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Abstract

The diagnosis of metabolic-associated fatty liver disease is 
based on the detection of liver steatosis together with the 
presence of metabolic dysfunction. According to this new defi-
nition, the diagnosis of metabolic-associated fatty liver disease 
is independent of the amount of alcohol consumed. Actually, 
alcohol and its metabolites have various effects on metabolic-
associated abnormalities during the process of alcohol me-
tabolism. Studies have shown improved metabolic function in 
light to moderate alcohol drinkers. There are several studies 
focusing on the role of light to moderate alcohol intake on 
metabolic dysfunction. However, the results from studies are 
diverse, and the conclusions are often controversial. This re-
view systematically discusses the effects of alcohol consump-
tion, focusing on light to moderate alcohol consumption, obe-
sity, lipid and glucose metabolism, and blood pressure.
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Introduction

In 2020, the definition of metabolic-associated fatty liver 
disease (MAFLD) was proposed by Eslam et al.1 Since then, 
clinical practice guidelines on MAFLD have been published 
by the Asian Pacific Association for the Study of the Liver.2 
An important significance of this definition is the “positive” 
criteria for the diagnosis of MAFLD, in contrast to a diagno-
sis of exclusion. More importantly, it is possible to diagnose 
MAFLD coexisting with liver injury caused by other reasons. 
The diagnosis of MAFLD is based on the detection of liver 
steatosis together with the presence of metabolic dysfunc-
tion, such as overweight or obesity, type 2 diabetes mellitus 

(T2DM), or clinical evidence of metabolic risk abnormalities.1 
The absence of alcohol intake limit is the prominent difference 
between the diagnostic criteria of MAFLD and the previous 
diagnostic criteria of non-alcoholic fatty liver disease. As is 
well known, a lack of ongoing or current consumption of sig-
nificant amounts of alcohol was an important indicator in the 
latter.3 However, the diagnosis of MAFLD is independent of the 
amount of alcohol consumed. Thus, it is possible to diagnose 
MAFLD coexisting with alcoholic-related liver disease (ALD).

Alcohol consumption is common in the general popula-
tion. There are several common drinking patterns, including 
chronic heavy drinking,4 light alcohol consumption, moder-
ate alcohol consumption (MAC),4,5 and binge drinking (Ta-
ble 1). It has been well accepted that chronic heavy drink-
ing is related with high risk of ALD and should be avoided. 
Compared with the chronic heavy drinking population, the 
non-heavy drinking population is much larger. Binge drink-
ing, which is often related with serious social problems and 
deteriorative health problems, is another popular drinking 
pattern nowadays, especially among young people. Binge 
drinking could happen monthly or weekly, but it is differ-
ent from chronic regular heavy drinking. The prevalence 
of binge drinking has significantly increased over the past 
two decades, with an average annual increase of 0.72% per 
year.6 Binge drinking can coexist with MAC or regular heavy 
drinking, inducing antagonistic or synergistic effects.

Alcohol consumption and metabolic dysfunction are two 
main causes of chronic liver injury and can interact with 
each other. Early studies showed that MAC might be as-
sociated with improved dyslipidemia and reduced cardio-
vascular risk, indicating MAC may be related with restored 
metabolism. Several studies were conducted to investigate 
the role of light to moderate alcohol consumption (LMAC) 
in metabolic disorders. It has been demonstrated that alco-
hol and its metabolites have multiple effects on metabolic-
associated factors, such as body weight, glucose and lipid 
metabolism, and the cardiovascular system. However, there 
is still no consensus on the effects of alcohol on metabolic-
related diseases. At the same time, the above-mentioned 
metabolic abnormalities are the focus of MAFLD. This review 
systematically discusses the effects of alcohol consumption 
on obesity, lipid and glucose metabolism, and blood pres-
sure, focusing on the effects of non-heavy alcohol consump-
tion, to help better understand the relationship between al-
cohol consumption and MAFLD.

Alcohol consumption and overweight/obesity

Effects of alcohol consumption on body weight

There is a higher risk of overweight/obesity in chronic heavy 
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drinkers, mainly showing as higher body mass index (BMI) 
and increased waist circumference (WC).7,8 A previous study 
showed a 17% higher risk for WC gain in men consuming 
1,000 mL/day beer compared with those drinking less than 
250 mL/day beer.9 There seems to be a stronger connection 
between heavy drinking and increased body weight in men at 
different ages than in women.8,10 In elderly men, greater BMI 
(+4.8%) and WC (+5%) were shown to be related to alco-
hol intake ≥50 g/day.8 Energy from alcohol metabolism (7.1 
kcal generated by 1 g ethanol) accounts for the increased 
total energy intake in heavy drinkers, partly contributing to 
increased body weight and BMI. Studies showed that alcohol 
intake of more than 3–5 drinks/day can dramatically increase 
the energy intake from alcohol.7,8 More importantly, chronic 
heavy drinking has been proven to induce pancreatic β-cell 
dysfunction in human and animal models,11,12 with decreased 
insulin-secretory ability and disrupted glucose homeostasis. 
Both increased energy intake and pancreatic β-cell dysfunc-
tion contribute to the pathogenesis of obesity in heavy drink-
ers. Heavy drinking-associated pancreatic β-cell dysfunction 
may play a more crucial role than increased energy intake in 
the development of MAFLD.

The effects of occasional binge drinking on body weight 
may be not obvious in the short term. However, frequent 
binge drinking could significantly increase the risk of be-
coming overweight and obese13 and the risk of abdominal 
obesity in men.14 On the one hand, frequent binge drinking 
has a similar effect as chronic heavy drinking as it involves 
increased energy intake. On the other hand, binge drinking 
could induce systemic insulin resistance (IR) by impairing 
hypothalamic insulin action, manifesting as suppressed he-
patic glucose production and white adipose tissue lipolysis.15 
Besides, binge drinking is often accompanied by increased 
high-fat food intake and even binge eating,16 indicating a 
much higher energy intake, thereby increasing the body 
weight. As a result, the increased energy intake and the glu-
cose and lipid metabolism abnormalities induced by impaired 
insulin signaling eventually lead to increased body weight.

Clinical studies have shown that moderate drinking may 
help maintain normal weight and is associated with a lower 
prevalence of obesity than in non-drinkers,17,18 showing as 
lower BMI values (by 1.34 kg/m2),19 a lower total abdominal 
fat volume, and less subcutaneous adipose tissue.20 Among 
normal-weight middle-aged and older women, LMAC is as-
sociated with smaller weight gain and a lower risk of becom-
ing overweight and/or obese compared to non-drinkers.21 
Similarly, LMAC does not increase the risk of increase in the 
BMI and WC in elderly men.8 Moderate wine consumption 
(150 mL/day), as part of a Mediterranean diet, in persons 
with controlled diabetes does not promote weight gain or 
abdominal adiposity.22 These results indicate a potentially 
beneficial effect of moderate drinking on maintaining a nor-
mal body weight in different populations, a different effect 
from that of heavy or binge drinking.

LMAC could regulate body weight through several mecha-
nisms. Alcohol tends to increase appetite and food intake, 
probably through short-time reward effects of food and 

through the regulation of the expression of various neuro-
transmitters,23,24 leading to increased total energy intake. 
However, the energy obtained from alcohol becomes part of 
the total daily energy intake in the long term; accordingly, 
the energy intake, excluding the calories from alcohol, de-
creases.21 The reward effects of food gradually weaken and 
are even offset due to the reduction in total food intake or 
carbohydrate/fat intake.23 Therefore, body weight probably 
does not increase significantly in chronic regular drinkers. 
Besides, MAC could decrease the body weight by improv-
ing IR, an opposite effect compared with heavy or binge 
drinking, showing as decreased body weight, decreased liver 
weight and triglyceride (TG) levels, and reduced glycemia 
and insulinemia in animal models.25 Hence, LMAC drinkers 
tend to avoid significant body weight gain, in contrast to 
heavy drinkers.26 Changes in body weight could be the re-
sult of an imbalance between (i) the regulation of the central 
nervous system and peripheral insulin function and (ii) ener-
gy use. However, the exact underlying mechanisms remain 
unclear, and more studies are required.

Combined effects of overweight/obesity and alcohol 
on liver

Heavy and binge drinking are often associated with high 
risk of fatty liver disease. Overweight/obesity can further 
promote the development of fatty liver disease.27,28 Long-
term obesity (longer than 10 years), especially abdominal 
obesity, is an important risk factor for alcoholic-related liver 
cirrhosis and alcoholic hepatitis29,30 and is associated with 
an increased risk of 3-month mortality in alcoholic hepati-
tis (hazard ratio [HR]: 2.22, 95% confidence interval [CI]: 
1.1–4.3).31 A binge-like drinking pattern is independently 
associated with significant liver fibrosis progression in over-
weight/obese patients with MAFLD.28 These results dem-
onstrate that there are synergistic effects of high alcohol 
intake and of being overweight/obese on liver injury and an 
increased risk of fatty liver disease.

LMAC seems to play different roles in fatty liver disease. 
Studies showed that LMAC reduces the risk of fatty liver 
disease by 22.6% in general population,32,33 and it reduces 
the risk of fatty liver disease by 31.3% in overweight and 
obese people.33 Mild liver inflammation and fibrosis with a 
low risk of advanced liver fibrosis (stage F3/F4) were found in 
obese patients with MAC, compared with non-drinkers.34–37 
Our previous studies also showed that chronic MAC is related 
with alleviated liver fibrosis in a high-fat and high-choles-
terol diet-induced liver fibrosis model, probably via reduced 
activation of Kupffer cells and hepatic stellate cells.38 How-
ever, an increased risk of advanced liver cirrhosis in LMAC 
has been reported. A recent Asian population study showed 
that MAC reduced the risk of hepatic steatosis in overweight/
obese individuals, while MAC increased the risk of advanced 
liver fibrosis (HR: 1.49, 95% CI: 1.33–1.66), as estimated 
by the fibrosis-4 index in overweight or obese individuals af-

Table 1.  Drinking patterns in this review

Drinking pattern Definition

Chronic heavy drinking Chronic alcohol consumption (generally more than 5 years) more than 60 g on 
one occasion4

Binge drinking Alcohol consumption >40 g for women and >50 g for men within about 2 h1

Non-heavy drinking MAC Regular alcohol drinking <30-42 g/day for men and <20-28 g/day for women4,5

Light alcohol 
consumption

Regular alcohol drinking <10-20 g/day for most studies

MAC, moderate alcohol consumption.
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ter a 15.7-year follow-up.39 In another cross-sectional study 
among obese patients with T2DM, LMAC was found to be 
associated with an increased probability of advanced fibrosis 
in biopsy-proven MAFLD (odds ratio [OR]: 5.5–9.7, 95% CI: 
1.05–69.6).40 So far, the long-term impacts of LMAC on liver 
cirrhosis among obese people are still uncertain. More histo-
logical evidence is urgently needed to verify the role of LMAC 
in liver cirrhosis among obese people.

Adipose tissue can serve as another important source 
of proinflammatory factors that contribute to liver injury. 
Proteome analysis of serum inflammatory factors showed 
higher expression of chemokines (C-X-C motif and C-C motif 
ligands), interleukins (ILs), and tumor necrosis factor-alpha 
(TNF-α) in obese individuals than in non-obese controls; for 
example, CXCL 11 was markedly upregulated (by 40%) in 
obese patients and in adipose tissue in a murine model.31 
In adipose tissue, adipocytes can recruit immune cells (such 
as macrophages, neutrophils, and lymphocytes) and polar-
ize them to their proinflammatory phenotypes to increase 
the production of proinflammatory cytokines, such as IL-1β, 
IL-6, IL-12, and TNF-α, and chemokines, promoting tissue 
inflammation. Macrophages of the proinflammatory M1 phe-
notype can induce adipocyte death, increasing the release of 
inflammatory mediators from adipocytes into the extracellu-
lar environment, which could recruit and polarize more mac-
rophages.41 In obese people, especially those with abdominal 
obesity, large amounts of subcutaneous adipose tissue and 
visceral fat could be important sources of inflammatory fac-
tors, which may enhance the effects of heavy drinking on the 
liver, leading to aggravated liver inflammation.

Cytochrome P450 (CYP) 2E1 is an important enzyme in-
volved in many metabolic processes (including alcohol me-
tabolism). CYP2E1 expression could be induced by alcohol, 
a high-fat or fructose diet, obesity, and drugs. Excessive 
CYP2E1 expression is associated with liver inflammation via 
intrahepatic and extrahepatic mechanisms. Elevated he-
patic CYP2E1 mediates endoplasmic reticulum stress and 
oxidative stress in mitochondria, which contributes to the 
pathogenesis of ALD and MAFLD.42 In the gut, CYP2E1-
mediated oxidative and nitrative stress is related with gut 
leakiness and endotoxemia, contributing to liver lipid accu-
mulation, increased proinflammatory cytokine production, 
and infiltration of macrophages in the liver.43 In addition, 
CYP2E1-induced apoptosis under the coexistence of obe-
sity and binge drinking is involved in liver injury.44,45 Oc-
casional or short-time binge drinking-induced liver injury 
could probably be restored by compensatory liver function. 
However, chronic frequent binge drinking or heavy drink-
ing is not favorable for the recovery of the liver. Moreover, 
repeated inflammatory stimulation of the liver promotes the 
progression of liver fibrosis.46 Meanwhile, binge eating and 
high fat intake during binge drinking lead to an increased 
fat accumulation in the adipose tissue, contributing to the 
secretion of proinflammatory factors.

Taken together, obesity- and alcohol-induced liver inflam-
mation and fibrosis progression are probably related with 
interactions among the adipose tissue, the gut, and the 
liver. Heavy and binge drinking can result in the secretion 
of more inflammatory factors, contributing to the develop-
ment of fatty liver disease. The relatively weak proinflam-
matory effects of LMAC, together with the potential role of 
LMAC in relieving IR, reduce the risk of fatty liver disease. 
However, in patients with long-term obesity or T2DM, the 
protective effects of LMAC may be overshadowed by the 
increased risk of liver fibrosis or cirrhosis.

Alcohol and lipid metabolism

Elevated plasma TG and decreased high-density lipopro-

tein (HDL)-cholesterol levels are two important indicators 
for the diagnosis of MAFLD. The liver is the main organ for 
both lipid and alcohol metabolism. Increased serum and 
hepatic TG concentrations are common in alcohol-drinking 
individuals and animals, including LMAC.47–51 TG levels are 
significantly elevated in heavy drinkers compared with oth-
er drinkers and non-drinkers.48 Similarly, binge drinking is 
associated with a significantly increased risk of elevated TG 
levels.52 Binge drinking with a high-fat diet or chronic alco-
hol consumption can synergistically increase peripheral TG 
levels.53,54 Mechanistic target of rapamycin (mTOR) signal-
ing is considered to play fundamental roles in regulating 
lipid biosynthesis and metabolism in response to nutrition, 
showing as mTOR complex 1 (mTORC1) induced lipogen-
esis through its effect on sterol regulatory element-bind-
ing proteins (SREBP), inhibited breakdown of intracellular 
TG, and reduced fatty acid β-oxidation.55 Recently, studies 
have demonstrated that mTORC1 is necessary for alcohol 
to activate hepatic lipogenesis through its effect on SREBP 
and to inhibit fatty acid β-oxidation, showing as enhanced 
mTORC1 activity in experimental animals and patients of 
ALD, characterized by an increase in mTOR-mediated phos-
phorylation and activity of S6K1, the downstream kinase 
of mTORC1. Importantly, the concomitant reduction of sir-
tuin 1 and DEPTOR, an inhibitor of mTOR kinase, signal-
ing was linked to elevated lipogenesis and decreased fatty 
acid β-oxidation in human liver specimens with ALD. Inhibi-
tion of mTORC1 with rapamycin or DEPTOR overexpression 
ameliorated alcoholic steatosis and liver injury in animals,56 
indicating that inhibition of mTORC1 could be a therapeutic 
target in ALD in the future.

Elevated TG levels are related with alcohol and with en-
hanced expression levels of enzymes involved in lipid me-
tabolism. During alcohol metabolism, ethanol is first me-
tabolized to acetaldehyde by alcohol dehydrogenase (ADH) 
and then oxidized to acetic acid by aldehyde dehydrogenase 
(ALDH). In this process, the consumption of NAD+ is in-
creased and the generation of NADH is increased, resulting 
in a significant increase in the ratio of NADH:NAD+. The 
increased ratio further promotes the synthesis of free fatty 
acids, inhibits fatty acid β-oxidation, and eventually leads 
to the accumulation of TG in hepatocytes.57,58 Alcohol also 
upregulates the expression of fatty acid synthase59 and 
SREBP-1c and downregulates acetyl-CoA carboxylase, the 
rate-limiting enzyme in fatty acid synthesis, and 5′-AMP-
activated protein kinase (AMPK), the central regulator of 
fatty acid β-oxidation.60,61 A net effect is enhanced fatty 
acid synthesis, further promoting the synthesis of TG. Long-
term heavy alcohol consumption is also related to impaired 
adiponectin-sirtuin 1-AMPK signaling, a central signaling 
system controlling the lipid metabolism pathways,62 thereby 
promoting hepatic steatosis. Therefore, higher amounts of 
alcohol intake seem more likely to show hepatic steatosis-
promoting effects compared with lower amounts of alcohol 
intake. Besides, insulin is an important hormone involved in 
lipid metabolism. In the normal state, insulin helps maintain 
a dynamic balance of lipid metabolism by promoting the 
export of lipoproteins from the liver and inhibiting lipolysis 
in adipocytes to facilitate fat storage in adipose tissue.63 
Impaired insulin signaling and IR result in decreased serum 
insulin levels and dysfunction.15,63 Consequently, the effects 
of insulin in the regulation of free fatty acids are attenu-
ated, contributing to enhanced lipolysis in adipocytes and 
increased peripheral lipid levels.

HDL plays important roles in cholesterol efflux and re-
verse cholesterol transport. HDL-cholesterol dyslipidemia is 
considered to be a major independent risk factor for ath-
erosclerotic cardiovascular disease.64 Alcohol is positively 
related with HDL metabolism, as plasma HDL-cholesterol 
concentrations are increased in drinkers compared with non-
drinkers.65–67 Studies have shown elevated HDL-cholesterol 
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levels in MAC, together with increased apoprotein A-I levels 
(accounting for 70% of the total HDL protein mass), higher 
paraoxonase activity, and decreased cardiovascular risk due 
to its enhanced antioxidative properties.68–72 The effects of 
heavy drinking on HDL seem inconsistent. Some studies ob-
served increased HDL-cholesterol levels and enhanced cho-
lesterol efflux potential in heavy drinkers,66,73 while other 
studies showed declined HDL levels in patients with alco-
hol-related fibrosis and cirrhosis.30,74 It is reasonable to as-
sume that the onset of ALD may influence HDL metabolism. 
However, chronic heavy drinking with or without ALD was 
associated with a similar declined capacity of cholesterol 
efflux and reduced cholesterol uptake from peripheral blood 
in the hepatocytes,74,75 suggesting that alcohol per se is re-
sponsible for its deleterious effects on cholesterol efflux and 
reverse cholesterol transport in heavy drinkers.

Serum HDL levels (quantity) reflect its antioxidant effect 
to some extent. More importantly, the capacity of choles-
terol efflux and reverse cholesterol transport (quality) are 
two key factors in evaluating its antioxidant capacity. Intact 
hepatocyte structure and function are necessary for HDL 
metabolism. During the development of alcohol-related fi-
brosis and cirrhosis, hepatocytes are gradually depleted, 
and they become incompetent for lipid metabolism. HDL-
cholesterol and total cholesterol levels in peripheral blood 
are probably not decreased or even increased in the early 
stage of ALD, partly due to a decline in HDL-mediated re-
verse cholesterol transport. However, lipid metabolism in 
the liver gradually weakens with the progression of ALD. 
Eventually, HDL and total cholesterol levels decrease,76 with 
declined capacity of cholesterol efflux and reverse choles-
terol transport. On the contrary, in LMAC, the liver function 
is often competent in lipid metabolism; so, higher HDL-cho-
lesterol levels are probably the result of increased synthesis 
and reverse cholesterol transport, with increased antioxida-
tive properties and capacity of cholesterol efflux, which may 
prevent lipid deposition in the vessel wall,77 decreasing the 
risk of cardiovascular disease. However, more studies are 
needed to confirm these hypotheses.

Alcohol and T2DM

The quantity and function of insulin are crucial in maintain-
ing the glycemic balance. Alcohol could cause pancreatic 
β-cell apoptosis78 and dysfunction, decreasing insulin se-
cretion, resulting in decreased circulating insulin levels.79,80 
With the increase of alcohol amount, the damage of β-cells 
is gradually aggravated. Heavy alcohol intake could reduce 
the insulin-secretory ability of pancreatic islets,12 decrease 
glucokinase expression, and inhibit insulin receptor expres-
sion,11 promoting the development of T2DM. On the con-
trary, LMAC seems to be related with lower fasting insulin 
levels, a similar effect to that observed in healthy people, 
who are often considered to be associated with higher in-
sulin sensitivity,81 showing as reduced fasting insulin con-
centrations by 19.2% and increased insulin sensitivity by 
7.2% compared with non-drinkers.82 The reasons for low 
insulin levels related with MAC may be different in men and 
women, demonstrating as higher clearance of insulin in men 
and lower secretion of basal insulin in women.83 Presum-
ably, heavy drinking may impair pancreatic β-cell function 
and disrupt insulin signaling pathways, contributing to the 
development of diabetes, while lower insulin levels in non-
heavy drinkers seem helpful to maintain glycemic homeo-
stasis. Binge drinking has been proven to be an independ-
ent risk factor for IR in MAFLD.84 In terms of mechanism, 
binge drinking impairs hypothalamic insulin signaling and 
decreases insulin secretion, playing a central role in increas-
ing the risk of IR and T2DM. In addition, peripheral insulin 

dysfunction might be involved in IR. More studies are need-
ed to further verify these hypotheses.

Though some studies showed a positive relation between 
alcohol consumption and the risk of IR and T2DM,85–87 most 
studies suggest reduced risks of T2DM in individuals with 
LMAC. According to a recent umbrella review, high-quality 
evidence shows that MAC (12–24 g/day) is negatively cor-
related with the incidence of diabetes.88 Prospective and 
cross-sectional studies show a lower presence of IR and im-
paired glucose tolerance in obese individuals with MAC than 
in obese non-drinkers.20,89 Another cross-sectional study 
showed that LMAC did not decrease the risk of T2DM in 
obese individuals,90 indicating that the role of MAC in the 
regulation of glucose and lipid metabolism in obese peo-
ple is controversial. Compared with women, men are more 
likely to benefit from LMAC.91,92 Men with cardiovascular 
disease risk factors can benefit from long-term red wine 
consumption (40 g/day) in several aspects, including de-
creased plasma insulin levels, improved glucose homeosta-
sis, and increased HDL-cholesterol levels.69 Hence, LMAC 
seems to improve IR in individuals with a high risk of T2DM, 
especially in men. Interestingly, a reduced risk of T2DM in 
LMAC is often observed among regular drinkers. A study 
in Japan showed ∼4 drinks per drinking day for 4–7 days 
weekly in men resulted in a lower risk of T2DM compared 
with non-drinkers.93 In a large cohort study from Denmark, 
the lowest risk of T2DM was observed at 14 drinks/week in 
men and at 9 drinks/week in women. Compared with cur-
rent alcohol consumers consuming <1 day per week, the 
consumption of alcohol for 3–4 days per week was associ-
ated with a significantly lower risk for diabetes in men.94

Alcohol may commonly impair pancreatic β-cell function. 
However, the risks of IR and T2DM are low in LMAC popula-
tions, as shown in several clinical studies, which is probably 
in part related with lifestyle. In a prospective cohort study 
with a 10-year follow-up in the Netherlands, individuals 
with LMAC (5.0–29.9 g/day for men and 5.0–14.9 g/day 
for women) exhibited a significantly lower risk of T2DM on 
the basis of one low-risk lifestyle behavior, and an approxi-
mately 40% reduced risk of T2DM on the basis of multiple 
low-risk lifestyle behaviors compared with non-drinkers.95 
Another randomized clinical trial showed that MAC with life-
style modification reduced the incidence rate of diabetes in 
individuals at high risk of diabetes (including impaired glu-
cose tolerance, elevated fasting glucose, or BMI ≥24 kg/m2) 
after a 3-year follow-up.80 As is well known, metabolic dys-
function is often related to unhealthy lifestyles, e.g., high-
fat diet, lack of exercise, and smoking. In the above studies, 
a healthy lifestyle often includes an ideal body weight, a 
healthy diet, moderate exercise, no smoking, and reduced 
total energy intake, which are helpful in restoring normal 
metabolism. Additionally, MAC is considered as a healthy 
behavior. Thus, benefits from LMAC further improve me-
tabolism on the basis of these healthy lifestyles.

The beneficial effects of MAC on insulin sensitivity are not 
fully understood. The expression of some molecules may 
change during MAC and further influence glucose and lipid 
metabolism. Adiponectin, an insulin-sensitizing adipokine, 
has been confirmed to play important roles in maintaining 
insulin sensitivity and suppressing fatty acid synthesis.96 
Hypoadiponectinemia is closely associated with IR in obe-
sity and diabetes.97,98 Diet-intervention studies in small 
groups of young and middle-aged men with or without IR 
have shown increased adiponectin concentrations after MAC 
intervention.99,100 A large population study confirmed that 
adiponectin levels were higher in men with frequent MAC.100 
Alcohol-induced increases in adiponectin improve insulin 
sensitivity and glucose metabolism and decrease the risk 
of IR. Therefore, an improved IR and a decreased risk of 
T2DM in MAC may be the result of multiple factors, includ-
ing proper drinking frequencies, low-risk lifestyle, and the 
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expression of molecules improving glucose metabolism.

Alcohol and blood pressure

Early studies have confirmed that chronic alcohol consump-
tion affects blood pressure,101 manifesting as increased 
blood pressure in drinkers.102–105 The increased risk of 
elevated blood pressure is associated with the amount of 
alcohol consumed. However, the “threshold” amount is 
not quite clear. According to recent studies, the potential 
“threshold” could not be high, as individuals with alcohol 
consumption more than 100 g/week show elevated systolic 
blood pressure (SBP).66 Chronic LMAC has a greater effect 
on awake blood pressure, increasing SBP and diastolic blood 
pressure (DBP) by about 2.5–3.0 mmHg and 2.0 mmHg, 
respectively, and a weaker effect on blood pressure dur-
ing sleep, decreasing DBP by 2.0 mmHg.106,107 Though a 
study showed a higher risk of hypertension in MAC individu-
als than in light drinkers,67 the effect of chronic LMAC on 
hypertension, which has been investigated in human and 
animal models, is not that obvious.66,108,109 A population-
based prospective study even showed a significantly lower 
incidence of hypertension in participants with LMAC after 
a 20-year follow-up compared with non-drinkers.110 Age is 
a well-known risk factor for blood pressure. Elderly peo-
ple are often at higher risks of hypertension than young 
people. There is a similar effect of age on drinkers’ blood 
pressure.111 In young drinkers, elevated HDL-cholesterol 
levels (≥47 mg/dL) could be a protective factor for MAC, 
preventing significant increases in blood pressure.102 In two 
studies, the incidence of hypertension was higher in indi-
viduals who consumed large amounts of alcohol (20–30 g/
day or more).102,103 In middle-aged men, an increased risk 
of hypertension, even in light drinkers (12 g/day), was ob-
served, irrespective of the levels of HDL-cholesterol.103 With 
the increase of age, alcohol consumption ≥140 g/week is 
associated with significantly increased SBP (5–12 mmHg) 
and DBP (3–6 mmHg) and an increased risk of hypertension 
(OR: 1.83, 95% CI: 1.40–2.40) in older men.108 Therefore, 
age showed a similar negative relation with blood pressure 
in drinkers as in other populations. With increasing age, the 
protective effects of HDL-cholesterol and LMAC on blood 
pressure are gradually overshadowed by the increased risk 
of hypertension.

Both chronic heavy drinking and binge drinking (occa-
sional or frequent) are related with an increased risk of 
hypertension in a dose-dependent manner, especially in 
men.52,67,112 Blood pressure is temporarily reduced after 
binge drinking within approximately 2–3 h, but it could dra-
matically increase after 24 h.113,114 An Asian cohort study 
showed that daily alcohol consumption exceeding 60 g/day 
significantly increased the risk of hypertension in men.102 
However, a recent population-based study on conventional 
epidemiology and genetic epidemiology showed that low-
er amounts of alcohol intake were related with increased 
blood pressure; SBP was increased by 4.8 mmHg (to a level 
of about 135 mmHg, 95% CI: 4.5–5.1) and DBP by 4.3 
mmHg (95% CI: 3.7–4.9) in men with 280 g/week alcohol 
intake. In women with similar alcohol intake, SBP and DBP 
increased by 6.7 mmHg (95% CI: 4.3–9.0) and 3.8 mmHg 
(95% CI: 2.5–5.1), respectively.66 Obviously, excessive al-
cohol intake is related with increased blood pressure, es-
pecially in male drinkers. Fortunately, the effects of alcohol 
consumption are reversible. A reduction in alcohol consump-
tion could help to reduce blood pressure, especially in heavy 
drinkers. Individuals who drink six or more drinks per day 
could obtain a reduction in SBP by 5.5 mmHg and in DBP by 
approximately 4 mmHg if they reduce alcohol consumption 
by about 50%. Reductions in SBP and DBP are also achiev-

able in other drinkers by reducing alcohol consumption, but 
to a lower degree.115 Though effects on blood pressure have 
been observed for both LMAC and heavy drinking, heavy 
drinking results in much stronger increases, often reaching 
blood pressures above 140/90 mmHg, with a significantly 
higher risk of hypertension compared with other drinkers.

Evidence of the effects of alcohol consumption on blood 
pressure is not as strong in women as in men. According 
to a recent systematic review and meta-analysis, female 
drinkers only account for 14% in clinical trials,115 indicating 
significant differences in gender distribution. Studies have 
indicated different effects of alcohol intake on blood pres-
sure in female drinkers compared with male drinkers. Mul-
tivariate Cox proportional hazards analysis showed alcohol 
consumption was not necessarily associated with the risk of 
hypertension in women.104 Though MAC could elevate SBP 
and DBP in premenopausal women, the increase in SBP was 
not more than 2 mmHg and that in DBP was not more than 
1.4 mmHg.116 Roerecke’s systematic review and meta-anal-
ysis have shown different incidences of hypertension in men 
and in women who drank 1–2 drinks/day (relative riskwomen 
vs. men=0.79; 95% CI: 0.67–0.93),117 indicating that women 
with LMAC were less likely to suffer from hypertension. The 
increased risk of hypertension was more obvious in women 
who exceeded two drinks per day.117 In older women, al-
cohol amounts below 140 g/week resulted in reductions in 
SBP of 3–5 mmHg and a reduced risk of hypertension (OR: 
0.62, 95% CI: 0.53–0.72) compared with non-drinkers.108 
These results suggest that chronic, regular LMAC in women 
tends to exert protective effects on blood pressure com-
pared with men. However, data on alcohol consumption in 
female drinkers are not sufficient, especially in heavy drink-
ers. More research is needed to explore the relationship be-
tween alcohol intake and blood pressure in women.

The main mechanisms underlying the effects of alcohol 
on blood pressure include a direct effect of alcohol, alco-
hol metabolic-associated enzymes, and alcohol sensitivity. 
ADH1B and ALDH2 are two important enzymes in alcohol 
metabolism. Genetic polymorphisms of ADH1B (rs1229984) 
and ALDH2 (rs671) are related with the elimination rate 
of alcohol, alcohol sensitivity, and drinking behavior. The 
ADH1B*2 allele carrier, with enhanced enzyme activity, is 
related with more rapid alcohol elimination118,119 and, pos-
sibly, a reduced risk of hypertension and cardiovascular 
diseases.119,120 ALDH2 polymorphisms are considered to be 
associated with alcohol sensitivity and drinking behavior. 
Enzyme activity is weakened or lost in ALDH2*1/*2 (G/A) 
and ALDH2*2/*2 (A/A) allele carriers, slowing the process 
of alcohol metabolism, with higher alcohol sensitivity com-
pared with the wild-type ALDH2*1 (G/G) carriers. In wom-
en, LMAC without alcohol sensitivity further decreases SBP 
by 2 mmHg and is associated with a lower risk of hyperten-
sion (OR: 0.62, 95% CI: 0.53–0.72) compared with LMAC 
with alcohol sensitivity (OR: 0.71, 95% CI: 0.60–0.83). 
Similarly, in men with alcohol consumption of 140 g/week or 
more, SBP and DBP were much higher in those with alcohol 
sensitivity (145 mmHg and 82 mmHg, respectively) than in 
those without alcohol sensitivity (138 mmHg and 79 mmHg, 
respectively) and non-drinkers (133 mmHg and 76 mmHg, 
respectively).108 The increased risk of hypertension in indi-
viduals with ALDH2 polymorphisms may be related with the 
rate of alcohol metabolism in part because slow elimination 
of alcohol enhances the effect of alcohol on blood pressure 
and partly reduces the blood pressure benefits of LMAC.

Limitations and expectations

Many studies show the beneficial effects of LMAC on met-
abolic functions. However, a recent combined analysis 
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showed a linear relationship between alcohol consump-
tion and all-cause mortality, with an increase in all-cause 
mortality among those who consumed more than 100 g/
week.121 This dose is much lower than most guidelines’ 
recommendations and also lower than what is considered 
a “moderate” amount in most studies. Therefore, drinking 
in patients should be cautiously guided, especially in those 
with metabolic dysfunctions. For obese patients with MAFLD 
and decompensated liver cirrhosis, any amount of alcohol 
consumption is related with an increased risk of hepatocel-
lular carcinoma.122,123 Alcohol drinking should be absolutely 
avoided in these patients.

Alcohol consumption is common in the MAFLD population 
and is related with metabolic dysfunction (Table 2). Inter-
actions between alcohol and metabolic factors are compli-
cated, and the benefits from non-heavy drinking may be re-
duced by other factors. A U-shaped or J-shaped relationship 
between alcohol consumption and the single component of 
metabolic dysfunction is common in many studies. In fact, 
there are probably more net-shaped relations among these 
factors than linear relations in real-world patients. As is well 
known, liver cirrhosis is an important stage during the de-
velopment of chronic liver disease, and it is usually irrevers-
ible. Unfortunately, most studies on alcohol and MAFLD are 
focused on early-stage liver disease, and only a few studies 
focus on MAFLD with liver fibrosis or cirrhosis. Thus, the 
exact impacts of alcohol consumption (especially non-heavy 
drinking) on MAFLD and metabolic-associated impairments 
of target organs, complications, and even tumors are not 
quite clear. More research studies are needed to explore 
the long-term effects of alcohol consumption on end-stage 
MAFLD and metabolic syndrome, to fully understand the ef-
fects of alcohol consumption and guide patients who con-
sume alcohol.

Special attention should be paid to several populations. 
First is ex-drinkers and abstainers. The benefits from LMAC 
are often shown in current drinkers, usually accounting for 
the majority of participants in most studies. On the con-
trary, data on ex-drinkers and abstainers are not enough 
to analyze the impact of stopping alcohol consumption on 
metabolic factors well. Studies have shown changes of sev-
eral metabolic factors after a period of abstinence, e.g., 
decreased HDL levels and visceral fat area and improved 
homeostasis, among moderate to heavy drinkers.124,125 
Thus, it is necessary to evaluate the effects of abstinence 
on metabolism and re-evaluate the effects of LMAC on me-
tabolism after abstinence. Second is female drinkers. There 
are more male drinkers than female drinkers in the real 
world and in most clinical trials. Usually, the non-drinkers 
are mainly female, while the drinkers are mainly male in 
most studies. With increasing amounts of alcohol consump-
tion, the proportion of males increases dramatically, and 
the heavy drinkers are almost all men, especially in large, 
population-based studies.66,126,127 Thus, there is an almost 
inevitable sex bias because of the smaller female samples. 
As shown by some studies, the effects of alcohol are signifi-
cantly different between male and female drinkers. There 
seems to be a much closer relationship between alcohol and 
male sex, including genetic epidemiological characteris-
tics.128 Therefore, more studies are needed to evaluate the 
role of alcohol consumption on metabolism in female drink-
ers. Third is patients with borderline high blood pressure. 
A criterion of SBP ≥140 mmHg and/or DBP ≥90 mmHg or 
special drug treatment is considered for the diagnosis of 
hypertension in many studies. According to the new def-
inition of MAFLD, a blood pressure of ≥135/85 mmHg is 
considered a metabolic risk abnormality,1 a more rigorous 
standard than the former. Therefore, the decreased risk of 
hypertension upon LMAC could possibly be overestimated 
in some individuals with other metabolic risk abnormalities. 
Individuals with blood pressure between 135/85 mmHg and Ta
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140/90 mmHg have shown an increased risk of metabolic 
dysfunctions.

In conclusion, alcohol drinking is closely related with 
metabolic dysfunction in several systems, such as the liver-
gut axis, the liver-brain axis, the liver-pancreas axis, and 
the liver-adipose tissue axis (Fig. 1). LMAC combined with 
a healthy lifestyle may be helpful for maintaining metabolic 
homeostasis, while heavy drinking and binge drinking are 
two common dangerous drinking patterns that should be 
avoided. The new definition of MAFLD is a positive diag-
nosis of the disease with simple criteria. Though “alcohol” 
is excluded from the diagnosis, the relationship between 
MAFLD and alcohol is still close. Much attention should be 
paid to alcohol consumption during the management of 
MAFLD.
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