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Abstract Within less than a decade since its inception, CRISPR-Cas9-based genome editing has been

rapidly advanced to human clinical trials in multiple disease areas. Although it is highly anticipated that

this revolutionary technology will bring novel therapeutic modalities to many diseases by precisely

manipulating cellular DNA sequences, the low efficiency of in vivo delivery must be enhanced before

its therapeutic potential can be fully realized. Here we discuss the most recent progress of in vivo delivery

of CRISPR-Cas9 systems, highlight innovative viral and non-viral delivery technologies, emphasize

outstanding delivery challenges, and provide the most updated perspectives.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Previous genome editing technologies, such as zinc-finger nucle-
ases and transcription activator-like effector nucleases, both of
which require an individually designed protein molecule to
recognize each distinct target gene, are labor intensive, costly, and
time consuming. Discovery of the clustered regularly interspaced
short palindromic repeat (CRISPR)-CRISPR-associated protein 9
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(Cas9) system added a robust tool to the genome editing toolbox. It
dramatically lowered the bar of conducting genome editing ex-
periments, making it one of the most useful techniques in
biomedical research1e3. Additionally, it has shown unprecedented
potential in revolutionizing treatment of human diseases4e6.
CRISPR-Cas9 therapeutics hold apparent advantages over tradi-
tional gene therapies, such as gene replacement therapy, RNA
interference (RNAi) therapy, and antisense therapy, in that the
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repair on a mutated gene or the insertion of a missing gene is
permanently and precisely ironed to the host genome after a single
genome editing event. Due to its high accuracy of target gene
recognition, CRISPR-Cas9 averts activation of oncogenes and
mutagenesis. In addition, it eliminates repeated dosing in certain
applications, although repeated administration of the CRISPR-Cas9
system has improved genome editing efficiency in some preclinical
studies. CRISPR-Cas9 therapeutics remind everyone with ever
stronger signal that the era of precision medicine is coming.

Although some diseases are very likely to quickly benefit from
CRISPR-Cas9 technology through ex vivo manner, the more
profound clinical success of CRISPR-Cas9 therapeutics can only
be accomplished if the system can be directly administered to
patients. However, safe and effective in vivo delivery systems for
the components of CRISPR-Cas9 therapeutics are still yet to
mature (Fig. 1). This article summarizes the most recent progress
of in vivo delivery of CRISPR-Cas9 systems for genome editing,
highlights innovative delivery technologies using viral and non-
viral vectors, emphasizes outstanding challenges to in vivo de-
livery faced by the CRISPR-Cas9 genome editing community, and
provides the most updated perspectives.

2. The biology of CRISPR-Cas9 mediated genome editing in
mammalian cells

Though CRISPR-Cas systems have bacterial origins from species
such as, but not limited to, Streptococcus pyogenes, Staphylococcus
aureus, and Streptococcus thermophilus, their utility reaches beyond
the bacterial immune system, and can be used for genome editing
in mammalian cells2,7. CRISPR-Cas systems can be differentiated
based on the number of Cas proteins involved in their mechanism. A
type I system uses multiple Cas proteins while a type II system uses
only one Cas protein8,9. Because of this contrast, type II CRISPR-
Cas systems are more desirable for genome engineering as its
components can be producedwith greater ease. Type II CRISPR-Cas
systems involve multiple key components for genome engineering,
including a Cas protein, CRISPR RNA (crRNA), and trans-
activating crRNA (tracrRNA)8,10e12. Cas9 is an endonuclease with
two nuclease domains. These domains are the HNH, which cleaves
complementary DNA strands, and RuvC, which cleaves non-
complementary DNA strands2,8.

Mammalian genome editing with CRISPR-Cas9 was simplified
by engineering a single guide RNA (sgRNA), which takes the
Figure 1 Milestones of in vivo delivery of CRISPR-Cas9 therapeutics.

AAV: adeno-associated virus, NP: nanoparticle, LNP: lipid nanoparticle.

Cas9: CRISPR-associated protein 9.
place of crRNA and tracrRNA components in the CRISPR-Cas
system13. The sgRNA is essential for precise gene editing as its 5ʹ-
terminal 20-nucleotide sequence interacts with a target sequence
of host DNA via Watson and Crick base pairing rules, while its 3ʹ
duplex structure allows binding to Cas9 proteins8. Before being
able to perform a double strand break (DSB), Cas9 proteins must
locate the target DNA sequence by recognizing the protospacer
adjacent motif (PAM), which is a short sequence of nucleotides
directly adjacent to the target DNA sequence8,11,14. Once a Cas9
protein binds to the target strand of DNA, it undergoes a
conformational change, allowing for a targeted DSB to occur 3e4
nucleotides upstream of the PAM8,11,15.

Following a DSB, there are multiple fates for the broken
chromosomalDNA. PrimaryDSB repairmechanisms include non-
homologous end joining (NHEJ) or homology directed repair
(HDR) pathways (Fig. 2). NHEJ involves direct ligation of the two
broken chromosomal DNA strands to one another and is the main
cellular DSB repair mechanism. This process is error-prone due to
random insertions or deletions (indels) of nucleotides to assist in
ligation, which can cause gene disruption via frameshift or
nonsense mutations16. Beyond gene disruption, NHEJ can also be
used to induce significant deletions when carried out with two
different sgRNAs. Gene disruption or deletion via NHEJ is desir-
able when treating diseases whose pathogenesis is characterized
by an over-expression of a certain protein, such as transthyretin
amyloidosis. HDR pathways require the presence of an exogenous
donor DNA template that is homologous to the target region of
chromosomal DNA, allowing for gene insertion following DSB.
HDR’s applications rest in targeted integration of transgene. Gene
editing with HDR is the desired manner for the treatment of dis-
eases caused by missing an entire gene, such as X-linked retinitis
pigmentosa, hemophilia A or B, and phenylketonuria. When
compared, NHEJ ismore efficient and can occur at any phase of the
cell cycle. It is utilized to edit DNA more frequently than HDR,
which is less efficient, especially in post-mitotic cells, such as
neurons, retinal pigment epithelial (RPE) cells, cardiac myocytes
and mature muscle cells. These two repair mechanisms are most
used by researchers as they allow for a straightforward approach to
gene disruption, deletion, correction, or insertion.

Alternative DSB repair mechanisms include homology-
mediated end joining (HMEJ), microhomology-mediated end
joining (MMEJ), and homology-independent targeted integration
(HITI). MMEJ’s mechanism includes 5e25 bp microhomologous
Key developmental milestones for in vivo delivery of CRISPR-Cas9.

CRISPR: clustered regularly interspaced short palindromic repeats,



Figure 2 CRISPR-Cas9 genome editing through viral or non-viral delivery. Representative depiction of mechanisms and strategies involved

in CRISPR-Cas9 delivery with both viral and non-viral vectors. AAV and lentivirus both bind to cell surface receptors prior to cellular infection.

Following cellular internalization, AAVs have the capacity to escape the endosomes and transport across the nuclear membrane prior to uncoating,

though the capsid degradation mediated by proteasome can also occur in the cytoplasm. Following lentiviral cell membrane fusion is uncoating

and release of its RNA contents, which then undergo reverse transcription to form complementary DNA. Non-viral vectors offer the advantage of

carrying various forms of CRISPR-Cas9 cargoes including plasmid DNA, RNA, donor DNA, and RNP. Cellular entry of non-viral vectors is

accomplished via endocytosis which requires the NP to escape these endosomes in order to carry out its intended genome editing. Following

endosomal escape and cytosolic release, the cargo carried by a non-viral NP must travel to varying sites, such as the nucleus for transcription and/

or cytoplasm for translation. Once necessary transcription and translation steps have taken place with nucleic acid delivery approaches, a RNP is

formed and can translocate across the nuclear membrane for targeted genome editing. RNPs work to perform targeted DSBs by PAM- and

sgRNA-mediated recognition of a specific sequence of chromosomal DNA. Once this recognition occurs, the Cas9 nuclease can perform a DSB

utilizing its two nuclease domains the HNH and RuvC which cleave complementary and non-complementary DNA strands, respectively.

Following a DSB, there are multiple fates for genome editing such as, but not limited to, NHEJ and HDR. NHEJ is utilized for genomic disruption

or deletion, while HDR is utilized for gene correction, but requires the administration of an exogenous donor DNA template. AAV: adeno-

associated virus, NP: nanoparticle, CRISPR: clustered regularly interspaced short palindromic repeats, Cas9: CRISPR-associated protein 9, RNP:

ribonucleoprotein complexes, PAM: protospacer adjacent motif, DSB: double-stranded break, NHEJ: non-homologous end joining, HDR: ho-

mology-directed repair.
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arm sequences that align between both strands of the broken DNA,
allowing for end joining once the nucleotide sequences directly
adjacent to the original break and microhomologies are
cleaved17,18. MMEJ can be utilized as a mechanism for gene
insertion that requires shorter homology arms than HDR18,19.
Additionally, HMEJ works in a similar mechanism to MMEJ, but
instead with 800 bp homologous arm sequences to assist with
DNA repair or transgene insertion19. Lastly, HITI requires
administration of an exogenous donor DNA template for insertion,
however unlike HDR, HITI does not require chromosomal DNA
homology for insertion, and instead utilizes a three sgRNA system
to cleave chromosomal and donor DNA prior to insertion20.
3. Selecting the right cargoes for CRISPR-Cas9-based gene
editing therapy

Although Cas9 protein, sgRNA, and donor DNA template (if for
HDR) must present at the nucleus of target cells for genome
editing therapy, they are not necessarily the cargo originally
loaded into the delivery systems for administration. To enable
CRISPR-Cas9-based genome editing in vivo, there are multiple
choices in terms of cargoes. Direct delivery of Cas9/sgRNA
ribonucleoprotein (RNP) complexes is the most straightforward
choice, due to the high genome editing efficiency, rapid onset of
action, short resident time in the target cell, and reduced off-target
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effects. Alternatively, both the Cas9 protein and sgRNA may be
replaced by other forms of entities, such as plasmid DNA, mRNA,
or a viral genome inside a viral vector. In this case, Cas9 proteins
and sgRNAs are produced on site in the target cells to form RNPs
for genome editing. In addition, when HDR is the desired
approach, even the donor DNA sequence can be delivered by way
of plasmid DNA or viral genome. Depending on the disease,
desired dosing regimen, route of administration, and delivery
system, researchers have a variety of options to deliver DNA,
RNA and/or protein payloads to the target cells (Fig. 2). There are
four options for Cas9 enzymes: protein, plasmid DNA, mRNA, or
viral genome, three options for sgRNA: RNA, plasmid DNA, or
viral genome, and three options for DNA donor template: DNA
oligos, plasmid DNA, or viral genome. Mathematically, there are
twelve options (by multiplying four by 3) for NHEJ-mediated
genome disruption or deletion, and thirty-six options (by multi-
plying four by three by 3) for HDR-mediated gene insertion. In
this section, we discuss the options available for each component,
analyze advantages and disadvantages of the options, and provide
general guidance for consideration when making selections.

3.1. Cas9

Purified Streptococcus pyogenes Cas9 (SpCas9) protein is a posi-
tively charged molecule with a molecular weight of w163 kDa.
The large molecule size represents a problem for efficient entry
into both the cell and cell nucleus. In addition, its bacterial origin
makes the Cas9 protein immunogenic in humans, which may
decrease genome editing efficiency and increase the risk of a
genome editing therapy21. Pre-existing anti-Cas9 antibodies have
been detected in humans due to the frequent interaction with
bacteria in the past thousands of years22. Furthermore, the purifi-
cation process is still costly and time consuming. Moreover, it
requires significant work to ensure the purity, and maintain stability
and biological activity of Cas9 protein during the entire purifica-
tion, formulation, shipping, and storage process. Using mRNA or
plasmid DNA encoding Cas9 can avoid problems related to protein
production and purification while reducing the cost. If mRNA or
plasmid DNA are successfully delivered, Cas9 can be produced in
target cells where gene manipulation is expected to occur. How-
ever, intracellular delivery is difficult for both naked mRNA and
plasmid DNA as they are unstable and unable to enter target cells
by themselves. When a comparison is made between them,
mRNAs are more fragile and expensive. However, mRNAs do not
pose the risk of insertional mutagenesis on chromosomal DNA.
What’s more, mRNAs do not need to enter cell nucleus and can
produce Cas9 protein at cytosolic ribosomal sites as quickly as
w6 h post intracellular delivery. This is a significant advantage
over plasmid DNAwhich must be delivered into the cell nucleus to
initiate Cas9 expression. In addition, mRNA-mediated Cas9
expression is more transient compared to plasmid DNA-mediated
Cas9 transgene expression in target cells, further minimizing the
exposure of the cellular genome to Cas9 and reducing the risk of
off-target effects. The fourth option to deliver Cas9 is viral gene
delivery. Cas9 genes can be engineered into the recombinant
genome of viral vectors, such as adeno-associated viruses (AAVs)
or lentiviruses, which are proficient in producing Cas9 in target
cells. However, it has been shown that long-term Cas9 production
in target cells led to increased off-target effects and immunoge-
nicity21,23,24. Viral vectors also pose the risk of random gene
integration into the host genome. Although both SpCas9 and
Staphylococcus aureus Cas9 (SaCas9) genes can be delivered by
AAVs, it is important to note that the genes of some novel Cas
nucleases are too long to be packaged in a single AAV vectors.
Finally, mRNA, plasmid DNA, and viral genome all require
additional time to produce Cas9 enzymes in target cells, resulting
in delayed action. The delay may decrease genome editing effi-
ciency when an sgRNA is delivered concurrently, because sgRNAs
may be degraded in the cell before Cas9 protein is made.

3.2. sgRNA

An sgRNA is a negatively charged macromolecule with a molec-
ular weight of w31 kDa. Due to the ease of synthesis, sgRNA is a
popular cargo choice. Alternatively, plasmid DNA and viral
genome offer appealing advantages by expressing sgRNA right in
target cells. Plasmid DNA takes additional time to transcribe
sgRNA in the cell, causing a delayed expression of sgRNA. If Cas9
nuclease is co-delivered along with plasmid DNA encoding
sgRNA, Cas9 nucleases may not survive in the cell by the time
when sgRNA is expressed. This timing issue will lead to a
decreased genome editing efficiency. However, if a plasmid DNA
is delivered to express both Cas9 and sgRNA in target cells, the
timing issue is generally not a concern. If sgRNA is expressed by
viral vectors such as AAVs, sgRNA may be produced in target cells
for a prolonged period of time. This may provide convenience and
flexibility for Cas9 delivery as Cas9 protein is short-lived in cells.

3.3. DNA donor template

The selection of a donor DNA template applies to HDR-based and
HITI-based genome editing. Exogenous DNA template can be
delivered in the form of plasmid DNA, usually when the insertion
is a long DNA sequence. Alternatively, the DNA donor can be
delivered as a synthetic single-stranded DNA oligonucleotide
when the insertion sequence is short. Although a plasmid DNA is
more stable than a short DNA oligonucleotide, its intranuclear
delivery efficiency is lower due to the larger size. Moreover, when
a plasmid DNA is delivered, it is important to make sure that there
is no CRISPR targeting site in the plasmid DNA. Otherwise, the
HDR-edited gene locus will be cut by Cas9 protein, resulting in a
failed chromosomal DNA repair. AAV vectors can also deliver the
DNA donor template25e27, or simultaneously deliver both Cas9
and the donor DNA28. In the latter case, it helps increase gene
editing efficiency because a single AAV vector gets two genome
editing components into the same target cell.

4. Current vectors for in vivo delivery of CRISPR-Cas9
therapeutics

CRISPR-Cas9 system can be efficiently delivered into mammalian
cells by different ways such as using delivery vectors or physical
methods. Delivery vectors will be discussed in depth in this sec-
tion (Table 1). However, physical methods, including microin-
jection and electroporation, are more applicable to ex vivo
CRISPR-Cas9 based genome editing therapy. Thus, they are not
discussed in this review. We suggest interested readers refer to the
cited review articles covering physical methods29e32.

4.1. Current viral vectors for in vivo delivery of CRISPR-Cas9
system

Viruses are natural experts for in vivo gene delivery33. Recombi-
nant viral vectors have been in leading positions for human gene



Table 1 Viral and non-viral vectors for in vivo delivery of CRISPR-Cas9 therapeutics.

Delivery system Payload option Packaging capacity/

loading capacity

Advantage Disadvantage Progress

Adeno-associated

virus

Single-stranded DNA

viral genome

w 4.7 kb High transduction

efficiency

Transduces dividing

and non-dividing

cells in various

tissues

Very low

immunogenicity

Clinically proven safe

and efficient

Limited packaging

capacity

Preexisting

neutralizing

antibodies

Inflammation

Long-term Cas9

expression may

increase off-target

effects

High cost

Difficult large-scale

production

Clinical stage

Lentivirus Single-stranded RNA

viral genome

w 10 kb High transduction

efficiency

Transduces dividing

and non-dividing

cells in various

tissues

Large packaging

capacity

Very low

immunogenicity

Complicated

packaging

construct

High cost

Difficult large-scale

production

Clinical stage

Lipid nanoparticles RNP plasmid DNA

encoding Cas9 and/

or sgRNA

Cas9 mRNA

sgRNA

Donor DNA

Lack of report in most

studies

High biocompatibility

Minimal

immunogenicity

Relatively easy for

large-scale

production

Low toxicity

Temporal release of

CRISPR-Cas9 may

reduce off-target

effects

All-in-one delivery

Limited delivery

efficiency

Clinical stage

Polymer nanoparticles RNP plasmid DNA

encodinzg Cas9

and/or sgRNA

Cas9 mRNA

sgRNA

Donor DNA

Lack of report in most

studies

Minimal

immunogenicity

Relatively easy for

large-scale

production

Temporal release of

CRISPR-Cas9 may

reduce off-target

effects

All-in-one delivery

Limited delivery

efficiency

Variable

biocompatibility

and toxicity

Limited delivery

efficiency

Preclinical stage
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therapy due to high efficacy and long-term transgene expression.
Among many viral vectors, AAVs and lentiviruses are the most
widely used vectors in clinical studies, dominating in vivo and
ex vivo gene therapy clinical trials, respectively34e36. They have
been playing critical roles as the delivery vectors in pioneering
genome editing therapies (Fig. 3). Although adenoviruses, retro-
viruses, and herpes simplex viruses are also investigated for
in vivo genome editing, their applications are limited by different
weaknesses.
4.1.1. AAV
AAVs are very efficient vectors for in vivo gene delivery and gene
editing as they can infect both dividing and non-dividing cells in
varying tissues, mediate long-term and robust transgene expres-
sion, induce minimal immunogenicity, and have no known human
diseases associated with their infection37e39. More than 250 AAV
serotypes have been discovered and many of them have exhibited
robust ability to deliver genes to various organs and cell types
in vivo. Natural single stranded AAVs (ssAAVs) are composed of
an icosahedral protein capsid that encapsulates a single-stranded
DNA genome about 4.7 kb in length. Engineered self-
complimentary AAVs (scAAVs) carry a double-stranded DNA
genome, which reduces its capacity to carry transgenes40. Re-
combinant AAV genomes do not contain any gene encoding viral
replication proteins, which makes space for transgenes, or
expressing Cas9 nuclease, sgRNA, and in some cases donor DNA
template41. Clinical success of AAV-based gene therapies has been
well illustrated by regulatory approvals of Zolgensma�, Lux-
turna�, and Glybera�36.

Though AAVs represent an excellent platform for gene ther-
apy, they still possess weaknesses when used for in vivo delivery
of CRISPR-Cas9. One significant drawback is the packaging
limitation, which complicates all-in-one delivery as SpCas9 itself
is about 4.2 kb in size. Since recombinant AAVs must also contain
regulatory elements essential for gene expression, such as the
promoter region and polyadenylation signal, the small packaging
capacity creates significant inconvenience and disqualifies AAVs
for many applications where large gene sequences must be
delivered. Solutions to the packaging limit challenge include using
a truncated SpCas9, which is smaller in size but offers reduced
genome editing efficiencies, or using SaCas9, which is about
3.1 kb in size and shows comparable genome editing effi-
ciencies42,43. An alternative method is a dual-AAV strategy that
splits the components of the transgene cassette into two inde-
pendent viruses that are then co-infected44,45. Utilizing dual AAVs
is especially valuable for HDR-based gene correction and inser-
tion as a donor DNA template must also be included with Cas9
and sgRNA. Another significant problem faced by AAVs is the
pre-existing neutralizing antibodies in patients from prior AAV
infection, which requires serological testing before one can be
treated38. AAV’s long-term transgene expression can be seen as a
merit for sustained gene therapy, however, it can also be a risk as
continuous expression of Cas9 nucleases may cause significant
off-target effects46. Lastly, large-scale production of AAV is still
difficult47e49.

Since the first report of AAV-based CRISPR-Cas9 delivery for
in vivo genome editing, it has made exciting progress in numerous
disease models, including blood disorders50e52, metabolic liver
diseases44,53e55, muscular diseases56e58, and ocular diseases59,60.
In 2020, in a landmark clinical trial sponsored by Editas Medi-
cines (NCT03872479), AAV became the very first CRISPR-Cas9



Figure 3 Viral vector-mediated in vivo therapeutic genome editing. (A) Schematic representation of dual AAV8 strategy for site-specific gene

insertion in hepatocytes treating Hemophilia B52. Copyright Elsevier 2020. Under the permission of the Creative Commons Attribution-Non

Commercial-NoDerivativesLicense 4.0 (CCBY-NC-ND4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/). (B)AAV9 for systemic delivery

of CRISPR-Cas9 for deletion of SIV proviral DNA in ART treated rhesus macaques158. Copyright Springer Nature 2020. Under the permission of

the Creative Commons Attribution 4.0 international license (CC BY 4.0) international license (CC BY 4.0). (https://creativecommons.org/licenses/

by/4.0/) (C) AAV1 for systemic delivery of CRISPR-Cas9 for disruption of mutant HTT in medium sized spiny neurons to treat Huntington’s dis-

ease144. Copyright Elsevier 2019. Under the permission of the Creative CommonsAttribution-NonCommercial-NoDerivatives License 4.0 (CCBY-

NC-ND4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/). (D) Systemic lentiviral delivery ofCRISPR-Cas9 forKRASdisruption to suppress

colorectal adenocarcinoma growth72. Copyright Cold Spring Harbor Laboratory Press 2018. Under the permission of the Creative Commons

Attribution-Non Commercial License 4.0 (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/).

2156 Matthew Behr et al.
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Figure 4 Non-viral vector-mediated in vivo therapeutic genome editing. (A) Biodegradable LNP encapsulated Cas9 mRNA and sgRNA for

TTR disruption in hepatocytes and prolonged reduction of serum TTR in a transthyretin amyloidosis model90. Copyright Cell Press 2018. Under

the permission of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CC BY-NC-ND 4.0) (https://

creativecommons.org/licenses/by-nc-nd/4.0/). (B) Polymer nanocomplex for Cas9 plasmid DNA delivery for CDK5 disruption treating PD-L1-

expressing melanoma and triple-negative breast cancer132. Copyright Elsevier 2020. Under the permission of the Creative Commons Attribution-

Non Commercial-No Derivatives License 4.0 (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/). (C) Lipid encapsulated

gold NP delivery of sgRNA plasmids and Cas9 protein for Plk1 disruption and melanoma suppression117. Copyright John Wiley and Sons 2017.

Under the permission of the Creative Commons Attribution 4.0 international license (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/).

(D) Helical polypeptide-based delivery of Cas9/sgRNA expressing plasmids for Plk1 disruption in HeLa cell tumors111. Copyright PNAS 2018.

Under the permission of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CC BY-NC-ND 4.0) (https://

creativecommons.org/licenses/by-nc-nd/4.0/).
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delivery vector for direct injection into a patient of Leber
congenital amaurosis type 10.

4.1.2. Lentivirus
Lentivirus is an enveloped RNA virus with a single stranded
genome that belongs to the retrovirus family61e65. Unlike other
retroviruses, lentiviruses and can infect both dividing and non-
dividing cells. Lentiviruses, such as HIV-1, are more complex
than retroviruses as they contain an additional six genes; tat, rev,
vpr, vpu, nef, and vif that are involved in viral replication and
pathogenesis. However, some of these accessory genes involved in
the virulence of lentiviruses can be removed to decrease their
immunogenicity66,67. Typically, lentiviruses integrate their genomes
into the host genome, which can significantly prolong transgene
expression time, but this may increase the risk for adverse effects.
Researchers have modified lentiviral integrase DNA to induce
mutations leading to prevention of proviral integration, forming
what is known as integration defective lentiviruses (IDLV)71.

Benefits of using lentiviruses for in vivo gene therapy include
its 10 kb carrying capacity and prolonged transgene expres-
sion66,68. These attributes allow for decreased challenges with
packaging limit when compared with AAV. Disadvantages of
in vivo utilization include the potential for oncogenicity, inser-
tional mutagenesis, and supra-physiological levels of RNA and/or
proteins due to prolonged transgene expression time, however,
these are reduced when using IDLVs69. Additionally, the inclusion

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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of multiple regulatory genes involved in replication may further
complicate the packaging construct69. Though they have promise
as an in vivo delivery system, lentiviral vectors are an excellent
option for ex vivo gene editing as they offer efficient cellular
transduction in numerous cell types and shorter culture times
needed for cell transfection70. These attributes make ex vivo
editing with lentiviruses desirable due to their relative ease of use,
which lessens challenges associated with large scale production
needed for clinical utility.

Preclinical studies have demonstrated the utility of lentiviral
vectors for both systemic and localized in vivo delivery of Cas9
and sgRNA for therapeutic gene disruption in wet age-related
macular degeneration (AMD) and cancer models71e73. When
used for ex vivo transduction, lentivirus has proved superior to
other vectors in clinical studies. Two lentiviral vector-based
ex vivo gene therapeutics, Kymriah� and Zynteglo�, have been
approved for use by the US Food and Drug Administration (FDA)
and European Medicines Agency (EMA), respectively36.

4.2. Non-viral vectors for in vivo CRISPR-Cas9 delivery

Many types of non-viral vectors used for protein, gene and RNAi
delivery were adopted or modified for in vivo CRISPR-Cas9 de-
livery. These include liposomes, lipid nanoparticles (LNPs),
polymeric nanoparticles, peptide nanoparticles, and inorganic
nanoparticles (Fig. 4). They possess multiple attractive advan-
tages, such as minimal immunogenicity, low cost in large scale
production, the capability to deliver all components of a CRISPR-
Cas9 system within one vector (all-in-one delivery), and the
flexibility to deliver various cargoes (RNP, plasmid DNA, mRNA,
sgRNA, donor DNA)32,74. Multiple non-viral vectors are evaluated
for delivery of genes or RNAi in clinical studies.

4.2.1. Lipid-based nanocarriers
Liposomes have been used for drug delivery for multiple de-
cades75. Liposomes are characterized by a hydrophobic lipid
bilayer and an inner aqueous pool76. In recent years, LNPs joined
liposomes to address the challenge of safe and efficient gene de-
livery. LNPs are structurally distinct from liposomes, as the
continuous lipid bilayer and large inner aqueous pool are absent77.
However, both types of nanocarriers are primarily composed of
natural phospholipids or their derivatives, cholesterol, cationic or
ionizable lipids, and polyethylene glycol (PEG)-lipids. To
condense and protect the negatively charged DNA or RNA
cargoes, permanently charged cationic lipids, such as 1,2-di-O-
octadecenyl-3-trimethylammonium propane (DOTMA), 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP) and dime-
thyldioctadecylammonium (DDAB), were commonly used in
early versions of the nanoparticles for the delivery of plasmid
DNA and RNA molecules (e.g., siRNAs, miRNAs and mRNAs).
In the past decade or so, these permanently charged lipids were
gradually surpassed and replaced by ionizable cationic lipids, such
as ALC-0315 and SM-102, which demonstrated superior trans-
fection efficiency and reduced cytotoxicity for mRNA delivery78.

With the surge of preclinical and clinical studies of genome
editing therapies, a great amount of knowledge accumulated for
DNA and RNA delivery was quickly translated into the delivery
of CRISPR-Cas979. Although cationic liposomes were the very
first type of non-viral vector for traditional human gene replace-
ment therapy80,81, their application in gene therapy is still in the
clinical investigation stage. In comparison, LNP-based Onpattro�
has already received regulatory approval. Very recently, two LNP-
based mRNA vaccines were authorized for emergency use in the
United States to fight against COVID-19 pandemic82,83. LNPs
have been used in many preclinical studies for CRISPR-Cas9
delivery in the past several years84e89. The most promising
application is in the genome editing of liver cells. Several groups
reported that upon intravenous administration, LNPs efficiently
deliver the payloads to liver cells due to the strong liver tropism
induced by low-density lipoprotein (LDL) receptors on liver
cells77,86,90,91. Recently, Siegwart and colleagues reported a novel
modifiable LNP platform called selective organ targeting (SORT)
LNP, by adding a fifth lipid component to the established LNP
formulation. SORT LNPs delivered different CRISPR cargoes,
including RNPs and Cas9 mRNA/sgRNAs, for efficient genome
editing in the liver, lungs, and spleen after intravenous adminis-
tration92. Although this strategy is very promising to expand the
usefulness of LNPs, the most possible reason why SORT LNPs
preferentially accumulated in the liver and spleen is because they
are easily opsonized and captured by the reticuloendothelial
systems. In addition, selective delivery to the lungs may result
from the positive surface charge of intravascular SORT LNPs.
Therefore, to achieve more success in other tissues, such as the
brain, heart and kidney, stealth SORT LNPs will be needed.
Nonetheless, LNP-delivered CRISPR-Cas9 therapeutics has made
rapid progress. In 2020, Intellia Therapeutics’ NTLA-2001, a
CRISPR-Cas9 gene editing system delivered by LNP, was injec-
ted into a patient in a human clinical trial (NCT04601051) for the
treatment of transthyretin amyloidosis.

4.2.2. Polymer-based nanoparticles
Polymer nanoparticles have gained popularity as delivery systems
due to their numerous strengths including controlled drug release,
payload protection, minimal immunogenicity, biodegradability,
and improved bioavailability of active components. Polymer-
based delivery vectors have been used in clinic for small molec-
ular weight drugs and protein/peptide drugs for many years. The
safety and effectiveness of polymeric nanoparticles in gene ther-
apy have been investigated in multiple clinical trials93. Commonly
used polymers for gene and protein delivery include poly (lactic-
co-glycolic-acid) (PLGA), poly (b-amino ester) (PBAE), poly-
ethylenimine (PEI), cyclodextrin (CD) derivatives, and poly
(ethylene-glycol) (PEG). Though these nanoparticles hold great
promise as delivery systems, they also provide the challenge of
variable biocompatibility and toxicity.

Polymer nanoparticles have shown utility as in vivo delivery
systems for CRISPR-Cas9 payloads. Chen et al.94 coated pre-
assembled RNPs by a thin glutathione-cleavable covalently cross-
linked polymer layer and yielded a very fine nanocapsule with a
diameter of only w25 nm. In an Ai14 mouse strain, this polymeric
nanocapsule induced efficient genome editing in retinal pigment
epithelium cells following subretinal injection, and skeletal muscle
after intramuscular injection. In another study, Wan et al.95 skill-
fully leveraged the amides and oxyanions that specifically present
in Cas9 proteins and complexed RNPs with low-molecular-weight
PEI modified CD through hydrogen bonding and salt bridge effects.
The resulting stable nanoparticle efficiently enabled genomic
disruption of mutant KRAS in a murine tumor model. Other
polymer-based or hybrid delivery systems have also shown success
in delivering CRISPR-Cas9 components in preclinical studies,
including solid-tumor malignancies96e98, and disease states char-
acterized by over-activation of the immune system, such as septic
shock99, peritonitis99, allograft rejection100, glioma101, and type
two diabetes mellitus99,100,102,103.
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4.2.3. Peptide nanoparticles
Peptides have attracted much attention in CRISPR-Cas9 delivery
because they can be used as not only backbone materials, but also
surface modifying molecules of nanoparticles. Several types of
peptides have been explored for self-assembly of nanoparticles.
Peptide nanoparticles aid in payload protection, cellular targeting,
intracellular delivery, and endosomal escape104e106. Though
peptide-based delivery mechanisms have multiple positive as-
pects, they are still faced with multiple challenges, such as
immunogenicity, reduced activity due to protease degradation, and
potential toxicities caused by foreign peptides.

Peptide nanoparticles and conjugates have been used suc-
cessfully in delivering CRISPR-Cas9 components in preclinical
studies for genome editing107e111. Recently, He and colleagues
reported a novel self-assembled peptide nanoparticle which
selectively delivered CRISPR-Cas9 components to the mito-
chondria of cancer cells for mitochondrial DNA editing112. This
work greatly expanded the potential applications of CRISPR-Cas9
to mitochondrial DNA editing. Though these preclinical models
shown positive therapeutic effects, peptide-based delivery systems
have yet to enter clinical trials involving CRISPR-Cas9
therapeutics.

4.2.4. Inorganic nanoparticles
Gold nanoparticles have been used to aid in the delivery of imaging
agents, nucleic acids and proteins. Gold is an attractive option for
nanoparticle formulation as it is relatively biocompatible, can
permeate multiple cell types, and can be conjugated with other
components, such as cell penetrating peptides, nucleic acids, lipids
and/or polymers to increase delivery efficiency113,114. Although
these nanoparticles are considered relatively non-immunogenic,
their toxicity profile is largely dependent on physicochemical
properties such as size, shape, charge, and surface modifica-
tions115,116. Recently, gold nanoparticles have been used in pre-
clinical studies as a medium for conjugation of Cas9-sgRNA RNPs
or Cas9 protein and sgRNA-encoding plasmids for in vivo genome
editing via local administration117,118.

Silica nanoparticles are another noteworthy delivery system,
which have shown the capability to successfully delivery CRISPR-
Cas9 to multiple organs and cell types for genome editing. These
delivery systems have seen an introduction into CRISPR delivery as
they are very versatile, biocompatible, and can be modified in
multiple ways based on delivery strategy119. Some of this versatility
is seen in alterations of particle size as well as chemical modifica-
tions which allow for better encapsulation and/or conjugation of
CRISPR-Cas9 components or other materials involved in delivery,
such as lipids or polymers. When utilized for CRISPR delivery in
preclinical studies, these nanoparticles are commonly mesoporous
and formulated with tetraethyl orthosilicate (TEOS) as well as
conjugated with some form of lipid or organic compound. Multiple
preclinical applications demonstrated the potential of silica nano-
particles for in vivo delivery of CRISPR-Cas9 to treat murine models
of hypercholesterolemia120, hepatocellular carcinoma121, pulmonary
adenocarcinoma122, and melanoma123 as well as proof-of-concept
editing in retinal pigment epithelium124 and brain neurons125.
5. CRISPR-Cas9 mediated in vivo genome editing therapy

Many diseases require safe and efficient in vivo delivery of CRISPR-
Cas9 components in order to enable accurate genome editing in
target cells and tissues. So far, multiple viral vectors and non-viral
vectors have demonstrated the usefulness for CRISPR-Cas9-
mediated genome editing in various tissues in preclinical studies.

5.1. Genome editing therapy in liver

The liver is a popular target for therapeutic gene editing as it involves
in metabolism and the production of numerous essential proteins.
CRISPR-Cas9 has been administered systemicallywith both viral and
non-viral vectors for therapeutic gene editing in the liver to treat
conditions such as hemophilia, familial hypercholesterolemia,
phenylketonuria, and ornithine transcarbamylase deficiency.

Hemophilia B is an X-linked condition that results from
dysfunction or deficiency of coagulation factor IX (FIX).
Recently, Wang et al.52 utilized a dual AAV8 delivery system to
intravenously deliver SpCas9 and sgRNA genomes as well as
codon-optimized partial human FIX for HDR at the albumin locus
in hepatocytes of hemophilia B-induced mice52. CRISPR-Cas9
treated adult and neonatal hemophilia B-induced mice showed a
site-specific gene integration with an on-target indel percentage of
21%e34% in adults and 26.1%e40.1% in neonates as well as an
HDR percentage of 3.0%e4.6% in adults and 8.2%e16.1% in
neonates. Both adult and neonatal mice exhibited a significant
increase in FIX protein and FIX activity when compared to control
treated mice, and these results were sustained until the study was
completed 48 weeks post-injection (Fig. 3A).

Familial hypercholesterolemia can be related to overexpression
of proprotein convertase subtilisin kexin 9 (PCSK9), as it regu-
lates the degradation of LDL receptors in hepatocytes in response
to blood cholesterol levels126. This disease is inherited in an
autosomal dominant pattern and leads to increased levels of LDL
in the bloodstream, causing atherosclerosis and thromboembolic
events127. Liu et al.88 utilized bioreducible LNPs formulated with
cholesterol, DOPE, and DSPE-PEG2000 to deliver Cas9 mRNA
and sgRNA targeting PCSK9 for NHEJ-mediated disruption in
mice hepatocytes via single intravenous injection. CRISPR-Cas9
therapy led to a 20% decrease in serum PCSK9 when compared
to untreated mice. Treated mice also showed no significant
changes in aspartate aminotransferase (AST), alanine amino-
transferase (ALT), and total bilirubin when compared to mice
treated with phosphate buffered saline.

Phenylketonuria is a metabolic liver disease inherited in an
autosomal recessive manner in which the body has a deficiency of
the enzyme phenylalanine hydroxylase (PAH), leading to
decreased metabolism of L-phenylalanine and hyper-
phenylalaninemia128. Those untreated with this condition develop
neurologic complications due to hyperphenylalaninemia. Villiger
et al.54 demonstrated effective administration of a dual AAV8
delivery system via intravenous injection to phenylketonuria-
induced mice. AAVs with genomes encoding a SaCas9 base edi-
tor and a sgRNA targeting PAH in hepatocytes induced an on-
target indel percentage of up to 10.5% and gene correction of
up to 63% in hepatocytes. PAH correction led to a significant
increase in PAH enzyme activity, a decrease in blood phenylala-
nine levels, and maintenance of mouse body weight and fur
pigmentation. Following AAV8 therapy, mice showed no signifi-
cant off-target indels at ten predicted loci as well as no indication
of DNA damage or cell proliferation.

Ornithine transcarbamylase deficiency (OTCD) is inherited in
an X-linked recessive manner and affects key components of the
urea cycle causing supra-physiological levels of ammonia to
accumulate, which can lead to neurological complications and
mortality129,130. Wang et al.55 showed the utility of gene
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correction with dual AAV8 delivery of genomes expressing
SaCas9, sgRNA targeting OTC in hepatocytes, and donor DNA
template via intravenous injection for the treatment of OTCD in
mice. CRISPR-Cas9 therapy induced an on-target indel per-
centage that ranged from 22% to 38% and an HDR efficiency of
2%e10%. Genome editing effects were seen at three and eight
weeks when liver samples were harvested for analysis. CRISPR-
treated mice showed restoration of OTC activity up to 79% of
wild type as well as significantly increased survival time and
lower levels of ammonia, which were also comparable to levels
in wild type mice.

These studies showed encouraging results for therapeutic
genome editing in the liver. Studies conducted by both Wang
et al.52 and Villiger et al.54 demonstrated the ability for prolonged
therapeutic effects of up to 48 and 26 weeks, respectively. Alter-
natively, the studies conducted by Liu et al.88 and Wang et al.55

lacked off-target indel data and a long-term follow-up period,
leaving the long-term efficacy and toxicity of each therapy to be
further investigated.

5.2. Genome editing therapy in tumors

CRISPR-Cas9 can serve as a novel treatment method for various
malignancies as NHEJ-mediated gene disruption or deletion is a
significant tool in blocking tumor growth mechanisms and/or
immune resistance. Systemic injection is typically the preferred
route of administration because many cancers are metastatic and
present with tumor involvement in multiple organs. However,
CRISPR-Cas9 components can also be delivered via intratumoral
injection to treat localized cancer. CRISPR-Cas9 therapeutics
have showed success as a treatment in preclinical malignancy
models, including triple negative breast cancer, nasopharyngeal
carcinoma, and melanoma.

Triple-negative breast cancer (TNBC) is an aggressive form of
breast cancer that is highly metastatic. Guo et al.97 have demon-
strated the ability of a tumor targeting nanolipogel (tNLG) de-
livery system for deleting oncogene lipocalin 2 (LCN2). The tNLG
delivery system is a non-cationic, lipidepolymer hybrid,
composed of DOPC, and DSPE-PEG-COOH as well as alginate.
TNLGs are covalently conjugated with an antibody targeting
intracellular adhesion molecule 1 (ICAM1) to maximize editing
efficiency and specificity. This robust delivery system encapsu-
lated three plasmids expressing Cas9 and sgRNAs targeting
differing DNA sequences of LCN2 for NHEJ-mediated deletion
and was administered via repeated intravenous injections. TNLG
therapy induced an on-target genome editing efficiency of 80%,
which led to significant decreases in LCN2 expression as well as
tumor volume and mass when compared to control-treated mice.
Additionally, this therapy was only associated with minimal sys-
temic toxicity.

CRISPR-Cas9 genome editing therapy was also combined with
photodynamic therapy for cancer treatment. Deng et al.131 co-
delivered CRISPR-Cas9 RNP with photosensitizer chlorin e6 to
a xenograft nasopharyngeal carcinoma mouse model using a near
infrared (NIR) light and reducing environment-responsive poly-
meric nanoparticle. This delivery system was administered via
repeated intravenous injection and encapsulated SpCas9/sgRNA
RNP targeting nuclear factor erythroid 2-related factor 2 (NRF2),
an antioxidant regulator, for NHEJ-mediated disruption in CNE2
tumor cells. Upon administration, NIR light was exposed to the
tumor location, which destabilized lysosomal membranes and
allowed the entry of Cas9/sgRNA RNP into the cytoplasm. This
therapy induced an on-target indel percentage of 26.7%e32.28%
with off-target percentages up to 4.1% in the tumor and liver
tissues. Treatment with Cas9/sgRNA, chlorin e6, and NIR (T-CC/
NIR) led to a decreased expression of NRF2, hypoxia-inducible
factor 1a (HIF1a), and vascular endothelial growth factor-A
(VEGF-A). Additionally, T-CC/NIR-treated mice showed an
increased survival time by 80% as well as significantly decreasing
tumor volume when compared to controls. CRISPR-treated mice
had similar tissue structure in major organs and body weight
fluctuations when compared to untreated mice.

The over-expression of cyclin dependent kinase 5 (CDK5) in
melanoma and TNBC is involved in angiogenesis, apoptosis, and
immune checkpoint regulation of tumor cells132. In a recent study,
Deng et al.98 used a poly (beta-amino-ester) copolymer nano-
particle to administer a SpCas9/sgRNA expressing plasmid tar-
geting CDK5 for NHEJ-mediated disruption. CDK5 disruption has
exhibited the ability to decrease levels of programmed-death
ligand-1 (PD-L1) which activates its receptor, programmed cell
death protein (PD-1), on T cells, leading to decreased T cell
activation and increased tumor cell proliferation133,134. In both
models, CRISPR therapy led to significant reductions in the
expression of CDK5, PD-L1, and P35, as well as decreased tumor
volume, weight, and lung metastasis (TNBC model). CDK5
disruption led to greater inhibition of tumor growth than the
administration of anti-PD-L1 antibodies, and in the melanoma
model, prolonged lifespan to 40 days compared to 26 days in PBS-
treated mice. CRISPR-treated mice experienced no severe sys-
temic toxicity (Fig. 4).

None of the preclinical malignancy studies reported long-term
data after genome editing treatment, which is most likely due to the
severity and progression of disease states. Also, some studies
lacked indel data which complicates conclusions on their potential
efficacy and safety. Interestingly, from antibody conjugation, to
immune checkpoint inhibition, to NIR exposure, each study utilized
unique tactics to improve genome editing effects and specificity.
Creative approaches such as these may prove to be a key compo-
nent for the future clinical application of in vivo CRISPR therapies.

5.3. Genome editing therapy in muscle

Skeletal and cardiac muscle have been targeted for CRISPR-based
gene editing using both systemic and local injection strategies.
Treatment with both non-viral and viral delivery systems has
shown promise in conditions such as DMD and catecholaminergic
polymorphic ventricular tachycardia (CPVT).

DMD is a disease typically inherited in an X-linked recessive
manner resulting from mutations in the DMD gene that encodes
the protein dystrophin5. Loss-of-function mutations in DMD
causes muscle weakness and wasting that can be fatal as dystro-
phin plays a crucial role in muscle structure and function by
stabilizing the sarcolemma135. Zhang et al.56 reported successful
rescue of DMD mice through in vivo genome editing by using a
dual AAV delivery strategy, with ssAAV-packaged SpCas9 and
ssAAV- or scAAV-packaged sgRNA. In mice with exon 44 of
DMD deleted, intraperitoneal injection of AAV9 targeting exon 45
of DMD in skeletal and cardiac myocytes resulted in exon skip-
ping or reframing therapy and caused dose-dependent on-target
indel percentages of up to 30%. On-target indels were signifi-
cantly higher in tibialis anterior (TA) and triceps when treated
with scAAVs package sgRNA. CRISPR-treated mice experienced
significant restoration of wild type dystrophin in TA, triceps,
diaphragm, and heart. Treated mice also showed a significant
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increase in specific force from extensor digitorum longus and
soleus muscles, as well as increased maximal tetanic force when
compared to untreated mice, with scAAVs more so than ssAAVs.
Genome editing effects persisted for 4 weeks following AAV
delivery when mice were sacrificed for analysis.

CRISPR-Cas9 mediated genome editing in muscular tissues
was also achieved using extracellular vesicles (EVs). Gee et al.136

loaded RNP into an extracellular nanovesicle called NanoMEDIC
(nanomembrane-derived extracellular vesicles for the delivery of
macromolecular cargo), and demonstrated successful genome
editing in cultured cells and in mdx mice. Efficient loading of RNP
into EVs in producer cells was achieved through a chemical-
induced dimerization process. In addition, an expression vector
containing two lentiviral vector elements, including HIV-1 Tat,
was used to express sgRNA. Moreover, self-cleaving ribozymes
were flanked to sgRNA to facilitate its release in target cells.
Despite the elegant yet complicated design, NanoMEDIC encap-
sulated SpCas9/sgRNA RNPs enabled exon skipping in muscular
cells in a luciferase mouse model for up to 160 days, indicating
the potential for in vivo DMD treatment. Although this proof-of-
concept study did not report off-target editing or adverse event
data, Tat may be included in EVs, which represents a potential risk
factor to targeted cells.

CPVT is a disease typically caused by a missense mutation in the
RYR2 gene that encodes the ryanodine receptor 2 (RYR2), which is
found on the sarcoplasmic reticulum (SR) in cardiomyocytes within
the heart. This mutation is inherited in an autosomal dominant
pattern and leads to incorrect expression of a protein subunit
involved in the regulation of calcium release from RYR2, increasing
intracellular calcium concentration in the sarcomere137. Pan et al.138

utilized AAV9 for NHEJ-mediated gene disruption in a CPVT mice
model with an RYR2 mutation. Mice were treated via subcutaneous
injection of AAV9 expressing both SaCas9 and sgRNA targeting
exon eight of RYR2 for disruption in cardiomyocytes. CRISPR-Cas9
therapy led to an on-target indel percentage of 9.91%e12.69% with
no significant off-target indels occurring. RYR2 disruption led to
significant decreases in RYR2 expression and calcium release from
SR in cardiomyocytes when compared to control-treated mice.
Following adrenergic stimulation, 71% of the control AAV9-treated
mice experienced arrhythmia, while arrhythmia was not seen in any
of the CRISPR-treated mice. CRISPR-treated mice also showed
minimal systemic toxicity.

Of the preclinical studies targeting muscle, none included a sig-
nificant long-term follow up and some did not report off-target indel
data. Though the results from each showed encouraging possibilities
for CRISPR therapies targeting muscles, the lack of long-term data
and missing indel data will require more studies to be completed to
validate the long-term efficacy and safety of these therapies.

5.4. Genome editing therapy in the central nervous system
(CNS)

Local injection of CRISPR-Cas9 into the CNS has enabled gene
editing for the treatment of multiple devastating neurodegenera-
tive conditions. Both non-viral and viral vectors have been used in
treatment of conditions such as Alzheimer’s disease, Huntington’s
disease, and amyotrophic lateral sclerosis.

Alzheimer’s disease is inherited in an autosomal dominant
pattern and is characterized by accumulation of amyloid beta plaque
and neurofibrillary tangles in the brain, which can lead to synaptic
dysfunction, hippocampal neuron loss, and memory impair-
ment139,140. For amyloid beta formation to occur, amyloid precursor
protein must first be processed by beta secretase 1 (BACE1), which
represents a potential yet difficult therapeutic target141,142. In an
effort to ameliorate familial Alzheimer’s disease in mice, Park
et al.109 developed a simple but effective amphiphilic peptide
nanoparticle to deliver Cas9/sgRNA RNP targeting BACE1 for
NHEJ-mediated disruption via intrahippocampal injection. The
cationic R7L10 peptide successfully delivered RNP to post-mitotic
neuronal cells in mice, with an on-target indel percentage of
roughly 45% and without significant off-target indels in nine pre-
dicted loci. BACE1 disruption caused a significant reduction in
BACE1 expression, percent area of total amyloid beta plaque, and
amyloid beta 42 accumulation and secretion. Two intrahippocampal
injections showed significantly decreased levels of BACE1 and
percent area of amyloid beta when compared to mice treated with a
single injection. Treated mice also showed a significant improvement
in spatial working memory and associative learning when compared
to untreated mice. This therapy demonstrated relative safety, causing
minimal increases in inflammation, reactive microglia, blood urea
nitrogen, and cleaved caspase 3. Therapeutic and toxic effects of this
therapy were measured up until 12 weeks post-injection.

Huntington’s disease (HD) is caused by a mutation to the
huntingtin (HTT ) gene causing expression of an altered HTT
protein that is neurotoxic and is commonly inherited in an auto-
somal dominant pattern143. Ekman et al.144 reported the utility of
NHEJ-mediated HTT disruption in treating Huntingtonʹs disease
in mice. Mice were given a single intra-striatal injection of AAV1
expressing SaCas9 and sgRNA targeting HTT in medium sized
spiny neurons of the brain. This therapy induced an on-target indel
percentage of up to 15% with no significant off-target indels
occurring at ten predicted loci. HTT disruption led to a significant
decrease in HTT protein and mutant HTT proteins, as well as a
15% increase in mean survival when compared to control-treated
mice. Additionally, mice with reduced levels of HTT protein
showed improved motor function and decreased hind limb
clasping. CRISPR-treated mice showed no significant difference
in body weight when compared to control-treated mice, as both
declined over the course of the 15-week study. Body weight
decline is an indicator of HD onset and researchers in this study
attributed this outcome in both groups to disease onset prior to
AAV-therapy. Genome editing effects were seen for 15 weeks
post-injection when all mice eventually died (Fig. 3C).

Amyotrophic lateral sclerosis (ALS) typically causes motor
neurons loss and presents with symptoms including muscle atro-
phy, paralysis, and eventual respiratory dysfunction4,145. ALS has
multiple inheritance patterns and its pathogenesis can be attributed
to mutations in superoxide dismutase 1 (SOD1), causing a mal-
functioning protein which increases the oxidative stress and in-
duces progressive motor neuron loss146. Lim et al.147 have
demonstrated the potential of using AAV9 expressing SpCas9 and
sgRNA targeting mutant SOD1 to induce nonsense mutations in
murine astrocytes of the CNS. Intrathecal injection of the AAV9-
based CRISPR therapy led to an on-target editing efficiency of
about 1.2% in the cervical spinal cord with 4% off-target editing
in one of ten predicted loci, though it occurred in a non-protein
coding region. SOD1 editing resulted in a significant decrease in
SOD1 reactive inclusions in ventral white matter and anterior grey
matter when compared to control-treated mice. Additionally,
SOD1 editing led to increases in mean survival time and disease
duration as well as a higher rotarod percentage, increased motor
function, and greater hind limb grip strength when compared to
control-treated mice. CRISPR-treated mice showed no signs of
discomfort or toxicity throughout the study, indicating the
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potential safety profile of this therapy. The duration of genome
editing effects in this study varied based on survival times which
ranged from 128.6 to 150.2 days.

All highlighted CNS genome editing studies utilized a local
administration technique and showed positive therapeutic outcomes
related to each specific disease state. However, these effects were not
sustained for more than 6 months. Though these studies have offered
promising results, direct local administration enables genome editing
in limited areas surrounding the injection sites. Thus, neurological
diseases affecting large areas of CNS would require multiple inva-
sive local injections, which increases surgical costs and risk for po-
tential infections. So far, proof-of concept studies illustrating the
safety and efficacy of treating neurological diseases by systemic
administration of CRISPR-Cas9 system have yet to be reported.

5.5. Genome editing therapy in eyes

CRISPR-Cas9 has found utility for treatment of numerous ocular
conditions. Local delivery is desired in this case as a much smaller
dose is required. In addition, local injection reduces the potential
for off-target editing or adverse events. Delivery with both non-
viral and viral delivery systems has showed promise in treating
conditions such as X-linked juvenile retinoschisis and age-related
macular degeneration.

X-linked juvenile retinoschisis is caused by a mutation in
retinoschisin 1 (RS1), causing decreased expression by foveal and
macular cone photoreceptors as well as bipolar cells148. RS1 helps
preserve the structure and function of the retina via cell adhesion.
Decreased RS1 level can lead to splitting in the macula or sur-
rounding areas of retina, causing reduced signal transduction and
progressive vision loss149. Chou and colleagues developed a
modified polyamidoamine (PAMAM) dendrimer nanoparticle
delivery system to encapsulate donor RS1 DNA template plasmids
as well as plasmids expressing Cas9/sgRNA targeting RS1150. This
dendrimer nanoparticle delivery system was administered via
single intravitreal injection for RS1 gene insertion via HITI. RS1
gene knock-in was seen at post-injection day 18 and was deter-
mined using green fluorescent protein (GFP) signaling. Knock-in
persisted until post-injection Day 30 when mice were sacrificed.
Analysis of mice eyes showed no histological abnormalities as
well as GFPþ ganglion cells in the retina.

Ling et al.71 reported that a single subretinal injection of
IDLV vectors successfully enabled genome editing and reduced
choroidal neovascularization (CNV) in a murine model of wet
age-related macular degeneration. This lentivirus-based therapy
delivered SpCas9 mRNA and an sgRNA expression cassette
targeting VEGFA in retinal pigment epithelial cells for NHEJ-
mediated disruption. CRISPR-treated mice showed an on-
target indel percentage of up to 44% and no significant
off-target indels detected in seven predicted loci. VEGFA
disruption led to a significant reduction of both VEGFA
expression and CNV area when compared to PBS-treated mice.
Seven days following gene editing therapy, mice showed no
significant CD3þ T cell infiltration into retinas or RPE as well as
no significant difference in anti-Cas9 IgG when compared to
PBS-treated mice. The minimal immunogenicity of this therapy
may be due to the route of administration as the eye is consid-
ered an immune-privileged organ. Genome editing and thera-
peutic effects persisted for two weeks post-injection when mice
were sacrificed for analysis.

For ocular diseases caused by loss-of-function mutations in
larger genes, traditional gene replacement therapy or NHEJ-based
genome editing therapy cannot use AAV due to its limitation in
cargo capacity. Even though dual AAV strategy achieved success
in several preclinical studies44,55, the absolute genome editing
efficiency in post-mitotic neuronal cells is very low. One of the
reasons is that dual AAV strategy does not get every component in
target cells at the same time. To improve the genome editing ef-
ficiency, Nishiguchi et al.151 reported a single AAV strategy to
enable MMEJ in a murine model of retinal dystrophy. MMEJ
utilizes smaller homology arms (about 20 bp) in the packaging
construct to allow more room for CRISPR components and
donor DNA, to correct vision-impairing mutations152,153. In
this study, a single AAV2/8 vector was used to deliver
SaCas9, sgRNAs, and donor DNA for mutation replacement.
Gnat 1IRD2/IRD2 Pde6ccpfl1/cpfl1 mice, who are blind due to muta-
tions causing rod and cone cell loss154, were treated via subretinal
injection with sgRNAs targeting Gnat1 in rod cells for correction
of the IRD2 mutation. Successful mutation correction efficiency
was between 10% and 11% at 1- and 3-months post-injection,
which is much higher than dual AAV strategy. No significant
off-target indels were detected at 14 predicted loci. Treated mice
showed an increase in rod cell activity as well as improvements in
light sensitivity and visual acuity.

Though not all preclinical studies demonstrating ocular gene
editing provided a long-term follow up, these studies showed
positive effects. Utilization of HITI and MMEJ provides an
interesting contrast to many other preclinical studies that opted for
more traditional editing strategies. In the case of MMEJ, this may
be a great option to allow for all-in-one packaging of key CRISPR
components to bypass the packaging limit challenges seen with
AAV delivery.

5.6. Genome editing therapy in inner ear

CRISPR has shown its capability as a genome editing tool in the
inner ear. Preclinical studies have demonstrated the feasibility of
local delivery into the inner ear using both viral and non-viral
vectors. Though inner ear editing is not as widely established as
editing in other organs, localized otic CRISPR-Cas9 administra-
tion is significant for the treatment of hearing loss disorders to
preserve physiological function and improve hearing.

Liu’s group initially explored the feasibility of CRISPR-Cas9-
mediated genome editing in the inner ear in a transgenic GFP
mouse model79. In this proof-of-concept study, cationic lipid
transfection reagent Lipofectamine RNAiMAX or Lipofectamine
2000 successfully delivered CRISPR-Cas9 RNP and enabled inner
ear genome editing. This paved the way for the following thera-
peutic studies. In a recent study, the same group demonstrated that
cationic liposome-mediated inner ear delivery of CRISPR-Cas9
RNP successfully ameliorated autosomal dominant hearing loss
using a Beethoven mouse model where mutant transmembrane
channel-like protein 1 (TMC1) causes hearing loss155. SpCas9 and
sgRNA targeting TMC1 were complexed with Lipofectamine
2000 for delivery via single intracochlear injection. Five days post
injection, mice showed an on-target indel percentage ranging from
0.3% to 2.25%, causing successful NHEJ-mediated disruption of
TMC1 with no significant off-target indels. TMC1 disruption led to
significant preservation of both inner and outer hair cells and
significant hearing improvements at eight weeks post-injection.
However, mice experienced a decrease in inner hair cell sensory
transduction as well as outer hair cell damage following genome
editing therapy, possibly due to the well-known cytotoxicity of
Lipofectamine 2000.
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More recently, György et al.156 showed one time treatment of
AAV-mediated CRISPR-Cas9 genome editing prevented auto-
somal dominant hearing loss in Beethoven mice for up to one year.
A single intracochlear injection of AAV2 expressing SaCas9 and
sgRNA targeting TMC1 for NHEJ-mediated disruption induced
on-target indels ranging from 0.2% (7 days post-injection) to 2.2%
(55 days post-injection). Treated mice showed improvements in
auditory brainstem response (ABR) for up to 52 weeks post-
injection, with one of the treated mice demonstrated an ABR
that was indistinguishable from wild type. Twenty-four weeks post
injection, treated mice showed preservation of both inner and
outer hair cells while untreated mice showed a significant loss in
both cell types. This therapy was specific to mutant TMC1 with
only 0.0075% indels found at wild type alleles. Though the pre-
vention of hearing loss in this study is encouraging, AAV2-treated
mice showed the consequence of reduced inner and outer hair cell
mechanosensitivity.

These representative studies demonstrated the feasibility, effi-
cacy, and relative safety of inner ear editing with CRISPR, while
György et al.156 took it a step further in showing positive thera-
peutic effects for a prolonged period of time. Though there are not
many preclinical models for genome editing in the inner ear, these
studies provide an excellent foundation to build on for future inner
ear genome editing therapies.

5.7. Genome editing therapy in the immune system

Targeting various cells of the immune system for gene editing has
significantly increased the therapeutic versatility of CRISPR-
Cas9. Systemic administration of CRISPR for immune modulation
is desirable in treating many different conditions such as type two
diabetes mellitus and allograft rejection.

Wang’s group103 developed a cationic lipid-assisted nano-
particle (CLAN) delivery system for therapeutic genome editing in
the immune system of murine models of type II diabetes mellitus
(T2DM). CRISPR-Cas9 delivery was accomplished using intrave-
nous injection of CLAN encapsulated Cas9 mRNA and sgRNA, or
Cas9/sgRNA encoding plasmids. CLANs were prepared using
PEG-PLGA and cationic lipid N,N-bis(2-hydroxyethyl)-N-methyl-
N-(2-cholesteryloxycarbonylaminoethyl) ammonium bromide
(BHEM-Chol). Treatment of T2DM included CLANs encapsu-
lating SpCas9, sgRNA, and CD68 promoter encoding plasmids that
targeted netrin 1 (NTN1) in macrophages and monocytes for NHEJ-
mediated deletion. CRISPR therapy induced 19.6% on-target indels
with less than 0.5% indels in five potential off-target loci. NTN1
deletion helped to modulate T2DM-induced inflammatory response
by significantly decreasing serum levels of tumor necrosis factor-a
(TNF-a), interleukin-6 (IL-6), and adipose tissue levels of netrin-1
and CD11bþF4/80þ macrophages. This immune modulation suc-
cessfully decreased blood glucose and increased insulin sensitivity
in T2DM-induced mice with minimal systemic toxicity, however
these effects were only reported for 16 days post-treatment.

In another study, CLAN encapsulated Cas9 mRNA and sgRNA
was tested to ablate cluster of differentiation cell surface receptor
40 (CD40) in dendritic cells (DCs) to induce acute allograft
tolerance100. NHEJ-mediated disruption of CD40 in mice
decreased allograft rejection, prolonged graft survival time, and
showed more intact tissue alignment with less graft damage when
compared to Rapamycin-treated and untreated mice. It is impor-
tant to note that not all DCs showed CD40 knockout. Also, all
edited DCs eventually were replaced by new ones. The fact that all
mice had undergone complete graft rejection after 12 days
indicated that there are a number of obstacles to overcome before
one can specifically modulate the immune system function by
CRSIPR-Cas9-based genome editing.

5.8. Genome editing therapy in HIV/SIV treatment

Lastly, CRISPR has shown promise as an adjunct therapy in the
treatment of human immunodeficiency virus (HIV) via systemic
injection. Dash et al.157 showed encouraging data related to the use
of CRISPR-Cas9 along with long-acting slow-effective release
antiretroviral therapy (LASER ART) in treating murine models of
HIV. AAV9 expressing SaCas9 and sgRNA targeting HIV1 was
given via single intravenous injection for systemic NHEJ-mediated
gene deletion. CRISPR-Cas9 therapy induced an on-target indel
percentage ranging from 60% to 80% with no detectable off-target
indels in 100 predicted loci. Neither HIV1 deletion nor LASER
ART therapies alone provided encouraging prospects for long term
suppression of HIV1 viral load. When used in combination,
CRISPR and LASER ART showed encouraging outcomes as a
potential solution for long term viral suppression while further
increasing CD4þ T cells. Combination therapy significantly
increased CD4þ T cells and decreased HIV1 viral load in multiple
organs when compared to untreated HIV-induced mice. Addition-
ally, 39% of mice receiving CRISPR/ART combination therapy
showed no viral rebound and four of these mice had complete
elimination of HIV1 DNA. The study was terminated for specimen
analysis at week 14, leaving only five weeks to observe the out-
comes following CRISPR-Cas9 therapy.

Mancuso et al.158 furthered the application of CRISPR-Cas9 for
in vivo therapeutic genome editing by treating simian immunode-
ficiency virus (SIV) infected rhesus macaques. Macaques were
treated via intravenous injection of AAV9 expressing SaCas9 and
sgRNAs targeting the Gag and LTR regions of the SIV viral genome
for systemic NHEJ-mediated gene deletion in addition to ART.
Treated macaques showed an on-target excision efficiency ranging
from 37% to 92% in blood as well as varying levels in other tissues.
SIV viral DNA excision led to a 38%e95% decline in proviral
DNA found in lymph nodes compared to 20% in a macaque treated
with ART alone. Macaques treated with CRISPR and ART did not
show any adverse effects following AAV9 inoculation, though no
quantification of off-target editing was reported. All genome editing
results were determined at 3 weeks following CRISPR therapy
when animals were sacrificed for analysis (Fig. 3B).

Eliminating any immunodeficiency virus fromhosts is certainly an
ambitious attempt, but neither study provided prolonged follow up.
Regardless of perceived clinical feasibility, Mancuso et al.158 showed
success in a non-human primate model, which brought in vivo
CRISPR-Cas9 therapies one step closer to clinical application.
6. Challenges to in vivo delivery of CRISPR/Cas9
therapeutics

A number of challenges need to be addressed before CRISPR-
Cas9 therapeutics can be widely applied in the clinic. These
challenges can be classified by several aspects; however, we only
discuss delivery-related challenges in this section. Readers are
encouraged to read excellent review articles discussing challenges
related to the biology1,159,160, ethics161,162, and affordability3,163

of CRISPR therapeutics.
To enable in vivo genome editing using CRISPR-Cas9 system,

NHEJ-based gene disruption or deletion requires both Cas9
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nucleases and sgRNAs, while HDR-based gene insertion requires
Cas9, sgRNA, and exogenous donor DNA, both with proper
timing in target cells. Although the knowledge and experience
accumulated in protein and gene delivery are extremely helpful, it
is clear that in vivo delivery of CRISPR-Cas9 is far more difficult
than delivery of proteins and genes alone. For protein and gene
delivery, only one therapeutic component, either protein, or DNA/
RNA must be delivered to some target cells. While for CRISPR-
Cas9 therapeutics, two or three functional components must pre-
sent in the same nucleus of a target cell at the same time. This
poses additional challenges not only to the delivery efficiency but
also to the logistics of the delivery task.

6.1. The in vivo instability of CRISPR-Cas9 therapeutics, which
includes biochemistry-related or immunogenicity-related
instability

The intrinsic biochemical properties of protein and nucleic acid
molecules results in poor in vivo stability of Cas9 protein, plasmid
DNA, mRNA, sgRNA, as well as exogenous donor DNA. Cas9
protein can be degraded through protease-mediated degradation
and hydrolysis in cells and tissues. In addition, when injected into
blood, its positive charge can easily recruit negatively charged
components of the blood and immune system, leading to fast
clearance. The poor in vivo stability of DNA/RNA has been well
acknowledged in gene and RNAi delivery164. Widespread nucle-
ases in blood and interstitial fluid can quickly degrade DNA/RNA
if they are present freely in the body. Therefore, the cargoes must
be well protected by delivery vectors.

Since exogenous plasmid DNA, RNA, and protein molecules
are all immunogenic, when they are administered in vivo, they may
elicit host immune responses. The immunogenicity of plasmid
DNA can be reduced by removing CpG motifs165,166. In addition,
various judicious chemical modifications have decreased the
immunogenicity and increased the stability of RNA molecules167.
The immunogenicity of commonly used Cas9 nucleases poses a
different challenge, because they are obtained from Staphylococcus
aureus and Streptococcus pyogenes, which are frequently encoun-
tered by most humans21. Pre-existing anti-Cas9 antibodies have
been discovered in humans22. One potential solution that may help
overcome the challenge is to engineer bacterial Cas9 nucleases by
removing their epitopes. Another possible strategy is to look for
other suitable CRISPR nucleases. There are enormous efforts on
discovering novel CRISPR nucleases, some of them have demon-
strated superior genome editing efficiency and accuracy168. None-
theless, the components of the CRISPR-Cas9 system must be fully
encapsulated within the delivery vectors to maintain the stability
and avoid triggering a host immune response during in vivo
transportation.

6.2. The biodistribution of delivery vectors to the tissue of
interest following systemic injection

Intravascular AAVs are known to transduce cells in multiple or-
gans and tissues, with limited levels of tissue tropism shown by
differing serotypes. Several strategies are being explored to
improve the tissue tropism of AAVs, such as direct evolution,
discovering novel AAVs from ancient species and creating novel
AAVs by engineering capsid proteins37. Non-viral vectors greater
than several hundred nanometers in diameter are easily blocked by
capillary beds in the lungs following intravenous injection, while
nanoparticles less than 100 nm are most successful for systemic
delivery. Cationic ingredients are frequently used to condense
negatively charged DNA and RNA molecules, conferring positive
charge to delivery vectors. Following intravenous injection,
cationic vectors quickly bind to negatively charged blood com-
ponents and form large complexes. These complexes are usually
blocked in the lungs, leading to rapid clearance from blood cir-
culation and decreased distribution to target tissues. This may be
beneficial for pulmonary-targeted therapies, but the positive sur-
face charge must be stably masked when targeting other tissues.
Non-viral vectors in blood are also promptly recognized as foreign
particles by the host immune system, leading to fast clearance
from the bloodstream and decreased distribution to target tissues.
PEGylation is a widely used strategy to help shield the surface
charge and protect the non-viral vectors from opsonization. It also
improves the storage stability of nanoparticles by preventing ag-
gregation. However, the density of PEG chains on nanoparticles
should be optimized because too many PEG molecules can inhibit
cellular uptake169e171. An additional consideration is that PEG
itself is immunogenic. The host immune system can produce anti-
PEG IgM, which results in accelerated blood clearance of
PEGylated vectors during repeated administration172,173. To avoid
the immunogenicity issue of PEG, it has been shown that
endogenous macromolecules may be used as alternative surface
masking molecules174.

6.3. Cell type-specific delivery

Since DNAs and RNAs are negatively charged hydrophilic macro-
molecules, they are not able to permeate across the hydrophobic and
negatively charged cell membrane. Although viral and non-viral
vectors can protect them from degradation in the bloodstream and in
tissues, neither shows the desired capability of cell type-specific
delivery following intravascular administration. Efforts to achieve
cell type-specific gene delivery by non-viral vectors include surface
modification by various targeting moieties such as small molecule
ligands, aptamers, peptides, and antibodies175,176. For diseases that
require systemic administration of CRISPR-Cas9 systems, cell type-
specific delivery is ideal to avoid delivery-mediated off-target ef-
fects. However, it is worth noting that the clinical success of a
genome editing therapy may be achieved for some diseases before a
perfect cell type-specific delivery vector is available. This is because
repairing the genome of a certain portion of target cells in the
desired tissue by local administration of CRISPR-Cas9 therapeutics
may bring sufficient clinical benefits to patients while keep the
safety risk low. Several preclinical studies highlighted earlier have
shown promising therapeutic outcomes after local injection of
CRPSPR-Cas9 systems, such as in the inner ear155, muscle118 and
brain109. Even with these advances, the widespread success of local
administration of CRISPR-Cas9 genome editing therapy depends on
the disease state, severity, properties of the protein encoded by the
target gene, and the desired tissue.

6.4. Efficient intracellular release of CRISPR-Cas9 cargoes

Receptor-mediated endocytosis directs CRISPR delivery vectors
into early endosomes, which will evolve into late endosomes, and
eventually lysosomes, where the low pH environment and digestive
enzymes can destroy CRISPR-Cas9 cargoes. Releasing the cargoes
into the cytosol before late endosomes/lysosomes are formed is a
critical step. It is not a concern for viral vectors, but it is very
challenging for non-viral vectors. Different strategies of endosomal
escape have been tested, such as cationic lipids-induced instability
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of the endosome membrane177 and PEI polymer-induced “proton
sponge” effect178. However, endosomal release efficiency is still
very low179. It was reported that membrane fusion peptides and cell
penetrating peptides have demonstrated the ability to break endo-
somal/lysosomal membranes180,181, which may help resolve this
issue. Alternatively, direct cytosolic delivery of nanoparticles
through membrane fusion bypassed the endosome trap and
increased cargo availability in the cytoplasm174.

6.5. Efficient nuclear entry

For most genome editing applications, the cell nucleus is where
CRISPR-Cas9 components perform their function. Dividing cells
break up their nuclear membrane during each cell cycle, which
allows exogenous large molecules, including Cas9 nucleases,
plasmid DNA, mRNA, sgRNA, and donor DNA template, to enter
the cell nucleus. However, for non-dividing cells, such as neurons,
myocytes, and adipocytes, the nuclear membrane is a formidable
barrier. Although it has been demonstrated that nuclear localiza-
tion sequences could increase the nuclear entry of plasmid
DNA180,182, more evidence from in vivo studies is needed. Many
preclinical and clinical data demonstrated successful genome
editing using the CRISPR-Cas9 system in both dividing and non-
dividing cells. However, the mechanism for Cas9 nucleases to
enter cell nuclei is still elusive. Illustrating the sequential process
will not only solve a piece of the puzzle regarding CRISPR-Cas9-
mediated genome editing in mammalian cells, but also shed light
on the design of next generation delivery systems.

7. Conclusion and future perspectives

CRISPR-Cas9-mediated genome editing has been recognized as
one of the most revolutionary technologies in the 21st century. The
precise and permanent repair on the genome of patients’ cells will
enable a complete cure to numerous inherited and acquired dis-
eases, ranging from cancer, metabolic diseases, nervous system
diseases, and infectious diseases. The number of registered clinical
trials has been rapidly growing in the past several years
(Clinicaltrials.gov). However, the majority of clinical trials are
conducted by ex vivo delivery74, and only a small number of them
use in vivo delivery (Table 2). It clearly shows that safe and effective
in vivo delivery is the most significant hurdle to widespread clinical
success of CRISPR-Cas9 therapeutics. Because the biological na-
ture and mechanism of CRISPR-Cas9 is much more sophisticated
than a single gene, RNA, or protein, no existing gene or protein
delivery system can be directly adapted for the CRISPR-Cas9
system. Although the experience and lessons learned for protein
and gene delivery have been very valuable, CRISPR-Cas9 com-
ponents need significantly upgraded and innovative in vivo delivery
systems. Both viral vectors and non-viral vectors have made
remarkable progress for in vivo delivery of CRISPR-Cas9 thera-
peutics. However, only a small number of studies reported long-
term efficacy and benefit of CRISPR-Cas9 genome editing thera-
pies, which should be essential for all genome editing studies. In
addition, few non-viral delivery studies reported the loading effi-
ciency of CRISPR-Cas9 cargoes, which makes it difficult to eval-
uate the potential of the vectors for future development.
Nonetheless, appropriate delivery vectors should be designed ac-
cording to the choice of CRISPR-Cas9 cargoes as discussed earlier,
in addition to the route of administration and disease. We are
optimistic that different delivery systems will be proven effective
for in vivo CRISPR-Cas9-based genome editing therapies.

http://Clinicaltrials.gov
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Completely addressing the in vivo delivery challenges requires
collaborative efforts from multiple disciplines. Cas9 nuclease
engineering might help overcome several challenges, such as
reducing its immunogenicity and facilitating endosomal escape as
a membrane fusion protein. A Cas9 fusion protein with multiple
functions, such as nucleic acids binding, cellular entry, endosomal
escaping and nucleus entry, might dramatically change the design
of next generation non-viral vectors for CRISPR-Cas9 delivery.
Additionally, a clear illustration of biological processes involved
in CRISPR-Cas9 genome editing, such as the intranuclear trans-
location of Cas9 proteins, will help improve the genome editing
efficiency. Novel delivery systems which can carry all components
of CRISPR-Cas9 in a single vector will most likely win the
competition. Cell type-specific systemic delivery remains a chal-
lenge in the future and requires novel biomaterials to address the
issue. Novel functional lipids, polymers, and peptides as well as
viral vectors will continue to enrich the delivery arsenal. In par-
allel to the development of systemic delivery vectors, local
administration should be explored for diseases which have been
traditionally considered to be treated by systemic administration.
Future efforts should also include efficient delivery of CRISPR-
Cas9 to mitochondria for genome editing because many diseases
are caused by faulty mitochondrial DNA183. The advancement of
in vivo CRISPR-Cas9 delivery systems may also dramatically alter
the landscape of ex vivo genome editing. Ex vivo genome editing
therapy poses a myriad of challenges to cell extraction, culture,
manipulation, freezing, and transportation, which are strictly
regulated by regulatory authorities. Therefore, it is very possible
that when highly specific in vivo delivery technologies are avail-
able for clinical genome editing therapy, the need for ex vivo
genome editing may dramatically reduce, or even vanish.

Special attention must be given to the specificity of in vivo
genome editing, which is critical to safe applications of CRISPR-
Cas9 therapeutics in the clinic. The consequence of genome
modification at off-target sites could be devastating because
permanent genome editing at the incorrect sites may deactivate
tumor suppressor genes or accidently activate oncogenes, both of
which may lead to the development of cancer. In recent years,
multiple techniques became available to detect off-target genome
editing184e192. In the meantime, tremendous efforts have been
made to reduce the off-target effects, including engineering Cas9
nucleases such as dimeric Cas9 nucleases193,194, high-fidelity
Cas9195, enhanced specificity Cas9196, hyper-accurate Cas9197,
Cas9 variants with expanded PAM compatibilities198, Cas9 fused
with artificial inhibitory domains199. Additional efforts were
made toward engineering sgRNA molecules, such as truncated
sgRNA200 and paired sgRNAs201. As discussed earlier, innova-
tive targeted delivery vectors play vital roles in reducing the
delivery-mediated off-target effects. It is important to note that
smart non-viral delivery systems may play greater roles even
beyond delivery itself, such as reducing off-target genome edit-
ing. Stimuli-responsive non-viral delivery systems are promising
to enable spatiotemporal genome editing by releasing or acti-
vating CRISPR-Cas9 components in target cells only when
endogenous or exogenous signals trigger the release202. Off-
target genome mutations at unintended sites may be signifi-
cantly reduced through transient exposure of the cellular genome
to CRISPR-Cas9 system. For example, Chen et al.203 demon-
strated that optogenetic regulation of in vivo genome editing
minimized the off-target effects by using cationic polymer-
coated Au nanorods and second near infrared light. It is antici-
pated that the combination of advanced delivery technologies and
molecular engineering technologies will work synergistically to
minimize the off-target effects and pave a safe way toward
clinical applications.

CRISPR-Cas9-mediated genome editing has shown unprece-
dented power and promise in medicine. Although the life-
changing cures to many diseases seem to be just around the
corner, safe and efficient delivery is half the game. Through
integration of the knowledge accumulated in delivery science and
vector engineering, together with continued collaborative efforts
on the development of in vivo delivery systems, CRISPR-Cas9
therapeutics will soon realize their full potential.
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