such as glucose, glutamine, and oxygen in the neutrophil microenvironment appears to be
critical for neutrophil physiology, survival, and activation.

This point may be illustrated by the metabolic shift occurring during neutrophil differentiation
(granulopoiesis) from hematopoietic stem cells (HSCs) in the bone marrow. The importance of metabolic
shifts in immune cell adaptation to their microenvironment has been extensively demonstrated in
the polarization of tumor-associated macrophages (TAM), which allows the characterization of two
populations: M1 and M2. M1 macrophages are mainly glycolytic with limited oxygen consumption
capacity. In comparison, M2 macrophages mainly use oxidative phosphorylation for energy production.
The M1/M2 metabolic shift has a functional correlation, where M1 exhibits a pro-inflammatory and
anti-tumoral phenotype and M2 exhibits an anti-inflammatory and pro-tumoral one [5,6]. Similar
classification of tumor-associated neutrophil (TAN) populations has been proposed by Fridlender
(namely N1/N2 populations) in response to TGF-β [7]. This concept is currently evaluated in different
inflammatory models and is being discussed [8]. Although no metabolic shifts or differences have
yet been reported between the N1 and N2 populations, their identification strongly suggests that
neutrophils can efficiently respond and adapt to local microenvironmental changes.

The ability of neutrophils to sense and adapt to changes of microenvironmental parameters,
such as the pO2 or the glucose concentration, is well documented through transcriptional regulations
(e.g., HIF1-dependent and HIF2-dependent) [9]. However, the impact of neutrophil metabolic activity or
activation on its microenvironment is likely underestimated and will be further discussed. In addition,
it remains unclear whether heterogeneous microenvironments encountered by neutrophils during
their lifecycle modulate and shape the population homogeneity (N1/N2 or high-density/low-density
neutrophils) if these processes are reversible or not.Int. J. Mol. Sci. 2020, 21, 287 3 of 24 
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reviewed hereafter (view Table 1). 

Table 1. Oxygen, glucose and glutamine concentrations in the bone marrow, plasma and tissues 
under physiological conditions (upper panel) and pathophysiological conditions (lower panel). 

Physiological Conditions 
Compartment Oxygen [c] Glucose [c] Glutamine [c] 
Bone marrow 1.3–2.9% ? ? 
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Bone marrow ? ? ? 
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Tissue ↓ ↓ ↓ 
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The bone marrow microenvironment plays a crucial role in the control of hematopoietic stem 
cell proliferation and differentiation [10]. However, to our knowledge, the concentrations of glucose 
and glutamine in this microenvironment remain unknown. Further investigations are required to 
determine these key parameters to better appreciate and understand the physiology of mature 
neutrophils stored in the bone marrow, which represent the vast majority of the neutrophil 
population. The bone marrow has long been described as a hypoxic environment, despite being 
densely perfused. This perception has been recently confirmed by local pO2 quantification in mice 
bone marrow by Spencer and colleagues using two-photon phosphorescence lifetime microscopy, 
which is a non-invasive and non-destructive quantification method [11]. In this study, the authors 
demonstrated that the bone marrow oxygenation level is heterogeneous but still rather low in all 
compartments (below 32 mmHg, or 4.2%). Surprisingly, the most hypoxic environment was 
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In this case, current knowledge on neutrophil metabolism under basal conditions will be reviewed,
and potential metabolic shifts occurring within inflamed tissues or upon cell activation will be described.
We aim to elucidate how neutrophils adapt to stressful conditions encountered during their lifecycle,
by either tuning or modulating their metabolic pathways or using stored metabolites.

2. Available Metabolites in the Bone Marrow, Plasma, and Inflamed Tissues

Under basal conditions, blood plasma homeostasis is expected to limit neutrophil activation and
to sustain their viability. Conversely, the inflammatory tissue microenvironment allows neutrophil
activation (migration, degranulation, phagocytosis, or reactive oxygen species (ROS) production).
The relative abundance of glucose, glutamine, and oxygen in plasma and in inflammatory tissues is
reviewed hereafter (view Table 1).

Table 1. Oxygen, glucose and glutamine concentrations in the bone marrow, plasma and tissues under
physiological conditions (upper panel) and pathophysiological conditions (lower panel).

Physiological Conditions

Compartment Oxygen [c] Glucose [c] Glutamine [c]

Bone marrow 1.3–2.9% ? ?
Plasma 0.9% 5 mM 0.5 mM
Tissue 1–11% ? 2–20 mM

Pathophysiological Conditions

Compartment Oxygen [c] Glucose [c] Glutamine [c]

Bone marrow ? ? ?
Plasma ? ? ↓

Tissue ↓ ↓ ↓

2.1. Bone Marrow Homeostasis

The bone marrow microenvironment plays a crucial role in the control of hematopoietic stem cell
proliferation and differentiation [10]. However, to our knowledge, the concentrations of glucose and
glutamine in this microenvironment remain unknown. Further investigations are required to determine
these key parameters to better appreciate and understand the physiology of mature neutrophils stored
in the bone marrow, which represent the vast majority of the neutrophil population. The bone marrow
has long been described as a hypoxic environment, despite being densely perfused. This perception has
been recently confirmed by local pO2 quantification in mice bone marrow by Spencer and colleagues
using two-photon phosphorescence lifetime microscopy, which is a non-invasive and non-destructive
quantification method [11]. In this study, the authors demonstrated that the bone marrow oxygenation
level is heterogeneous but still rather low in all compartments (below 32 mmHg, or 4.2%). Surprisingly,
the most hypoxic environment was measured in peri-sinusoidal regions (9.9 mmHg, or 1.3%), while
the endosteal region was less hypoxic (21.9 mmHg, or 2.9%), which is being perfused by small arteries.

2.2. Plasma Homeostasis

Under basal conditions, the glucose level remains tightly controlled at 5.6–6.9 mM in the
blood. These values are relatively high with regard to neutrophil glucose metabolic needs and to
the maintenance of their viability. Hyperglycemia has been reported to have an adverse effect on
neutrophil activation (e.g., mobilization defect) [12,13], induction of neutrophil extracellular traps
(NET) formation [14], and inflammasome activation [15], even though no direct link with potential
metabolic shifts has been reported. To our knowledge, the neutrophil metabolic adaptation under
hypoglycemia has not been investigated.

Similar to glucose, l-glutamine is well maintained in the plasma at a 0.4–0.6 mM concentration.
Being the most abundant amino acid in the body, it fuels the production of the most abundant
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intracellular amino acid l-glutamate [16]. A constant glutaminemia is crucial for proper functioning of
the immune system. Compared to hyperglycemia or hypoglycemia, neither changes in glutaminemia
in plasma, nor its impact on a potential neutrophil metabolic shift have yet been investigated.

The plasma oxygen level is contained at very low concentrations, as described by Pittman [17].
Since 98% of oxygen is transported by red blood cells, the dissolved fraction represents only 2%.
Plasma oxygenation has never been quantified in situ due to technical and ethical limitations. Based
on a theoretical calculation of plasma oxygenation (Henry’s law of gas diffusion), it is estimated that
plasma pO2 varies between 1.4 mmHg in veins and 2 mmHg in arteries (with pO2 vein=70 mmHg, and
pO2 artery = 100 mmHg). Taken these values together with the high amount of glucose in plasma, it is
anticipated that the glucose metabolism will be favored for the oxidative metabolism in circulating
neutrophils (see below).

pH in the plasma is strictly maintained between 7.35 and 7.45 via large amounts of carbonic acid
and bicarbonate.

2.3. Tissue Homeostasis

Glucose passively diffuses from the blood plasma to organs to ensure that the supply meets the
needs under basal conditions. Apart from getting nutritional glucose, some organs, such as the liver
and muscles, can store glucose in the form of glycogen (100 g and 400 g, respectively). Circulating
neutrophils are known to rely on glycolysis to maintain their viability and function [1,18,19]. Glycogen
bodies have been observed in quiescent neutrophils (electron microscopy) [20,21] as well as the
presence and expression of glycogen synthase (Gly1), which is necessary for glycogen synthesis [22].
The intracellular glycogen concentration in quiescent neutrophils is estimated at 1 µg/1.106 cells [22].

Glutamine is a non-essential amino acid. However, it may be considered conditionally essential
during illness since intestines and the immune system utilize a large amount of glutamine during
inflammation, which exceeds endogenous production. The glutamine concentration in tissues under
basal conditions is relatively poorly known and is estimated to be higher than in the plasma fraction
(intracellular concentration 2–20 mM). For example, the measurements performed in human muscles
indicated a glutamine concentration ranging from 2–4 mmol/L [23]. In rat hepatocytes, intracellular
glutamine was even higher, measured at 7 mM [24]. In mice, basal glutamine concentration in
the plasma is around 0.2 mM in organs such as the liver and the kidney at 2.8 and 0.5 µmol/g,
respectively [25].

The importance of glutamine concentration during inflammation remains elusive and will be
discussed in the next chapter.

The basal level of oxygen in tissues is organ-specific and depends on the local supply and metabolic
needs. Physiological O2 concentration has been defined as “physioxia” [26,27] and ranges from 1% to
11% in human body compartments [28,29].

Similar to oxygen, pH values tend to vary between different tissue types, whereas skeletal muscle
tissue’s pH is 6.8–7.1, colon tissue’s pH is 7.9–8.5, and small intestine tissue’s pH is 7.2–7.5.

2.4. Available Metabolites in the Inflamed Tissue Microenvironment

Not much is known about changes in the glucose concentration and local distribution in tissues
during sterile inflammation. However, during infection, some intracellular pathogens, such as
Salmonella and Brucella consume glucose, which alters its homeostasis in tissues [30,31]. In the case of
Brucella infection, a two-fold decrease of intracellular glucose was measured in murine macrophages
(from 1 to 0.5 µM, respectively) [31], and reduces the glucose supply during Listeria monocytogenes
infection, which increases the mice survival rate [32].

Many studies report the benefit of glutamine supplementation on intestinal inflammation.
In general, glutamine sustains enterocyte proliferation, suppresses pro-inflammatory pathways, and
protects host cells from apoptosis, among other functions [33]. Under continuous stress conditions,
muscles and lungs are known to release glutamine, since other organs increase glutamine uptake



Int. J. Mol. Sci. 2020, 21, 287 5 of 23

and consumption. In human tissues, the intracellular glutamine concentration decreases compared
to murine tissues where a two-fold increase in glutamine concentration was observed in plasma and
tissues samples during stress conditions. Measurements done in patients with chronic inflammatory
stress, causing intestinal permeability, showed a correlation between the severity of inflammation and
decreased glutamine levels in human intestines (mucosa) and plasma [34]. In this particular study,
tissue glutamine concentration of inflammatory mucosa ranged from 1.4 to 4 mM, whereas higher
values were measured in patients with low inflammation markers [34]. A decrease of glutamine
concentration was associated with inflammatory activity rather than nutritional depletion, which
suggests an increase in local glutamine consumption. Values of glutamine fluctuations in case of
infection are not well known. However, it was recently shown that Escherichia coli can use glutamine
during infection, which mediates their protection from acid stress and copper ion toxicity, which lowers
the local glutamine concentration [35].

It is well accepted that the local oxygen level decreases during inflammation, as first demonstrated
in a colitis mouse model by Karhausen and colleagues [36]. This observation has been further
confirmed by other groups, which leads to the concept of “inflammatory hypoxia” [37]. Recently,
our group demonstrated a severe hypoxia induction during Shigella infection in the guinea pig colon,
which refers to the “infectious hypoxia” concept [38]. The main cause of hypoxia induction is the
consumption of oxygen by the bacteria aerobic respiration [39]. Similar observations have been seen
during Staphylococcus aureus [40] (reviewed by Hajdamowicz et al. [41]) and Salmonella typhimurium
infections [42] or upon Mycobacterium tuberculosis granuloma formation [43].

Similar to pathogens, tumor cells are capable of shaping the local microenvironment to promote
their growth and survival.

Cancer cells are usually characterized by a high glycolytic phenotype, which produces lactate
and lowers the extracellular pH in the tumor microenvironment (TME). However, tumors can have a
glycolytic (mainly) or an oxidative metabolism. TMEs of each phenotype differ in nutrient availability.
Some parameters are similar in both, such as hypoxia (<2%) and acidosis (pH 6.5–6.9) [44], which are
considered potential cancer drug targets (reviewed by Bailey et al. [45]). The glycolytic tumor cell
metabolism is highly impacted by the stabilization of the hypoxia-inducing factor (HIF) pathway, which
upregulates glycolysis. Glycolytic tumors have a higher glucose consumption rate, compared to other
cells present in the TME [46]. Therefore, glycolytic TMEs are characterized by low glucose availability,
high lactate concentration, and high acidity. On the other hand, oxidative TMEs are characterized by
low fatty acid, amino acid, and oxygen availability (reviewed by Scharping and Delgoffe [47]).

In addition to consuming most of the glucose in the TME, glycolytic tumor cells were shown
to have an increased glutamine metabolism. It is, therefore, not surprising that glutamine levels in
the TME are low [48–50]. However, a recent publication challenged the importance of glutamine in
tumor metabolism by demonstrating that glutamine consumption was not increased and remained
relatively low in in vivo mouse lung cancer models [51]. These opposing findings finely illustrate the
heterogeneity of tumor cell metabolism and potential biases occurring during in vitro experiments.

Tumor hypoxia is perceived as a deleterious factor in cancer therapy. Hypoxia within the tumor
varies and creates a gradient of 0.1–6% O2, depending on the size and the vascularization of the
tumor [52]. Despite the fact that hypoxia induction has been reported in various inflammatory models,
no pO2 quantification has yet been achieved in situ with non-disruptive quantification methods. This
likely represents one of the most challenging goals in the field.

pH values during inflammation tend to differ dramatically from homeostatic values. Inflammation
sites are characterized by a drop in pH rather than an increase. The acidification is linked to the
glycolytic metabolism of infiltrating immune cells in case of infection and to the glycolytic metabolism
of cancer cells in tumor microenvironments, which produces and releases lactic acid.
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3. Neutrophil Metabolism

The most thoroughly described metabolism in neutrophils is glycolysis since circulating neutrophils
are considered to be highly glycolytic under physiological conditions (view Figure 2). However,
additional metabolic pathways have been described in neutrophils, such as the pentose phosphate
pathway (PPP), The Krebs/Tricarboxylic (TCA) cycle, oxidative phosphorylation (OXPHOS), and a
fatty acid oxidation (FAO) pathway (view Figure 2).Int. J. Mol. Sci. 2020, 21, 287 7 of 24 
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1; SLC—Solute Carrier; OXPHOS—Oxidative Phosphorylation; G3P—Glycerol-3-Phosphate;
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NOX—NADPH Oxidase; ER—Endoplasmic Reticulum; NETs—Neutrophil Extracellular Traps.
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3.1. Glucose Metabolism: Glycolysis and Pentose Phosphate Pathways

Neutrophils rely on intracellular glucose shuffling to fuel their glucose-dependent metabolisms:
glycolysis and PPP.

Glucose shuffling per se consists in G6P/glucose cycling through the G6P transporter
(G6PT)/G6Pase-beta complex. Shortly, G6P is imported into the endoplasmic reticulum (ER) via
the G6PT, where it is hydrolyzed back into glucose by the G6Pase-β. Glucose can return to the
cytoplasm where it is immediately converted back into G6P. This pathway, which limits available G6P
in the cytoplasm, ensures tight control over the glucose metabolism fluxes.

Defects in neutrophil glucose cycling result in decreased glucose uptake and lower intracellular
G6P, but also impaired energy metabolism [53–56].

Several pathologies linked to defects in G6P/glucose cycling have been described, such as the
glycogen storage disease type Ib (GSDIb, deficiency in G6PT) and severe congenital neutropenia
syndrome (SCN4, deficiency in G6Pase-β). Patients with these pathologies suffer from neutropenia
and neutrophil dysfunctions due to glycolysis inhibition [57], which highlights the importance of the
glucose metabolism for neutrophil survival and functioning.

Glycolysis is a ubiquitous energy metabolism, which does not differ between cell types.
Extracellular glucose is imported into human neutrophils via glucose transporter 1 (GLUT1), which
is expressed basally and upregulated in glucose-rich environments [57]. Other glucose transporters,
such as 3 and 4, are also expressed but poorly described in neutrophils. If, in humans, upon
activation with phorbol 12-myristate 13-acetate (PMA), only glucose transporter (GLUT) 1 and GLUT3
are upregulated [58,59], then in rats, increased GLUT4 expression has also been described when
activated by the platelet activation factor [60]. Upon uptake, glucose is immediately transformed into
glucose-6-phosphate (G6P) by the hexokinase, where localization may be modulated by the neutrophil
activation status [61]. The consumption of each G6P molecule will lead to the production of two
molecules of pyruvate, two molecules of ATP, and two molecules of NADH. In aerobic conditions,
pyruvate can be oxidized in mitochondria through the TCA cycle (see below). However, in neutrophils,
pyruvate is converted into lactate, which enables the regeneration of NAD+ essential for the continuity
of glycolysis [1,18,62].

Another glucose-dependent pathway in neutrophils is the PPP, which is also known as
the hexose monophosphate shunt, that has been studied in quiescent neutrophils and during
activation (NET formation) [63]. The PPP encompasses an oxidative and a non-oxidative
phase. During the oxidative phase, G6P-dehydrogenase (G6PD), 6-phosphogluconolactonase, and
6-phosphogluconate dehydrogenase convert G6P into CO2, ribulose-5-phosphate, and nicotinamide
adenine dinucleotide phosphate (NADPH). NADPH production is essential for the maintenance of
the redox balance under stress situations. During the non-oxidative phase, several enzymes will be
involved: the ribose-5-phosphate isomerase, the ribulose-5-phosphate 3-epimerase, a transketolase,
and a transaldolase, which leads to the conversion of ribulose-5-phosphate into nucleic acids,
sugar phosphate precursors, or glycolytic precursors, such as fructose-6-phosphate (F6P) and
glyceraldehyde-3-phosphate (G3P). Thus, PPP and glycolysis share a pool of G3P and F6P yielding in
lactate or pyruvate.

In neutrophils, PPP-dependent NADPH production was shown to be essential for the cytosolic
NADPH oxidase (NOX)-dependent ROS production for NET induction [63]. In addition, inhibition of
the PPP key enzyme, G6PD, in high glucose concentrations, was also shown to reduce superoxide
production [64]. In leukocytes, NADPH produced via the PPP is essential for catalase positive bacteria
killing [65]. Cooper et al. reported in an old case-study that neutrophils from a patient lacking G6PD
with a functional NOX had deficient bactericidal functions [65]. However, further investigations are
required to fully appreciate the contribution of PPP to neutrophil survival and antimicrobial activity.

Even if neutrophils are known to rely mainly on glycolysis, the glycolytic flux is often measured by
the consumption of glucose and production of lactate. However, as seen previously, glucose consumed
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by the PPP can equally yield lactate production. Therefore, the importance of glycolysis has potentially
been overestimated, especially during neutrophil activation.

3.2. Glutamine Metabolism

Under physiological conditions, glutamine is used to produce precursor nucleotides for RNA
and DNA synthesis. The metabolization of glutamine results in glutamate, aspartate, lactate, and
ammonia production.

Nevertheless, under pathophysiological conditions, when glucose supply is limited, cells,
including neutrophils, can switch to the utilization of glutamine to meet their energetic need [16,66–69].
In short, glutamine can enter the cell via several solute carrier type transporters (SLCs), such as the
sodium-coupled neutral amino acid transporter (SNAT) family proteins. After entering the cytosol
of neutrophils (and macrophages), glutamine is not fully oxidized and is converted into glutamate.
Glutamate enters the mitochondria and is converted to α-ketoglutarate, which oxygenates NAD+

into NADH. α-ketoglutarate can enter the TCA cycle (see below) and produce malate, which is then
converted to pyruvate via the malate dehydrogenase, which oxygenates NADP+. Pyruvate is then
converted into lactate in the cytosol or contributes to the oxidative metabolism (OXPHOS) in the
mitochondria. However, in low oxygen conditions (characteristic to inflammation), NAD+ can be
regenerated through the production of lactate. Yet, how cytosolic NAD+ gets into mitochondria is
not well established, especially since mammalian mitochondria do not synthesize NAD+ and are
considered impermeable to pyridine nucleotides. It was recently demonstrated that cytosolic NAD+ or
NADH can be directly transported into mammalian mitochondria. Yet, the transport mechanism as
the transporter itself remains unknown [70].

Interestingly, in neutrophils, glutamine can be used in higher rates than glucose [71]. Similar
to PPP, glutaminolysis plays a role in the production of NADPH and the expression of the NOX
complex [72]. In fact, in differentiated cells, such as macrophages and neutrophils, glutamine mainly
plays a role during activation. It has been demonstrated that the glutamine consumption rate is highly
increased under catabolic conditions.

3.3. Mitochondrial Metabolism: TCA Cycle, OXPHOS, and Fatty Acid Oxidation

Mitochondria are involved in many metabolic and cellular functions, such as cell death (apoptosis,
pyroptosis), calcium and iron homeostasis, heme biosynthesis, and energy production. As discussed
previously, under basal conditions, mitochondria do not contribute significantly to neutrophil energy
metabolism and participate only in the initiation of apoptosis [1]. However, recent findings suggest a
potential metabolic shift during activation due to changes in the microenvironment, which favor an
oxidative metabolism and are described in many neutrophil subpopulations (discussed in Section 5).

ATP is generated via three major pathways: glycolysis, the tricarboxylic acid (TCA) cycle, and
oxidative phosphorylation (OXPHOS).

The TCA cycle produces OXPHOS intermediates from acetyl-CoA oxidation, which are derived
from sugars, fats, or amino acids. OXPHOS produces ATP via a series of oxidation-reduction reactions,
which creates a membrane electrochemical potential (∆Ψm). The ∆Ψm is generated through the
coupling of electron transfer and H+ pumping via four complexes (C) in the mitochondrial inner
membrane. These complexes are CI (NADH- ubiquinone oxidoreductase), CII (succinate-ubiquinone
oxidoreductase), CIII (ubiquinol-cytochrome c oxidoreductase), and CIV (cytochrome c oxidase).
Complex I, III, and IV are the proton pumps, which transfer protons out of the mitochondrial matrix
and generates ∆Ψm. Although controversial, it has been shown that the mitochondrial respiratory
chain complexes can form supercomplexes [73], containing several copies of CI, CIII, and CIV within
one respiratory chain. The association of four or more copies of CIV was shown to enhance significantly
the efficiency of CI and CIII to transfer electrons [74,75], which creates an increased membrane potential
and produces more ATP. It was suggested that the lack of supercomplexes in circulating neutrophils
may be the cause of a defective OXPHOS contribution to energy production under physiological
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conditions [61]. In neutrophils, ∆Ψm was shown to be mainly maintained via the transfer of electron
from glycolysis to CIII, via the glycerol-3-phosphate (G3P) shuttle [62]. G3P is a product of glucose
metabolism that can enter mitochondria where it is re-oxidized on the outer surface of the inner
mitochondrial membrane. Although, in most cells, a membrane potential is coupled to ATP synthesis,
it seems to differ in circulating neutrophils [62].

Fatty acid oxidation (FAO) is essential for the production of several enzymes, hormones, and
cell membrane components. In the cytosol, fatty acids are converted by the acyl-CoA synthetases
into fatty acyl-CoA esters, which enter the mitochondria for subsequent oxidation. FAO consists
of four enzymatic reactions: dehydrogenation, hydration, another dehydrogenation, and thiolysis,
which results in one acetyl-CoA molecule, NADH, H+, FADH2, and a fatty acyl-CoA ester. After the
first reaction, the fatty acyl-CoA ester is shortened by two carbon atoms and can return to the FAO
pathway, where it will be re-oxidized until only two acetyl-CoA molecules remain. Acetyl-CoA then
enters the mitochondrial TCA cycle where it will be oxidized into CO2 and H2O, generating additional
FADH2 and NADH, H+. Electrons from both beta-oxidation and the TCA cycle can then be used by
the OXPHOS system to generate ATP.

To sum up, the role of mitochondrial oxidative metabolism in the function and activation of
neutrophils has become more relevant in recent years due to the discovery of heterogenous neutrophil
populations. Some neutrophil key functions, which were difficult to study before, have now been
revealed to depend on mitochondrial functions [76]. For example, neutrophil chemotaxis is impaired
when neutrophils lack a functional membrane potential or ATP synthase [77], which indicates
the importance of mitochondria and mitochondrial metabolism during neutrophil transmigration
into tissues.

4. Changes in Metabolism

4.1. Metabolic Shift from Hematopoietic Stem Cells to Mature Neutrophils

Hematopoietic stem cells (HSCs, CD34+) residing in the hypoxic niche of the bone marrow [11,78]
remain in a resting quiescent state [79,80], exhibiting low bioenergetic activity [80–82]. HSCs glycolytic
metabolism is directly linked to the stability of HIF1α, which is an oxygen-sensitive transcription factor,
mainly involved in the expression of glycolytic enzyme genes. HSCs can exit the quiescent state for
the purpose of self-renewal and differentiation, which leads to their asymmetric division, associated
with a differential mitochondrial abundance [83]. The daughter cell with a higher mitochondrial
content will commit to differentiation and give rise to the blood cell lineages (such as neutrophils),
whereas the cell with lower mitochondrial content will re-enter the quiescent phase [83–87]. The ability
of HSCs to maintain a low mitochondrial pool is now considered a hallmark of stemness reviewed
by Papa et al. [88]. It is suggested that the importance of a differential mitochondrial pool between
self-renewing and differentiating cells is linked to the control of ROS production [88]. A higher
mitochondrial pool will lead to a higher energy yield but also an increased ROS production, both
necessary for differentiation. HSCs, on the other hand, are sensitive to oxidative stress and show low
endogenous ROS levels [89–94]. Moreover, compared to other cell types in the bone marrow, HSCs
have an increased glycolytic capacity [80], strongly related to their adaptation to the hypoxic niche of
the bone marrow.

Under basal conditions, neutrophil differentiation from HSCs (granulopoiesis) leads to the
sequential formation of myeloblasts (MBs), promyelocytes (PMs), myelocytes (MCs), metamyelocytes
(MMs), band cells (BCs), segmented cells (SCs), and mature neutrophils (PMNs). As previously
mentioned, HSCs are heavily dependent on glycolysis [80] to meet their energetic demand compared
to neutrophil progenitors, which shifts their metabolism toward OXPHOS during differentiation.
However, the reason for the initiation of the metabolic shift during differentiation, previously believed
to be due to higher oxygen concentration, has been recently challenged. As discussed previously,
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the oxygen gradient in the bone marrow decreases in the endosteal region. Thus, there must be another
factor other than oxygen availability influencing the metabolic shift.

The main trigger for metabolic reprogramming during hematopoiesis, apart from differential
oxygen availability in the bone marrow [11] is autophagy [95]. Autophagy will allow the metabolic shift
toward FAO-OXPHOS by enabling lipid droplet breakdown, providing sufficiently free fatty acids [95].
The inhibition of autophagy-mediated lipid degradation or fatty acid oxidation, accompanied with a
two-fold increase of the mitochondrial content, was shown to be sufficient to cause defective neutrophil
differentiation. The highest autophagic activity was measured in the MB and MC stage, which indicates
a more mitochondria-dependent metabolism during these stages [95]. However, the mechanism of
how mature neutrophils modulate metabolic fluxes and switch their metabolism back to glycolysis
remains to be discovered.

4.2. Neutrophils’ Metabolic Shift from Plasma to Tissues

After their release from the bone marrow through sinusoidal capillaries, neutrophils enter the
plasma fraction of the blood. Circulating neutrophils are considered quiescent and have a low
transcriptional activity [96], which does not reflect their inability to modulate gene expression during
infection or inflammation [96,97].

Like HSC, neutrophils are also highly dependent on HIF-1α regulation [3]. HIFs are transcription
factors, recognized as key modulators to hypoxic stress. HIFs are heterodimers containing an
oxygen-labile α cytosolic subunit and a more stable nuclear β subunit. In neutrophils, two HIF
isoforms are known as HIF1α and HIF2α [3,98]. HIF1 is the major transcriptional regulator involved
in the adaptation to low oxygen environments in terms of glycolytic enzyme expression upregulation.
Similar to HIF1, HIF2 has an important role in neutrophils, but regulates a different set of genes [99].
If the main role of HIF1 is to facilitate a metabolic adaptation to a low oxygen environment, then HIF2 is
mainly involved during the inflammation resolution, which regulates apoptosis signaling pathways [99].
Moreover, neutrophils accumulate antioxidants, such as ascorbate (vitamin C), capable of reducing
available oxygen in cells, which limits ROS production and oxidative damage. Neutrophils contain
high intracellular ascorbate concentrations (1–2 mM) compared to plasma ascorbate concentration
(20–80 µM) and are known to increase their intracellular ascorbate intake even more during oxidative
burst (10–20 mM), which contributes to their chemotaxis and ROS generation [100]. However, high
ascorbate concentrations are known to promote HIF1α degradation, even at low (1–3%) oxygen
concentrations [101,102]. This suggests that the neutrophil glycolytic phenotype is more likely linked
to parameters, such as low oxygen, high glucose, and low energetic needs.

Upon inflammation or infection, neutrophils transmigrate into tissues (diapedesis) and will
further evolve in various microenvironments where they will exert different functions. The metabolic
requirements for different neutrophil functions is represented in Table 2. However, how neutrophil
metabolism is modulated during this transition remains largely unexplored. The recruitment of
neutrophils to inflammation sites is a multi-step process consisting of (i) a selectin-mediated rolling,
(ii) a chemokine-induced activation, and (iii) an integrin-dependent strong adhesion followed by
trans-endothelial migration (TEM).

For a long time, neutrophil migration was considered unidirectional and, together with the
adhesion cascade, has been exhaustively characterized [103–105]. However, recently, Woodfin and
colleagues discovered that neutrophils were able to retro-transmigrate back into the circulation and
identified junctional adhesion molecule C (JAM-C) as the key regulator of directional TEM [106].
The retro-trans-endothelial migration (rTEM) was thought to contribute to the dissemination of
systemic inflammation. The existence of rTEM also raises the question whether neutrophils returning
from a different environment would exhibit phenotypic and metabolic changes and contribute
to the heterogeneity found in the circulating neutrophilic pool in both healthy and nonhealthy
subjects. The heterogeneity found among neutrophils was recently reviewed by Silvestre-Roig and
colleagues [107].
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Not much is known about the metabolic changes occurring during migration in vivo. However,
using a zebrafish model, the function of mitochondria was shown to play a crucial role in the migration
fitness of neutrophils into tissues. Zhou and colleagues showed that, by creating a mitochondrial DNA
polymerase mutant, neutrophils had an altered motility in vivo [77]. It is well documented that, in many
migrating cells, such as cancer cells and lymphocytes, motility is induced with localized ATP production
(reviewed by Furnish and Caino, 2019; Ledderose et al., 2018 [108,109]). In neutrophils, it seems that it
is the maintenance of the mitochondrial membrane potential that is crucial for migration [77], which
suggests that mitochondria can drive cell migration with additional mechanisms, not only through
ATP production.

Table 2. Metabolic pathways involved in neutrophil functions.

Neutrophil Function Metabolic Requirements References

Phagocytosis Glycolysis [18]
ROS production (NOX) PPP, Glutaminolysis [63,72]

Degranulation Glycolysis [12,110]
NET formation PPP, Glycolysis [14,63]

Chemotaxis/migration Glycolysis, mitochondrial metabolism [76,77,111]

ROS—reactive oxygen species; NOX—NADPH oxidase; NET—neutrophil extracellular trap; PPP—pentose
phosphate pathway.

Another report describes the role of exogenous glutamine in neutrophils chemotaxis. The authors
showed that glutamine administration impairs neutrophils migration during endotoxemia, induced
by E. coli lipopolysaccharide (LPS) [112]. The migration of neutrophils was enhanced in the absence
of glutamine, which suggests a drop in glutamine concentration during infection would facilitate
neutrophils migration to inflammation sites. In endothelial cells, glutamine was shown to promote
proliferation and not migration [113]. In transformed breast cells, glutamine deprivation enhanced
inflammatory gene expression [114]. Thus, the enhanced neutrophil motility could be explained by
an active phenotype, which is promoted by glutamine deficiency causing metabolic stress. Thus,
the administration of glutamine during infection should be wisely reviewed since it seems to have
potentially deleterious anti-inflammatory properties.

The role of neutrophils in inflamed tissues differs depending on the cause of inflammation.
In the case of infection, neutrophils will be the first line of defense, using a myriad of anti-bacterial
mechanisms to overcome pathogen propagation. However, in the case of auto-immune diseases, such
as systemic vasculitis, systemic lupus erythematosus, rheumatoid arthritis, and some cancer types,
neutrophils acquire a pro-inflammatory phenotype, which induces tissue damage, cancer progression,
and, thus, the severity of the disease. It is, therefore, important to consider a heterogeneity in terms of
pro-inflammatory or anti-inflammatory phenotypes among neutrophil populations depending on the
inflammation type/source and local micro-environment.

4.3. Neutrophils Metabolic Shift upon Neutrophil Antimicrobial Functions Activation

Several metabolic pathways have been shown to be required for neutrophil antimicrobial functions,
as briefly reviewed below. However, the impact of antimicrobial function activation on a potential
metabolic shift has not been reported so far and remains an important question to be addressed.

Borregaard and colleagues provided the first link between metabolism and antimicrobial
activity [18]. The authors demonstrated that resting neutrophil produce ATP mainly through glycolysis
from glucose taken up from the surrounding medium. During phagocytosis, no significant change of
the ATP generation rate was reported, while a fall in intracellular ATP concentration was observed, due
to energy utilization. Consistently, it was shown that mitochondria do not play a role in phagocytosis
regulation [19]. Nevertheless, neutrophils were also shown to use different energy sources for different
functions, demonstrating the versatile nature of neutrophils [115].
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More recently, other anti-microbial functions, such as NADPH production via NOX and NET
formation, were shown to be glucose-dependent and glycolysis-dependent [63,116]. The NADPH
used by NOX originates from the PPP, which demonstrates the importance of a tightly regulated
glucose metabolism in neutrophil functions. Moreover, hyperglycemia was shown to promote NET
formation [14], explaining the increased number of spontaneous NETs observed in Type 2 diabetes
mellitus patients. However, deficient NET formation has been reported in high glucose concentrations,
describing the released NETs as unstable and containing decreased amounts of anti-microbial peptides
compared to NETs released in physiological glucose concentrations [117,118]. It has been suggested
that high glucose concentration activates neutrophils, and hinders them to react to additional stimuli,
such as LPS [119,120]. It is currently well accepted that hyperglycemia impairs many neutrophils’ key
functions [121], such as phagocytosis, ROS production, and bacterial killing, as reviewed by Insuela and
colleagues [121]. The exact mechanism involved in neutrophil impairment in high-glucose conditions
remains to be identified. Nevertheless, since glucose concentration seems to be the centerpiece of
neutrophil functions, the choice of the cell culture medium for in vitro experiments is crucial (e.g., RPMI
medium contains 11 mM glucose).

On the other hand, in the absence of extracellular glucose, ATP generation in neutrophils is
exclusively associated with glycogenolysis, which consists of breaking down glycogen molecules
present in the cytosol of neutrophils. It has been demonstrated that, in the absence of glucose, ATP
generation decreases from 1.3 fmol/cell/min to 0.75 fmol/cell/min [18]. Yet, phagocytosis was shown
to upregulate ATP generation (and glycogenolysis) up to 1.2 fmol/cell/min [18]. However, it has not
been reported whether or not NET formation efficiency is modulated in these conditions, which raises
the question of NET formation potential in glucose-poor environments. Moreover, the differences
of glucose-associated anti-microbial functions in terms of efficiency and energy metabolism during
glycogenolysis or in the presence of glucose remains to be further investigated.

The importance of glycogen storage and utilization has been elegantly demonstrated by Walmsley
and colleagues. The authors showed that, in the absence of Phd2, the HIF-hydroxylase, by inhibiting the
HIF pathway activation, neutrophil functions were enhanced [22]. Moreover, hypoxia pre-conditioning
activating HIF and increasing glucose utilization, was shown to increase the efficiency of neutrophils
in terms of antimicrobial activity [122]. Since HIF-1 plays a crucial role in the adaptation to low oxygen
concentrations by upregulating glycolysis, we can appreciate that the regulation of the glycolytic
flux and glycogen storage are important during pathogen clearance but also during inflammation
resolution [22]. Until now, no direct link between glutaminolysis or a shift toward this metabolic
pathway upon neutrophil antimicrobial function activation has been reported.

As previously mentioned, NET formation relies on glucose metabolism in terms of NOX activity
(PPP) and energy production (glycolysis), which correlates with observation of Glut1 and Glut3
upregulation upon PMA stimulation [58]. However, besides NOX-dependent NETs (ND-NETs),
NOX-independent NETs (NI-NETs) have also been characterized. NI-NETs are induced by calcium
ionophores, which enhances mitochondrial ROS production [123] and are, therefore, believed to be less
dependent on glucose metabolism. Although the source of ROS differs between ND-NETs and NI-NETs,
the difference in terms of energy metabolism has not been investigated. Moreover, oxygen seems to
be the centerpiece of NET formation. However, in inflammatory conditions, oxygen concentration
tends to be very low compared to the atmospheric oxygen concentration (21%). This parameter should
be taken into account when investigating ROS-induced anti-microbial functions in vitro. In addition,
increased pH has also been described as an enhancer of NI-NETs [124,125]. The authors explained the
pH sensitive nature of NI-NETs by demonstrating that many key enzymes participating in NI-NET
formation have an alkaline pH optimum. However, the authors did not investigate changes in energy
metabolism in increased pH conditions. It is, however, known and described in leukocytes that
glycolysis is optimal at pH 7.5 and is enhanced in alkaline pH [126]. Overall, these reports clearly
demonstrate the impact of environmental changes, such as pH on enhancing neutrophil key functions
during inflammation.
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4.4. Metabolic Shift during Infection

Metabolic shifts may occur at infectious sites in response to changes in the neutrophil
microenvironment due to the presence of pathogens, rather than a result of neutrophil activation,
as illustrated by the depletion of oxygen due to bacterial aerobic respiration [39] in comparison
with neutrophil ROS production [127]. However, the concentrations of glucose or glutamine at
infectious sites remain largely unknown so far. Since most changes in metabolism are linked to
alterations in the carbon and nitrogen energy metabolism, understanding these changes will enable a
better characterization of neutrophil adaptation to pathophysiological conditions. Some examples of
metabolic modulation during infection will be discussed afterward.

In general, intracellular bacteria trigger “host core defense mechanisms,” which consist of inducing
the production of ROS and reactive nitrogen species. These core functions in host cells are controlled by
NF-κB and are activated by pathogen-associated molecular patterns (PAMPs). Several PAMP-associated
NF-κB targets are linked with metabolic reactions, such as heme oxygenase-1, Ca2+ transporters, divalent
metal ions, adenosine- and adenosine-monophosphate deaminases, indolamine-2,3-dioxygenase, and
upregulation of mitochondrial O2 respiration [128]. Besides NF-κB, another transcription factor, such
as HIF-1, has also been linked to host defense mechanisms. Strikingly, the stabilization and activation
of HIF-1 during infection was shown to be oxygen-independent [129], which raises the question
of intracellular oxygen availability during intracellular pathogen infection. In neutrophils, several
intracellular pathogens have been shown to induce a “pro-bacteria” metabolism. Francisella tularensis,
which is the causative agent of tularemia, is able to inhibit neutrophil ROS production by secreting
several acid phosphatases [130]. Similar acid phosphatases are produced by Coxiella burnetii and
released via the T2SS, which causes a dramatic decrease in neutrophil NADPH oxidase and, thus, ROS
production [131].

Besides modulating the intracellular compartment, many pathogens shape the extracellular
infectious microenvironment. Together with glucose and other carbohydrate consumption, pathogens
can also consume oxygen, which leads to a transition from inflammatory hypoxia to infectious hypoxia.
Many oxygen-utilizing bacteria, such as E. coli, can utilize oxygen at nanomolar levels [132], which
explains the severity of tissue hypoxia during infection.

Infectious hypoxia was recently reviewed by Arena and colleagues [38]. In addition to resident
host cells and infiltrating immune cells, bacteria also consume oxygen, which prevents its further use by
neutrophil NADPH oxidase and illustrates the “battle for oxygen” occurring during bacterial infections.

How and if tissue oxygenation and glutamine or glucose availability during infection can modulate
the energy metabolism of neutrophils and other immune cells remains to be studied. It seems possible
that a metabolic shift will occur not only upon arrival to the infectious inflammation site but also
during inflammation, where the microenvironment may change.

5. Importance of Metabolic Shifts in Neutrophil Population Heterogeneity

In recent years, several observations had led to the understanding that neutrophils do not always
form a homogenous population, especially in auto-immune disease and cancer. The identification and
classification of different neutrophil subtypes together with immunometabolism has opened a new
field of research discussed hereafter.

5.1. Tumor-Associated Neutrophils

Neutrophils are mostly associated with anti-tumoral functions, such as direct tumor cell killing and
antigen presentation, which increases cytotoxic T lymphocyte-mediated anti-tumor immunity. However,
it is now clear that neutrophils do not form a homogenous population and can play an important
role in tumor progression by impairing the activation of CD8+ T cells and enhancing tumor invasion
through NETosis [133,134]. Two major neutrophil subpopulations have been intensively studied in the
tumor microenvironment, which include tumor associated neutrophils (TANs) and myeloid-derived
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suppressor cells (MDSCs). First, defined in 2007 [135], MDSC are the most studied neutrophil-like
cell population in cancer progression, present in great numbers in several cancer models [136–138].
It was first suggested that MDSCs are immature myeloid cells, able to differentiate into macrophages
(tumor-associated macrophages, TAMs) or neutrophils (tumor-associated neutrophils, TANs) based on
their myeloid origin (PMN-MDSCs and M-MDSCs). Metabolically, MDSCs are described as flexible,
able to sense and adapt to different TMEs. For example, several studies point out the importance of lipid
oxidative metabolism in these cells, especially in low glucose availability [139–141]. However, a recent
publication challenges the link between lipid uptake and an energetic switch in MDSCs. Even if an
upregulation of fatty acid transport protein 2 in PMN-MDSCs was observed, it did not lead to changes
in the energy metabolism of MDSCs [142]. Nevertheless, it did increase the synthesis of prostaglandin
E2 from arachidonic acid, contributing to the immunosuppressive activity of PMN-MDSCs [142].

Similar to macrophages, (M1 for anti-tumor and M2 for pro-tumor [5,6]) neutrophils
are also reported to form two populations, N1 (anti-tumor/anti-inflammatory) and N2
(pro-tumor/pro-inflammatory) [7]. Even if phenotypically different, there is no current marker
to distinguish N1/N2 neutrophils in the tumor micro-environment.

The pro-inflammatory/pro-tumor neutrophils (N2), which are also called N2 TANs, are
characterized by the release of excessive ROS, which enable cancer progression in several ways.
Since increased ROS stabilizes HIF1, it promotes VEGF and MIF production, which are both important
in cancer progression and chemotherapy resistance [143].

Because N2 TANs promote cancer metastasis to distant organs, they are now considered a potential
therapeutic target. Currently, not much is known about the energy metabolism of TANs. However,
similarities with tumor-associated macrophages (TAMs) can be drawn.

In the tumor microenvironment, high numbers of M2 TAMs (pro-tumor/pro-inflammatory
phenotype) is associated with tumor growth, metastasis, angiogenesis, and poor prognosis. It is
progressively acknowledged that, because of their high plasticity, macrophages undergo metabolic
changes that establish their functional fate. The metabolic shift toward the M2 phenotype in TAMs
occurs when they accumulate in hypoxic areas of the tumor micro-environment [144]. In these
conditions, TAMs will be exposed to lactic acid produced by the cancer cells, stabilizing HIF-1α, even in
the presence of increased oxygen levels [145]. Consequently, M2 TAMs will adapt to aerobic glycolysis,
which is also known as the Warburg effect, a hallmark of cancer.

Recent evidence suggests that not only do cancer cells modulate the metabolism of immune
cells, but also immune cells, such as macrophages, enhance tumor hypoxia by depleting oxygen and
secreting TNFα by inducing the glycolytic phenotype observed in tumors [146].

Although similarities have been drawn between PMN-MDSCs and N2 TANs, recent findings
suggest otherwise. Results from transcriptomic analyses comparing MDSCs, TANs, and normal
neutrophils revealed that MDSCs resemble more normal neutrophils, than TANs [147], which indicates
that MDSCs and TANs are clearly two different populations with different mechanisms. Compared
to MDCSs, TANs showed a lower expression of granule proteins and the NOX complex, which are
both important for major neutrophil functions [147]. Recently, a new tumor-associated neutrophil
population was described by Rice et al., the c-Kit+ tumor-elicited neutrophils (TENs) [148]. This
subpopulation was characterized with the ability to use mitochondrial oxidative metabolism in low
glucose availability. The authors showed that, in a limited glucose supply, TENs were able to use
FAO-OxPHOS metabolism to maintain their NADPH supply, which is essential for ROS production.

Another recent publication highlights the link between neutrophil mitochondria and motility
in vivo [75]. The authors showed that, similar to cancer cells, migrating neutrophils have mitochondria
localized in the front and in the rear, which could serve the purpose of localized ATP production.
Bao and colleagues, however, demonstrated that, although neutrophils produce most of their ATP
via glycolysis, mitochondria are essential for producing the ATP that triggers their activation via a
purinergic signaling process [111]. They observed that external stimulation of neutrophils with fMPL
increased the ∆Ψm and released ATP, which leads to Ca2+ mobilization and oxidative burst.
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5.2. Low-Density Neutrophils

Low-density neutrophils (LDNs) are a population of neutrophils obtained from the PBMC
(peripheral blood mononuclear cells) fraction after density gradient centrifugation. LDNs are currently
divided into two subpopulations, which include the immunosuppressive LDNs, mainly found in
cancer, pregnancy, infections, and systemic inflammation; and the proinflammatory LDNs, mainly
found in autoimmune diseases, such as systemic lupus erythematosus and anti-neutrophil cytoplasmic
autoantibody (ANCA) vascularitis, and often referred to as low density granulocytes (LDGs).

Although LDNs have been found in many tumor microenvironments, their presence in liver
metastasis seems to be the most relevant [149]. Recently, Hsu et al. showed that cancer-cell-produced
granulocyte colony-stimulating factor (G-CSF) was involved in the mobilization of immature
low-density neutrophils (iLDNs), which promote extensive liver metastasis. These immature cells
constitute another subpopulation of LDNs found in several disease models. Mature LDNs, however,
seemed to inhibit the formation of liver metastases. In liver metastases, iLDNs were shown to
engaged in mitochondrial-dependent ATP production and were able to perform NETosis under
nutrient-deprived conditions (without glucose). This is uncommon since NETosis has been reported to
rely strongly on glucose availability in mature neutrophils [116]. The authors reported that iLDNs
relied on the catabolism of glutamate and proline to support mitochondrial-dependent metabolism in
the absence of glucose.

With some exception discussed previously, not much is known about tumor/metastasis-promoting
neutrophils. Since similarities are drawn between TAMs and neutrophil-like tumor promoting cells
(PMN-MDCSs, TANs, TENs, LDNs), the question regarding if neutrophils serve a similar purpose in
the tumor microenvironment remains uncertain.

Taken together, it seems like tumor-promoting neutrophils are metabolically more flexible than
circulating neutrophils, which enables them to adapt in situ to different tumor micro-environments.

6. Conclusions

Neutrophil metabolism plays a central role in their survival in changing environments encountered
during their life cycle beginning from their development to the activation of their antimicrobial functions.
Neutrophil metabolism dysregulation has been observed in many inflammatory diseases such as
diabetes, sepsis, cystic fibrosis, lupus, or atherosclerosis [150]. The link between metabolism modulation
and several activation pathways has been established in many reports. However, no direct link has
been established with changes of their micro-environment and the availability of key metabolites
such as glucose, glutamine, and oxygen. Major efforts should be made in the future to assess local
micro-environmental changes, which requires the development of new and non-disruptive methods
to perform quantification in situ. As outlined in Figure 1 and Table 1, knowledge remains scarce
in pathophysiological conditions. It has to be highlighted in this section that, without these data,
any attempt to validate the relevance of neutrophil metabolic adaptation in health and diseases will
be challenging.

Most of the recent studies are aimed at describing the impact of neutrophil metabolic shifts
on neutrophil survival and activation. However, the impact of neutrophil activation on neutrophil
metabolic shift induction should also be considered, even though it remains largely unexplored. This
idea may be supported by the fact that neutrophil metabolic activity and activation may differentially
“imprint” their microenvironment (oxygen availability, pH, glucose, or glutamine concentration),
potentially leading to secondary metabolic shifts. As a consequence, the contribution of neutrophil
metabolic shifts in the neutrophil lifecycle has likely been underestimated so far and, thus, represents an
attractive emerging field of research. It is anticipated that neutrophil metabolic shifts will be different
in inflammatory and infectious diseases and may be considered in the future as a specific “signature”
for the development of the pathology. Further investigations are urgently needed to fully understand
how neutrophils adapt to their microenvironment and to decipher to which extent their metabolic
shifts impact the outcome of inflammatory diseases, to envision new therapy strategies.
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