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Abstract

The pattern of neural activity evoked by a stimulus can be substantially affected by ongoing

spontaneous activity. Separating these two types of activity is particularly important for cal-

cium imaging data given the slow temporal dynamics of calcium indicators. Here we present

a statistical model that decouples stimulus-driven activity from low dimensional spontaneous

activity in this case. The model identifies hidden factors giving rise to spontaneous activity

while jointly estimating stimulus tuning properties that account for the confounding effects

that these factors introduce. By applying our model to data from zebrafish optic tectum and

mouse visual cortex, we obtain quantitative measurements of the extent that neurons in each

case are driven by evoked activity, spontaneous activity, and their interaction. By not averag-

ing away potentially important information encoded in spontaneous activity, this broadly

applicable model brings new insight into population-level neural activity within single trials.

Author summary

An important question in neuroscience is how the joint activity of populations of neurons

encode sensory information. This can be challenging to answer because neural popula-

tions activate spontaneously, biasing stimulus-response estimates. Calcium imaging, now

a dominant modality for monitoring such neural population activity, suffers especially

from this effect as calcium transients are markedly slow. By simultaneously modelling the

contribution of sensory stimuli and hidden sources of spontaneous activity to calcium

imaging data, we demonstrate that evoked and spontaneous activity can be explicitly

decoupled on a single-trial basis, leading to estimates of how neurons are relatively driven

by external stimuli and latent internal factors.

Introduction

The nervous system constructs internal representations of its sensory environment by coordi-

nating patterns of neural activity. Uncovering these representations from neural recordings is
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a central problem in systems neuroscience. Typically this task is approached by measuring the

relationship between the parameters of a stimulus and the intensity of the neural response fol-

lowing stimulus presentation. However, the pattern of neural activity evoked by a stimulus is

highly variable, and is usually different each time the stimulus is presented. An important

source of this variability is ongoing spontaneous activity (SA) that does not appear to be driven

by the stimulus [1]. In some cases this SA may simply be biophysical noise that should be aver-

aged away, but in other cases it may represent salient features of brain function such as parallel

encoding of non-sensory variables [2, 3], mechanisms for circuit development [4], or other

internal-state factors that regulate sensory-guided behaviour [5]. Uncovering the interplay

between stimulus-evoked activity (EA) and SA therefore requires the ability to reliably separate

these two components. This is challenging, however, because the internal factors that give rise

to SA are often unknown or cannot currently be directly measured.

This problem is particularly acute for calcium imaging data, a major source of our current

understanding of the joint activity of large numbers of neurons. Neurons that express calcium

indicators report activity at a high spatial resolution, but filter out high frequency spiking due

to slow indicator binding kinetics and saturating calcium concentrations [6, 7]. These calcium

levels in turn are only observed through temporally subsampled fluorescence intensities that

are subject to noise from the optical imaging system. Moreover, neurons can be recorded in

large populations with many thousands of imaging frames, leading to very high dimensional

data that can challenge traditional methods of neural data analysis [8].

Much research in recent years has focused on statistical methods for extracting hidden (or

“latent”) structure from neural population data [9–12]. A key assumption in these methods is

that neural population activity tends to possess a characteristic low dimensional structure,

reflecting underlying constraints on how neurons can comodulate their activity [13]. Thus

high dimensional neural data can often be well-described by a much smaller number of latent

variables evolving through time. In this context, unobserved sources of SA are latent variables

that can be inferred from data given the appropriate statistical tools. However, methods for

identifying latent structure in calcium imaging data (see e.g. refs. [14–16]) are scarce compared

to spike train data, and none so far have sought to explicitly extract sources of SA hidden

amidst population responses to sensory stimuli.

Here we develop a latent variable model for calcium imaging data that allows for a decom-

position of single-trial neural activity into its evoked and spontaneous components. In our

model, which we refer to as calcium imaging latent variable analysis (CILVA), patterns of SA

are driven by hidden factors decoupled from the stimulus. By fitting the model to data, we

identify the structure and temporal behaviour of these latent sources of SA, and simultaneously

extract receptive fields that are not biased by the variability that these sources of SA introduce.

Many analyses of calcium imaging data deconvolve calcium transients to estimate the underly-

ing neural activity before using more traditional methods of spike train analysis. Here we

jointly model the underlying sources of activity together with the calcium transients them-

selves, allowing a direct comparison between the raw imaging data and the model components,

and avoiding the intermediate computational step of deconvolution, which can impact model

performance compared to joint inference approaches (see e.g. [14]).

To demonstrate the applicability of the model we analysed calcium imaging data from both

the larval zebrafish optic tectum and mouse visual cortex. In both cases we identified sparsely

active independent latent factors that targeted distinct sets of neurons. Besides revealing the

statistical structure of SA, accounting for these factors produced sharper receptive field esti-

mates, more refined retinotopic maps, and quantitative measurements of the presence and

interaction of EA and SA. Together, these results show that CILVA is an effective new

approach for single-trial analysis of calcium imaging data.
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Results

Low dimensional spontaneous activity proceeds throughout stimulus

presentation

We first considered two-photon calcium imaging data from the optic tectum of the developing

larval zebrafish (Fig 1A). Fish expressing the genetically encoded calcium indicator GCaMP6s

were embedded in agarose while small dark spots were presented at systematically varying angles

across the visual field [17]. Onset of the visual stimulus evoked calcium transients in the tectum

(Fig 1B) consistent with the topography of the retinotectal map. The presentation of a spot was

followed by an interval of 19s without any stimulation, enough time for calcium levels to return

to baseline before the next stimulus. The optic tectum was often highly active during these inter-

stimulus intervals (Fig 1C) and calcium transients sometimes occurred spontaneously just before

stimulus onset, elevating the recorded fluorescence levels associated with that stimulus.

One approach to separating SA from EA would be to repeatedly present the same set of

visual stimuli over many trials, compute the peri-stimulus time histogram (PSTH) across trials,

and assign all calcium transients that deviate from the PSTH as “spontaneous”. However, this

approach cannot handle stimulus sequences that occur within single trials or in a randomised

order unless the PSTH is calculated over a short window surrounding the time of stimulus

onset, in which case the estimated SA is biased by edge effects. To the authors’ knowledge there

are no standard existing methods capable of separating SA from EA on a single-trial basis.

As our first attempt we therefore considered using a novel combination of existing tools.

We characterised the stimulus-driven component of the population activity by simply express-

ing each fluorescence trace as a linear combination of regressors that specify the basic shape

and timescale of calcium activity. We defined a basis of stimulus regressors [18, 19] by

convolving a calcium impulse response kernel with the presentation times of each stimulus

Fig 1. Spontaneous activity in calcium imaging data. (A) Two-photon calcium imaging of the larval zebrafish optic tectum. NP, neuropil; PVL,

periventricular layer. (B) Fluorescence traces from 10 example neurons. Dashed vertical lines indicate stimulus onset; colour represents azimuth angle

of presented stimulus. (C) Example fluorescence trace segment illustrating that spontaneous calcium transients can occur just before stimulus onset,

inflating stimulus-response estimates.

https://doi.org/10.1371/journal.pcbi.1008330.g001
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and performed a multivariate linear regression of the population data onto this basis set using

non-negative least squares (S1A–S1C Fig). Any highly structured activity in the residual data

would likely be driven primarily by latent sources of SA not directly related to the onset of the

presented stimuli. We then applied non-negative matrix factorisation [20] (NMF) to search for

low dimensional structure in the residuals. NMF attempted to reconstruct the residual popula-

tion data as the product of two matrices with non-negative entries: a matrix whose rows are

timeseries that capture patterns of SA shared across groups of neurons, and a matrix whose

columns describe how neurons are coupled to such timeseries (S1D Fig). The NMF descrip-

tion of SA identified low dimensional structure that proceeded throughout the recording,

largely independent of the stimulus (S1E Fig).

While this residual NMF approach is efficient due to highly optimised computational rou-

tines, it is limited by two characteristics. First, because the models of stimulus processing and

shared SA are not inferred jointly, receptive field estimates are biased towards higher values by

spontaneous calcium transients that coincide with stimulus presentations. This in turn intro-

duces bias when applying NMF to the residual data, since some of the contribution of SA was

already subtracted out at the receptive field estimation stage. Second, NMF has no model for

the highly stereotyped structure of calcium transients, and therefore does not respect this

structure in the components that it finds (S1F Fig).

CILVA simultaneously captures evoked responses and shared spontaneous

activity

To overcome these difficulties, we instead developed a generative statistical model that

describes evoked and spontaneous activity simultaneously rather than sequentially (Fig 2A

and 2B). Our method works directly with filtered fluorescence traces of individual neurons

rather than raw calcium imaging videos, and therefore can be used after segmenting cells with

popular calcium imaging preprocessing packages such as CaImAn [21] and Suite2p [22].

While these packages provide spike deconvolution modules, we opted to work with fluores-

cence traces as many calcium imaging datasets (including those analysed in this paper) have

low temporal resolution, rendering precise estimation of spike times difficult. With this in

mind, the model specifies the observed fluorescence level fn(t) for neuron n at time t in terms

of the underlying calcium concentration cn(t),

fnðtÞ ¼ ancnðtÞ þ bn þ �nðtÞ

where the scalars αn and βn determine the scale and baseline of the fluorescence signal respec-

tively, and �n(t) represents Gaussian noise. Consistent with experimental data [6] and previous

models for calcium imaging [7, 23], the calcium dynamics are assumed to be highly stereo-

typed and are defined by the convolution of a GCaMP impulse response kernel k with a vector

of calcium influxes λn (analogous to an activity intensity function).

cnðtÞ ¼
Xt

t¼0

kðt � tÞlnðtÞ:

The kernel k is a difference-of-exponentials function (see Methods), which includes both rise

and decay time constants. We found that including an explicit rise time was essential as

GCaMP6s activity is slow relative to the sampling rate of many optical imaging systems.

The key ideas of the model are that (i) evoked responses will tend to be locked to the onset

of the stimulus, (ii) evoked responses typically have a simple impulse response structure in cal-

cium imaging data, and (iii) neural activity not attributable to evoked activity should be

explained as far as possible by SA with a specific structure. The rate of calcium influx λn(t) in

PLOS COMPUTATIONAL BIOLOGY Decoupling evoked and spontaneous neural activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008330 November 30, 2020 4 / 28

https://doi.org/10.1371/journal.pcbi.1008330


each imaging frame t was thus assumed to be driven by the addition of two underlying non-

negative sources: processing of the stimulus s(t) through a linear receptive field wn, and a small

number of unobserved or “latent” sources of SA x(t),

lnðtÞ ¼ w>n sðtÞ þ b
>

n xðtÞ:

Here x(t) is the low dimensional latent state at time t, bn is a vector describing how neuron n is

affected by these factors, and �> denotes the transpose operation. In the event that neurons

exhibit prolonged neural responses, the stimulus design matrix s can be straightforwardly

modified by including copies of each stimulus shifted in time [24]. This SA model is inspired

by the application of factor analysis methods to neural population data [9, 25], which posit that

low dimensional structure arises from latent computations or brain states that concurrently

affect subsets of neurons. However, the latent factors underlying spontaneous calcium tran-

sients in our model differ mathematically from classical factor analysis in that, due to non-neg-

ativity of the calcium levels, factor activity states and coupling between latent factors and

neurons must be non-negative [26].

Fig 2. Overview of the CILVA approach for decoupling stimulus-evoked responses and latent sources of SA. (A) Proposed generative architecture

underlying multivariate calcium imaging data. Neurons are driven by sensory stimuli (red) and latent sources of SA (blue). These two sources are

combined additively to define the underlying rate of calcium influx (λn), before being convolved with a GCaMP kernel. Calcium levels are subsequently

reported through noisy fluorescence intensities. (B) The intensity of calcium influx λn encoding stimuli and shared SA is convolved with a GCaMP

kernel k to generate observed calcium levels. (C) The learned encoding model provides a method for decoupling evoked responses from common

patterns of SA.

https://doi.org/10.1371/journal.pcbi.1008330.g002
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We fit the model by computing the maximum a posteriori estimate of the latent factor activ-

ity states. Because these activities were less constrained by the model compared to the time-

locked evoked responses (and therefore likely to be more complex) we encouraged sparsity by

placing a non-negative prior on the latent factors with high density near zero, and used a sim-

ple model selection procedure to estimate the sparsity penalty (see Methods).

Fluorescence signals can be decomposed into their evoked and spontaneous

components

Our model can be used to analyse the separate contributions of evoked and spontaneous activ-

ity to the observed fluorescence levels (Fig 2C). The fitted model can be succinctly summarised

by the equation

f̂ n ¼ ânk � ðŵ
>
n sþ b̂>n x̂Þ þ b̂n1T

where �̂ denotes an estimated variable, � denotes linear convolution, and 1T is a vector of ones

with length equal to the number of imaging frames T. Here we have dropped explicit depen-

dence on the calcium levels cn(t), which are deterministic given the other model parameters.

The components of the signal driven purely by evoked or spontaneous activity can then be

extracted from the convolution to give

f̂ evokedn ¼ ânk � ŵ>n sþ b̂n1T

and

f̂ spontn ¼ ânk � b̂>n x̂ þ b̂n1T:

We first verified the model on simulated data with known ground truth, modelling the proper-

ties of the zebrafish and mouse data that we subsequently consider (S1 and S2 Tables, S2 and

S3 Figs). We then applied the model to our calcium imaging data from the zebrafish optic tec-

tum to decouple the evoked and spontaneous calcium transients (Fig 3). These data were seg-

mented using custom software, but we also verified that our results do not depend on the

preprocessing package for source extraction by performing the same analysis on data pro-

cessed with CaImAn (S4 Fig). Overlaying these decoupled calcium traces onto the experimen-

tal data, we found that they provided realistic descriptions of calcium activity (Fig 3A) and a

close fit between the raw fluorescence trace and the model reconstruction (Fig 3B, S5 Fig). The

time-locked responses to stimuli were well modelled by f̂ evokedn , while low dimensional SA was

identified by the projected latent factor activity f̂ spontn (Fig 3A, S6 Fig, S1 and S2 Videos). Neural

activity in the residual data (i.e., after subtracting the model reconstruction from the raw fluo-

rescence traces) arose primarily from spontaneous calcium transients that were independent

of the latent sources of shared SA (and were therefore attributed to private, as opposed to

shared, variability [27], S7 Fig).

We fit the model with three latent factors, whose inferred activity timeseries were sparse

(Fig 3C). Including additional latent factors beyond these resulted in better models of the SA

of individual neurons or small subsets of neurons, but caused little improvement in the overall

quality of model fit for this fish (Fig 3D). To understand the relative importance of each factor

to the overall model fit, we defined a contribution index for a factor as the average reduction

in the quality of model fit following its deletion (Methods). We found that each factor made a

substantial contribution to the overall model fit by modulating shared SA across large groups

of tectal neurons (Fig 3E and 3F).
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Fig 3. Fitted model components for the zebrafish shown in Fig 1. (A) Results of fitting CILVA and decoupling EA (red) and shared SA (blue) in an

experimental recording. Inset numbers denote the Pearson correlation coefficient between raw fluorescence trace and model fit. The 10 neurons with

the highest correlations between data and model fit are shown. (B) Distribution of correlation coefficients between data and model fits. Shuffled data

obtained by cyclically permuting each trace by a random offset while preserving its temporal structure. (C) Inferred latent factor timeseries. Inset

numbers denote the factor contribution indices, defined as the mean reduction in correlation coefficient across the population following deletion of the

corresponding factor. (D) Cross-validated distributions of correlation coefficients for 1 to 15 latent factors. Shaded error bars indicate one standard

deviation. For this fish adding additional latent sources of SA beyond three factors provides little improvement in the average correlation for both

training and held-out test data. (E) Estimated factor coupling matrix shows that latent factors target distinct, non-overlapping sets of neurons. (F)

Cumulative factor contribution indices for 0 to 3 latent factors. (G) Cross-correlograms show little interaction between latent factors and no long term

structure in individual factor activity. While zebrafish can occasionally exhibit factors with secondary peaks in their autocorrelation plots (see e.g. S9H

Fig), the location of these peaks varies between factors and fish, and do not align with the interstimulus interval. (H) Example estimated stimulus tuning

curves (red). Tuning curves obtained by trial-averaging fluorescence levels over a window following stimulus onset (gray) provided for comparison

(Methods). Shaded error bars denote one standard deviation. Full temporal traces for these neurons are given in S8 Fig. (I) Retinotopic maps obtained

by trial-averaging fluorescence levels over a window following stimulus onset (left) and by CILVA-estimated tuning curves (right). The CILVA map is

more refined since the estimated stimulus filters already account for ongoing SA.

https://doi.org/10.1371/journal.pcbi.1008330.g003
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The factor coupling matrix (defined by the vectors bn) reports how neurons are affected by

the latent factors. There are several possibilities for how this matrix could be structured. First,

if there is a minimal presence of structured SA the coupling matrix may exhibit no coherent

organisation at all. Second, neurons could require the coordinated activity of several latent fac-

tors to explain their SA. This would be the case if, e.g., neurons participated in multiple recur-

rently connected circuits driven by noise [28, 29], and would result in factors modulating

overlapping groups of neurons. Third, latent factors may each drive their own distinct sets of

neurons, with little cross-talk between them. This could occur if, e.g., latent factors were

encoding unrelated streams of motor or non-visual sensory information [2, 30]. In our exam-

ple zebrafish the estimated coupling matrix had a highly modular structure, with factors influ-

encing largely non-overlapping sets of neurons (Fig 3E). Furthermore, the factor cross-

correlograms showed no sign of dependence between factors, indicating that distinct sets of

neurons were uniquely targeted by independent latent sources of SA (Fig 3G).

Since our model fits receptive fields jointly with latent sources of SA, the estimated tuning

curve for each neuron already accounts for ongoing SA that may have inflated its responses to

stimuli. Indeed, if spontaneous calcium transients coincide with the presentation of a stimulus,

one could expect tuning curves obtained by simply averaging the fluorescence levels over a

small window following stimulus onset to be spuriously larger, and exhibit higher variance

than if these events did not occur. We plotted the tuning curves estimated by CILVA against

tuning curves obtained by averaging (see Methods) and found that they confirmed this intui-

tion (Fig 3H). Moreover, sorting the neurons according to their preferred stimulus revealed a

more refined retinotopic map when explicitly accounting for SA (Fig 3I). While our data

showed a variety of tuning types, of note were neurons that were unselective to visual stimuli

(i.e., had relatively flat tuning curves), but that were highly active throughout the recording

(e.g., the neuron marked by an asterisk in Fig 3H and S8 Fig).

Neurons are differentially driven by external stimuli and latent internal

factors

To quantify the extent to which each neuron is driven by sensory stimuli versus shared SA, we

derived an equation that expressed the variance of the reconstructed fluorescence levels in

terms of three components: the variance attributable solely to EA, the variance attributable

solely to shared SA, and the covariance (i.e., interaction) between EA and shared SA (Fig 4A,

Methods). This revealed that across the population there was a continuous progression of

responses, with some neurons being primarily driven by EA, some primarily by SA, and some

by a mixture of both SA and EA (Fig 4A). To confirm that these effects were not artefacts of

the model or the calcium indicator, we verified that the model does not overestimate the vari-

ance in the data (Fig 4B) and that there were interactions between EA and SA that were greater

than expected by chance (Fig 4C). We defined a “drive ratio” to measure whether neurons

were driven more by SA or EA (Methods). The distribution of drive ratios was largely bimodal

(Fig 4D), indicating a preference to be dominated by either EA or SA rather than responding

equally to both.

We next quantified the improvement that resulted from incorporating SA into the model.

Without SA, the model for each neuron consists of a simple linear filter convolved with a cal-

cium kernel. This is a good description of neurons that possess high drive ratios (i.e., whose

variances are dominated by EA) and thus these neurons show little improvement in how well

the statistical model fits their fluorescence levels with the incorporation of SA (Fig 4E, neurons

along the diagonal). In contrast, many neurons are poorly fit by a model that incorporates

only stimulus responses, and show substantial improvement when shared sources of SA are
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taken into account (Fig 4E, neurons above the diagonal), leading to a significant increase in

the average correlation between fluorescence traces and model fits (Fig 4F).

In the absence of sensory stimulation, SA in the optic tectum has previously been shown to

exhibit a characteristic localised spatial structure [31]. We thus sought to determine whether

this effect persisted when the tectum was being actively driven by sensory stimulation. The

Fig 4. Analysis of the contribution of EA and SA to neural variability. All data for the same fish as in Fig 3. (A) Top: composition of each

neuron’s sample variance in terms of variance attributable solely to EA (red bars), solely to shared SA (blue bars), and their covariance

(orange bars). Orange bars represent absolute values of covariances for ease of visualisation. Variance components are given as proportions of

the total sample variance of the raw fluorescence signal var[fn] (corrected for imaging noise, see Methods). Neurons sorted by the strength of

their coupling to each factor (as in Fig 3E). Bottom: coupling between neurons and latent sources of SA suggests neurons with strong coupling

are weakly driven by sensory stimuli. Maximum bar height of one. (B) Sample variance (corrected for imaging noise) vs variance of the

statistical model indicates that the model does not overestimate variance. Each data point represents one neuron. (C) Covariances between

evoked and spontaneous traces estimated by the model (vertical axis). Chance levels for a null model (horizontal axis) are 95th percentiles of

shuffled data obtained by cyclically permuting evoked traces by random offsets 1000 times while preserving temporal structure. Sample

covariances exceeding chance levels (orange circles above dashed identity line) cannot be attributed to the slow timescale of the calcium

indicator. (D) Distribution of drive ratios across the population of neurons. (E) Correlation coefficient between raw fluorescence trace and

evoked component of model fit (without SA) and full model fit (with SA). Neurons with strongly negative drive ratios show marked

improvement in the quality of model fit. (F) Violin plots showing statistically significant improvement in the average correlation coefficient

between experimental data and model fits after incorporating latent sources of SA (p< 0.001, Wilcoxon signed-rank test). (G) Spatial

organisation of latent factors underlying SA. The three non-overlapping factors are spatially localised and tile the imaging plane. (H) Spatial

organisation of the evoked variance components. Cell opacity is proportional to the fraction of variance attributable to EA for the given

neuron. Neurons strongly driven by EA cluster in the middle region of the tectum. (I) Same as H, but for SA. Neurons strongly driven by SA

cluster in the anterior and posterior tectum.

https://doi.org/10.1371/journal.pcbi.1008330.g004
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factors underlying SA identified by CILVA concentrated in the posterior, middle, and anterior

regions of the tectum, together tiling the two dimensional imaging plane (Fig 4G). Interest-

ingly, the evoked variance component was largely confined to the middle tectum, where cou-

pling to latent factors was weakest (Fig 4H). Conversely, the spontaneous variance component

was most strongly represented at the posterior and anterior ends of the tectum, where coupling

to latent factors was strongest, with little SA in the middle tectum (Fig 4I). This spatial localisa-

tion was not imposed on the data by our model, and thus is a useful post-hoc verification that

the SA our model identifies is likely to be biologically salient.

To determine how representative our results were, we fit the model to a dataset of seven

additional zebrafish larvae. Example fits for two of these zebrafish are given in S9 and S10 Figs.

For consistency of comparison between zebrafish we again fit the statistical model with three

latent factors. Across the 8 fish the mean correlation coefficient was centered at * 0.6 (S11A

Fig), with latent factors having average individual contribution indices of 0.1 (S11B Fig). Fac-

tors were also mostly non-overlapping, with only a small fraction of neurons participating in

multiple factors (S11C Fig). Incorporating all three factors increased the mean correlation

coefficient between raw fluorescence data and model-fit by 34% on average compared to

model-fits without the SA component (S11D Fig). Finally, we found that while EA and SA

tended to be balanced at the population level, individual neurons mostly biased their activity

towards being either stimulus-driven or spontaneous (S11E and S11F Fig). These results show

that the basic statistical properties of the data are consistent across a set of different animals.

CILVA identifies low dimensional patterns of SA in visual cortex

We next explored the application of the model to publicly available data from mouse primary

visual cortex [32]. In this case, stimuli of higher dimension were presented more rapidly than

in our previous application. Briefly, head-fixed mice expressing the calcium indicator

GCaMP6s (via viral injection) stood on an air-suspended ball while drifting gratings were pre-

sented across the visual field with 1 to 3 second intervals and at 8 orientations, 3 spatial fre-

quencies, and 4 temporal frequencies (Fig 5A). We verified with simulated data that the model

could accurately recover evoked and spontaneous components in this regime (S3 Fig, S2

Table), and then applied CILVA to decouple the evoked and spontaneous fluorescence compo-

nents (Fig 5B–5D).

CILVA was able to extract low dimensional patterns of SA (Fig 5D, vertical bands of activ-

ity) that were much harder to discern in the raw data (Fig 5B). This included a spontaneous

event that appeared to be triggered by stimulus onset (Fig 5D, first vertical band of activity)

but that did not reoccur with subsequent stimulus presentations. The model reconstruction

provided a good fit, with correlation coefficients much larger than in the case of shuffled data

(Fig 5E). Similar to the zebrafish data, extracted latent factors were mutually independent (S12

Fig), targeted largely non-overlapping sets of neurons (Fig 5F), and were sparsely active (S12

Fig). CILVA is thus effective for discovering novel, interpretable patterns of neural activity in

high dimensional cortical imaging data.

Discussion

Neural activity elicited in response to a stimulus can be substantially affected by ongoing SA.

The CILVA approach for decoupling these influences has the advantage over simpler

approaches, such as the sequential application of non-negative least squares and NMF (S1 Fig),

since receptive fields are inferred simultaneously with latent factors, preventing the latter from

confounding measurements of the stimulus-evoked response. Not only does this allow us to

estimate tuning curves that are unbiased by spontaneous calcium transients, but also to
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estimate the latent structure of SA alone, unbiased by evoked responses. The composition of a

neuron’s sample variance can then be straightforwardly expressed in the model in terms of the

variance of the decoupled evoked and spontaneous components, together with their covari-

ance. CILVA thus provides a new tool for quantitative analyses of the interaction between EA

and SA in single trials, reducing dependence on approaches to sensory coding that require

averaging away potentially important information encoded in SA.

CILVA is closely related to latent factor models for spike train data. Gaussian process factor

analysis, for example, assumes that population spiking activity is linearly driven by a small

number of latent factors evolving smoothly through time according to a Gaussian process [9].

A similar model, the Poisson linear dynamical system, models neural activity by Poisson pro-

cesses, where firing rates across the population are driven by a hidden low dimensional linear

dynamical system [10]. These models consider a neuron to be a noisy sensor of an underlying

latent state, and the smooth path that population activity traces through this low dimensional

state space constitutes the underlying computation implemented by a neural circuit [33]. In

contrast to such models, which explicitly constrain the temporal evolution of latent factors,

our statistical model assumes that latent factor activity states at each time point are indepen-

dent and identically distributed according to a (non-negative) maximum entropy prior. Auto-

correlation of the latent factors then arises due to their convolution with a calcium impulse

response function. While an explicit dynamics could be imposed on the latent factors [14], we

chose not to do so due to a conflict of timescales: the relevant neural dynamics often takes

place over several hundred milliseconds [9], but this may only constitute a few imaging frames

in calcium imaging data. Thus, calcium transients predicted by the model may appear errone-

ously prolonged if factor activity states could only change gradually.

Fig 5. Single-trial decoupling of EA and SA in visual cortex. (A) Calcium imaging of mouse V1 during presentation

of drifting gratings. (B) Raw data consists of 21 minutes of neural activity from 986 neurons. The fluorescence trace of

each neuron is normalised to take values between 0 (dark) and 1 (light). Neurons sorted as in panel F. (C) Decoupled

evoked component of neural activity. (D) Decoupled spontaneous component of neural activity, given a latent

dimensionality of 10. (E) Distribution of correlation coefficients between data and model fits. Shuffled data obtained

by cyclically permuting each trace by a random offset while preserving its temporal structure. (F) Learned factor

coupling matrix showing that the inferred factors target largely non-overlapping sets of neurons.

https://doi.org/10.1371/journal.pcbi.1008330.g005
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Additive interactions between EA and SA, as assumed by the model, have been identified in

numerous studies. For example, optical imaging of cat visual cortical neurons using voltage-

sensitive dyes [1], and cellular-resolution two-photon calcium imaging [2], multiple simulta-

neous Neuropixels probes [2], and wide-field calcium imaging of both cortical hemispheres

[34] in mouse visual cortex have all shown substantial additive modulation of evoked

responses by coordinated SA that proceeds unimpeded by stimulus onset. However, there may

be cases where the interaction between EA and SA is more complex than a simple additive

scheme. For example, trial-to-trial variability of evoked responses could result from changes in

excitability, reflecting a multiplicative effect of SA. Such an interaction could potentially be

included in our model by incorporating an appropriate nonlinear activation function (similar

to ref. [35]).

The interaction between EA and SA could also affect the underlying dynamics of the neural

activity. This could occur if, e.g., the presentation of a stimulus engages recurrent circuits that

trigger the activation of a latent factor. In the case of our data in Fig 4H and 4I, the distinct spa-

tial organisation of the evoked and spontaneous variance components indicate that this trig-

gering effect is not likely to be a predominant source of variation (although there is some

overlap in these two components in the middle tectum). Although this kind of “triggering”

interaction is not something the model attempts to explicitly describe, CILVA can potentially

account for this effect depending on how the triggering occurs. If the triggering of a factor

always occurs with stimulus presentation, then this will be incorporated into the receptive field

component. If the triggering of a factor occurs only occasionally and with a sufficiently large

amplitude, then this will be associated with a latent factor instead.

We modelled SA as primarily originating from shared sources, with the SA of the remain-

ing neurons arising either from private sources or from residual imaging noise. This shared SA

was responsible for a substantial portion of the variance across the population, and the model

accounting for shared SA significantly outperformed the model that did not (Fig 4F). How-

ever, our estimates represent merely a lower bound on the variance attributable to shared SA,

and this bound could increase as the recorded set of neurons approaches the complete popula-

tion. Indeed, SA that we currently consider private may in reality be shared, but due to con-

straints in the optical imaging system we may simply have not observed the neurons with

similar profiles of SA. Okun et al. [36] found that the correlation structure of cortical popula-

tions in primates and mice could be well-predicted by the coupling of individual neurons to

the population firing rate, a one dimensional measure of activity. ‘Choristers’ have firing rates

coupled to the population, and are thus dominated by shared variability, whereas ‘soloists’ are

less affected by population-wide events and are dominated by private variability, even during

SA. In our analysis, by contrast, population activity was best described by coupling of neurons

to one of multiple latent factors, and these factors could not be described by a single latent

state governing SA since they were mutually independent.

Our method identified multiple independent latent sources of SA targeting distinct, largely

non-overlapping sets of neurons. Even a primary sensory area like the optic tectum or visual

cortex receives converging inputs from other brain regions that can make it highly active in

the absence of sensory inputs [30, 37, 38]. Recently, several studies reported brain-wide activity

correlated with behaviour [2, 5, 39]. For example, Stringer et al. [2] analysed calcium imaging

data from 10, 000 neurons in the mouse primary visual cortex and found that locomotor vari-

ables such as pupil diameter and running speed accounted for * 20% of the total variance of

the population activity. Potentially, similar inputs to the tectum for the purpose of, e.g., visuo-

motor integration [18], could form the physiological basis of the latent factors that we

extracted. However, while overt behavioural parameters like pupil diameter can be unambigu-

ously measured and correlated with neural activity, CILVA attempts to adapt to any kind of
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input that induces structured patterns of SA that linearly combine with stimulus-evoked

responses, even if such inputs are not directly measured.

Materials and methods

Zebrafish recordings

All procedures were performed with approval from The University of Queensland Animal

Ethics Committee (approval certificate number QBI/152/16/ARC). Nacre zebrafish (Danio
rerio) embryos expressing elavl3:H2B-GCaMP6s, of either sex, were collected and raised

according to established procedures [40] and kept under a 14/10 hr on/off light cycle.

Zebrafish larvae were embedded in 2.5% low-melting point agarose, positioned at the cen-

tre of a 35 mm diameter plastic petri dish and overlaid with E3 embryo medium. Calcium

imaging was performed at a depth of 70 μm from the dorsal surface of the tectal midline.

Time-lapse two-photon images were acquired using a Zeiss LSM 710 inverted two-photon

microscope. A custom-made inverter tube composed of a pair of beam-steering mirrors and

two identical 60 mm focal length lenses arranged in a 4f configuration was used to allow imag-

ing with a 40X/1.0 NA water-dipping objective (Zeiss) in an upright configuration. Samples

were excited via a Spectra-Physics Mai TaiDeepSee Ti:Sapphire laser (Spectra-Physics) at an

excitation wavelength of 940 nm and the emitted light was bandpass filtered (500–550 nm).

Laser power at the sample ranged between 12 to 20 mW. Images of 416x300 pixels were

obtained at 2.1646 Hz. To improve the stability of the recording, chambers were allowed to set-

tle for three hours prior to start of two-photon imaging.

Visual stimuli were projected on white paper placed around the wall of a 35 mm diameter

petri dish using a projector (PK320 Optoma, USA), covering a horizontal field of view of 174˚.

A red filter (Zeiss LP590 filter) was placed in the front of the projector to avoid interference of

the projected image in the signal collected by the detector. Larvae were aligned with one eye

facing the white paper side of the dish and with the body axis orthogonal to the projector.

Visual stimuli were generated using custom software based on MATLAB (MathWorks) and

Psychophysics Toolbox. Each trial consisted of 6˚ diameter black spots at nine different posi-

tions, separated by 15˚ intervals from 45˚ to 165˚, where 0˚ was defined as the direction of the

larva’s body axis. Their order was set to maximise spatial separation within a trial (45˚, 120˚,

60˚, 135˚, 75˚, 150˚, 90˚, 165˚, 105˚). Spots were presented for 1 s, followed by 19 s of blank

screen. We projected consecutive trials of nine spots with 25 s of inter-trial interval.

The cell segmentation procedure is described in ref. [41]. Briefly, custom MATLAB soft-

ware was used to automatically detect the region-of-interest (ROI) of each active cell, i.e., the

group of pixels defining each cell. The software searched for active pixels, i.e., pixels that

showed changes in brightness across frames, resulting in an activity heatmap of all the active

regions across frames. The activity map was then segmented into regions using a watershed

algorithm, with a similar threshold applied to all movies. Within each segmented region, we

computed correlation coefficients of all pixels in the region with the mean of the most active

pixel and its eight neighbouring pixels. Correlation coefficients showed a bimodal distribution;

one peak of highly correlated pixels representing pixels of the cell within the region, and a sec-

ond peak of relatively low correlation coefficients representing nearby pixels within the region

which were not part of the cell. Using a Gaussian mixture model, we found the threshold cor-

relation which differentiated between pixels likely to form the active cell and neighbouring pix-

els that were not part of the cell. We also required that each detected active area covered at

least 26 pixels (5.5 mm2). The software allowed visual inspection and modification of the

parameter values where needed. All pixels assigned to a given cell were averaged to give a raw

fluorescence trace over time.
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Mouse recordings

We used publicly available data [32]. The experimental procedures are described in detail in

refs. [42, 43]. Neurons were recorded simultaneously at 2.5Hz using calcium imaging and seg-

mented using Suite2p. Visual stimuli were shown at approximately 1 Hz, with randomized

inter-stimulus intervals. The stimuli were drifting gratings with 8 directions, 4 spatial frequen-

cies and 3 temporal frequencies. Blank stimuli (gray screen) were also interleaved. While this

data was originally recorded from multiple imaging planes, to avoid issues with timing of

latent factor activity between planes we restricted our analysis to neurons from a single imag-

ing plane, resulting in a population of 986 neurons.

Residual NMF method

As described in the main text, we first considered using a combination of non-negative least

squares and non-negative matrix factorisation to decouple EA and SA (S1 Fig). We defined

stimulus regressors ϕi 2 R
T

for i = 1, . . ., K by convolving the binary stimulus timeseries si 2
RT

with a calcium impulse response kernel k (a difference-of-exponentials function, defined

below), giving ϕi = k � si. We then estimated regression coefficients βni by solving the non-neg-

ative minimisation problem

β̂n ¼ argmin
βn�0

jjfn �
XK

i¼1

bniϕijj
2

where βn = (βn1, . . ., βnK)>. The evoked component of the fluorescence signal can be defined

in terms of the estimated regression coefficients as

f̂ evokedNNLS;n ¼ β̂>nΦ

where Φ ¼ ðϕ>
1
; . . . ; ϕ>K Þ

>
. Here NNLS refers to the non-negative least squares algorithm used

to perform the minimisation. Residual data en was then defined as

en ¼ sðfn � β̂>nΦÞ

where σ is a linear rectifier σ(x) = max(0, x) applied elementwise ensuring non-negativity of

the residuals. We then applied NMF to the residual data E ¼ ðe>
1
; . . . ; e>NÞ

>
by solving the

minimisation problem

Ŵ; Ĥ ¼ argmin
W;H�0

jjE � WHjj2

where W 2 RN;L
and H 2 RL;T

. The L rows of Ĥ are timeseries describing the evolution of low

dimensional structure, and the columns of Ŵ describe how neurons are coupled to such time-

series. The NMF-estimated SA for neuron n is given by the projection of the latent timeseries

onto a single dimension by the corresponding row of Ŵ

f̂ spontNMF;n ¼ ŴnĤ:
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The full fluorescence data can thus be approximately reconstructed as

fn � f̂ evokedNNLS;n þ f̂ spontNMF;n:

We use the NNLS routine in SciPy and the NMF routine in scikit-learn [44].

To evaluate the models of SA produced by NMF we then expressed the spontaneous com-

ponents in terms of a basis of calcium impulses by solving the non-negative minimisation

problem

β̂ca
n ¼ argmin

βcan �0

jjf̂
spont
NMF;n �

XT� 1

t¼0

b
ca
ntψtjj

2

where each ψt is a calcium response following a unit impulse δT
t at time t,

ψt ¼ k � δT
t :

Here δT
t is a vector of length T that takes the value of 1 at t and 0 elsewhere. The expression of

f̂ spontNMF;n in the basis of calcium transients is then given by ðβ̂ca
n Þ
>Ψ, where Ψ ¼ ðψ>

0
; . . . ;ψ>T� 1

Þ
>

.

Note that this differs from the basis of stimulus regressors used to model the stimulus-driven

component of neural activity as we employ a regressor for each time point t in the entire trace.

CILVA model

Fluorescence model. We model fluorescence data fn(t) as a linear transformation of the

calcium concentration cn(t) plus independent and identically distributed additive Gaussian

noise. The generative model for the observed fluorescence of neuron n is thus

fnðtÞ ¼ ancnðtÞ þ bn þ �nðtÞ; ð1Þ

�nðtÞ � N ð0; s2

nÞ ð2Þ

where αn is a scaling factor and βn is the baseline fluorescence level of neuron n. The assump-

tion of Gaussian noise is a simple and tractable way to account for noise in both the calcium

concentration and noise due to optical imaging. This model is standard for fluorescence imag-

ing data [7, 23, 45].

Calcium dynamics. The calcium concentration cn(t) is generated as the convolution of a

difference-of-exponentials kernel k with a function λn that determines the intensity of neural

activity,

cnðtÞ ¼
Xt

t¼0

kðt � tÞlnðtÞ: ð3Þ

The kernel k captures the stereotypical rise-and-decay calcium dynamics, which are assumed

to possess time constants that are unchanging throughout the recording

kðtÞ ¼ expð� t=tdÞ � expð� t=trÞ: ð4Þ

An explicit rise time was essential for modelling the experimental data with a GCaMP6s cal-

cium indicator [6]. For the data used in the paper we used calcium transient time constants of

τr = 5.68/Fs and τd = 11.5/Fs, where Fs = 2.1646 Hz is the imaging rate of the fluorescence

microscope for the zebrafish experiments and Fs = 2.5 Hz is the imaging rate for the mouse

experiments. Below we also provide a penalised regression approach for estimating these time

constants in necessary.
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Intensity function. Changes in the intracellular calcium concentrations are driven by an

intensity function λn for each neuron n. We take advantage of the fact that we expect evoked

responses to be time-locked to the presentation of a stimulus, with the remaining signal attrib-

utable to structured SA. The intensity is thus comprised of a stimulus drive and a latent drive

lnðtÞ ¼ w>n sðtÞ þ b
>

n xðtÞ: ð5Þ

Here wn 2 R
K corresponds to the stimulus filter for neuron n, sðtÞ 2 RK is the vector describ-

ing which stimulus is active at time t (under a 1-of-K encoding scheme, such that s(t) has a 1 in

index i if the ith stimulus is active, and zeros elsewhere), bn 2 R
L is a row of the factor loading

matrix, and xðtÞ 2 RL
is the activity level of the latent factors at time t. Thus, at each time

point the latent drive is the projection of a low dimensional latent process x(t) into one dimen-

sion. By fixing the onset of the stimulus drive and leaving the latent factors unconstrained, we

allow the factors to adapt to the patterns of SA in the data.

Note that while evoked responses in our zebrafish data were well-described by a single

impulse response, we may straightforwardly account for temporally extended responses by

adjusting the stimulus design matrix s to include copies of each stimulus time shifted by single

frames (up to a desired length) [24]. Moreover, trial-to-trial variability can arise in the evoked

response itself through a multiplicative mechanism, rather than just additively via the sponta-

neous component. Incorporating a multiplicative component may slightly improve model fit

but significantly complicates the inference for this model, however, and so we leave this for

future work (also see Discussion).

Latent factors. The latent factor activity xðtÞ 2 RL
lies in a lower dimensional subspace

than the complete neural population activity fðtÞ 2 RN
. Consequently, the variability that they

account for in the model must be shared among groups of neurons. Without regularisation,

the model faces identifiability issues because activity can be freely attributed to either the sen-

sory stimuli or the latent factors. As the stimulus responses are already fixed to the observed

stimulus times, we instead place a regularising exponential prior on the latent factors to

encourage sparsity,

pðxlðtÞjgÞ / expð� xlðtÞ=gÞ ð6Þ

for 0� t� T − 1 and 1� l� L. Here γ is the parameterisation of the exponential distribution

in terms of its mean; i.e., E½xlðtÞ� ¼ g, which acts as a sparsity penalty. Selection of γ is

described in the Model Selection section below. Since the latent variables are constrained to be

non-negative, calculating the MAP estimate under the exponential prior is equivalent to maxi-

mising the log-likelihood with a lasso regularsier. Furthermore, while the ΔF/F that we are

modelling can occasionally take negative values, this is considered to be a consequence of the

imaging noise rather than a negative concentration of bound GCaMP. Thus our non-negativ-

ity constraint on the factor activity is in line with calcium imaging preprocessing methods that

are based on non-negative deconvolution and non-negative matrix factorisation.

Note that we specifically do not enforce orthogonality constraints between the factor activ-

ity and stimulus times. As in Fig 3A, we wish to allow a combination of both latent factors and

sensory stimuli to explain the observed fluorescence levels; the regularising prior acts to

encourage the optimisation algorithm to explain calcium transients via sensory stimuli.

While many popular methods for analysing spike train data assume that latent factors obey

a smooth temporal dynamics, our statistical model relies on the convolution of a sparse time-

series of calcium influxes with a GCaMP kernel to generate the observed fluorescence signal. If

instead factor activity states were constrained to vary smoothly and have high autocorrelation

(e.g., under a Gaussian process prior), the predicted fluorescence transients would be
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inaccurately prolonged following the GCaMP convolution. Indeed, calcium influx is typically

well-described by sparse spike-and-slab models [46], and an exponential prior that specifically

omits factor autocorrelation allows us to compromise between sparsity, model simplicity, and

computational tractability.

Evoked and spontaneous variance components. Given the fitted model parameters, we

defined the evoked and spontaneous components of the fluorescence signal as

f̂ evoked
n ¼ ânk � ŵ>

n sþ b̂n1T;

f̂ spont
n ¼ ânk � b̂>n x̂ þ b̂n1T:

Note that we include the baseline fluorescence term b̂n to ensure the evoked and spontaneous

traces are appropriately aligned with the raw fluorescence signal during visual comparisons.

The variance of the reconstructed fluorescence levels can then be written in terms of these

components

var½f̂ n� ¼ var½ânk � ŵ>n sþ ânk � b̂>n x̂�

¼ var½f̂ evokedn � þ var½f̂ spontn � þ 2cov½f̂ evokedn ; f̂ spontn �:

When plotting variance components as proportions of sample variance as in Fig 4A, the sam-

ple variance var[fn] is corrected for imaging noise by subtracting the estimated sample imaging

noise variance s2
n. We then define the drive ratio for neuron n using the variance components

as

dn ¼
var½f̂ evokedn � � var½f̂ spontn �

var½f̂ evokedn � þ var½f̂ spontn �
:

This defines an index ranging from −1 to 1 that describes the extent to which a neuron is

driven more by shared sources of SA or by EA.

Private variability can then be indirectly approximated by subtracting the estimated shared

variance from the variance of the raw signal (corrected for imaging noise),

priv½f n� ¼ var½f n� � var½f̂ n�:

However, as var½f̂ n� represents a lower bound on the shared variance, priv[fn] only represents

an upper bound on the private variance.

Factor contribution index. The contribution of a factor xl is defined as the average reduc-

tion in explained correlation caused by removing factor l from the model reconstruction of the

fluorescence trace,

1 �
1

N

XN

n¼1

corr½f n; f̂ nð� lÞ�

corr½f n; f̂ n�

where f̂ nð� lÞ ¼ ânk � ðŵ>n sþ b̂>nð� lÞx̂ð� lÞÞ þ b̂n1T , and b̂nð� lÞ and x̂ð� lÞ are obtained by deleting

element l and row l from b̂n and x̂, respectively.

Tuning curve comparison. Tuning curves obtained by averaging were defined as the

mean ΔF/F over the 4th to 7th frames following stimulus onset. As the stimulus filters fŵng

are rescaled by our parameter identification algorithm (described below), we compared the

averaging-based tuning curves with kmaxânŵn, where kmax = maxt k(t) is the maximum value of

the calcium kernel. This scaling of the stimulus filter reports the amplitudes of the calcium

PLOS COMPUTATIONAL BIOLOGY Decoupling evoked and spontaneous neural activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008330 November 30, 2020 17 / 28

https://doi.org/10.1371/journal.pcbi.1008330


transients evoked by each stimulus, which are directly comparable with the tuning curves

obtained by averaging.

Model fitting

We fit the model by maximising the posterior density of the latent variables,

x̂; ŷ ¼ argmax
x;y�0

pðxjf ; y; gÞ ¼ argmax
x;y�0

pðf jx; yÞpðxjgÞ ð7Þ

where the parameters of the model are θ = ({αn}, {βn}, {wn}, {bn}). Ideally, one could perform

this optimisation using the expectation-maximisation algorithm, which alternates between

computing the posterior distribution over the latent factors q(x) = p(x|f, θ, γ), and maximising

the posterior expectation y
new
¼ argmax

y
Eq½ln pðf; xjy; gÞ�. However, the E-step is not analyti-

cally tractable since our exponential prior on xl(t) is non-conjugate for the likelihood model.

Instead, we use a related “pseudo expectation-maximisation” approach [45] that alternately

optimises Eq 7 according to the steps

xðiþ1Þ ¼ argmax
x�0

pðfjx; yðiÞÞpðxjgÞ ð8Þ

y
ðiþ1Þ
¼ argmax

y�0

pðfjxðiþ1Þ; yÞpðxðiþ1ÞjgÞ ð9Þ

until numerical convergence or until i reaches a user-specified number of iterations. The alter-

nating maximisations are each performed using the bounded BFGS algorithm with limited

memory (L-BFGS-B), with exact gradients derived below.

The logarithm of the joint model probability density is

ln pðf ;xjy; gÞ ¼
XT� 1

t¼0

XN

n¼1

ln pðfnðtÞjxð0Þ; . . . ;xðtÞ; yÞ þ
XT� 1

t¼0

XL

l¼1

ln pðxlðtÞjgÞ þ constant

where the constant term does not depend on the parameters of θ to be estimated. Let ℓ(x, θ) =

ln p(f, x|θ, γ), and let EnðtÞ denote the model reconstruction error for neuron n in imaging

frame t,

EnðtÞ ¼ fnðtÞ � anðk � λnÞðtÞ � bn:

The derivatives of ℓ(x, θ) with respect to the parameters and latent variables are then

@

@an
‘ðx; yÞ ¼

an

s2
n

XT� 1

t¼0

EnðtÞ � ðk � λnÞðtÞ

@

@bn
‘ðx; yÞ ¼

1

s2
n

XT� 1

t¼0

EnðtÞ

@

@wn
‘ðx; yÞ ¼

an

s2
n

XT� 1

t¼0

EnðtÞ � ðk � sÞðtÞ
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where for a matrix Λ 2 RT�q
the convolution k � Λ 2 RT�q

is performed row-wise. In practice

we vectorise the computation of the gradients to improve efficiency.

The imaging noise variance terms s2
n are estimated using the method in ref. [23]. Specifi-

cally, s2
n is estimated as the mean of the power spectral density of fn over the range (Fs/4, Fs/2),

where Fs is the imaging rate of the fluorescence microscope.

Model identifiability. As is common in factor analysis-style methods, the model parame-

ters and latent variables (θ, x) are not uniquely identifiable in their current form. Our model-

fitting algorithm thus transforms the estimates ðŷ; x̂Þ into a standardised form according to

the following procedure. First we fit the CILVA model to data {fn} using the MAP estimator to

obtain model parameters fâng, fb̂ng, fŵng, fb̂ng, fx̂ lg, fŝ
2
ng. We then sort factors x̂ l in

descending order of their Euclidean norm so that jjx̂1jj � � � � � jjx̂Ljj, and sort factor coupling

column vectors b̂ðlÞ 2 RN to take the same order. Next, we normalise latent factors and propor-

tionally rescale factor coupling vectors,

ðx̂ l; b̂ðlÞÞ  ð
1

jjx̂ ljj
x̂ l; jjx̂ ljjb̂

ðlÞÞ:

The latent factors are now identifiable. Finally, we normalise the static model parameters by

the norm of the neural intensity vector,

ðân; ŵn; b̂nÞ  ðjjλ̂njjân;
1

jjλ̂njj
ŵn;

1

jjλ̂njj
b̂nÞ:

This ensures identifiability of the static model parameters θ.

Parameter initialisation. We also implemented a simple penalised regression approach

to estimate the calcium transient time constants τr and τd if required. The idea is to alternately

estimate tuning curves (using knowledge of the stimulus presentation times) and update our

time constants given these new tuning curves. The constants τr and τd must respect the

inequality

0 < tr < td:

We thus parameterise τd in terms of the rise time constant and a positive offset,

td ¼ tr þ D; where D > 0:

Let ktr ;DðtÞ ¼ expð� t=ðtr þ DÞÞ � expð� t=trÞ. Given some values of τr and Δ, we define

Φtr ;D
2 RK�T

analogous to the residual NMF method with

ðΦtr ;D
Þi ¼ ktr ;D � si

for i = 1, . . ., K. For every neuron n we then fit tuning curves as

ω̂n ¼ argmin
tr ;D>0

jjfn � ω>nΦtr ;D
jj

2

using non-negative least squares. Then, given a set of tuning curves fω̂ng, we update the time

constants by minimising the model reconstruction error averaging over all neurons,

t̂r; D̂ ¼ argmin
tr ;D>0

1

2

XN

n¼1

XT� 1

t¼0

ðfnðtÞ � ðktr ;D � ω̂
>

n sÞðtÞÞ
2
þ Zðtr þ DÞ

( )
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where η> 0 is a chosen penalty coefficient. The derivative of this term with respect to ~t 2

ftr;Dg is

�
XN

n¼1

XT� 1

t¼0

ðfnðtÞ � ðktr ;D � ω̂
>

n sÞðtÞÞ �
@

@~t
ktr ;D � ω̂

>

n s
� �

þ Z

where

@

@tr
ktr ;DðtÞ ¼

t
ðtr þ DÞ

2
exp

� t
tr þ D

� �

þ
t
t2
r

exp
� t
tr

� �

;

and

@

@D
ktr ;DðtÞ ¼

t
ðtr þ DÞ

2
exp

� t
tr þ D

� �

:

We perform the non-negative minimisation with these gradients using L-BFGS-B. Learning

the time constants typically only required several alternations of estimating the tuning curves

fω̂ng and updating the time constants ðt̂r; D̂Þ.

We use the stimulus regressors to also initialise the filters wn; i.e.,

winit
n ¼ argmin

wn�0

jjf n � w>nΦjj
2

with the calcium time constants obtained either by the penalised regression approach

described above or by manual specification. We then initialise αn as a small perturbation

around 1, ainitn � N ð1; 10� 2Þ, and b
init
n ¼ 0. We initialise the latent factor coupling strengths as

uniform samples from the unit interval, binit
nl � Uð0; 1Þ, and the factor activity levels uniformly

from a small interval, xinit
l ðtÞ � Uð0; 1=5Þ.

Model selection. CILVA depends on two key hyperparameters: the number of latent fac-

tors L and the sparsity parameter γ. Here we describe how we estimate these hyperparameters.

To avoid local minima, we fit the model several times to the data with different random initia-

lisations of the factor coupling vectors {bn} and factor activities {xl}. For a given L and γ we fit

the latent variables and parameters on training data as

x̂
ðiÞ
L;g; ŷ

ðiÞ
L;g ¼ argmax

ðx
ðiÞ
L;g ;y

ðiÞ
L;gÞ�0

pðf jxðiÞL;g; y
ðiÞ
L;gÞpðx

ðiÞ
L;gjgÞ

where i = 1, . . ., imax denotes the ith initialisation of x and θ. We select the optimal parameters

y
ðiÞ
L;g and hyperparameter γ as those that maximise the joint density of the data and latent vari-

ables on 5 minutes of held-out test data ftest; i.e.,

ŷL; ĝL ¼ argmax
ðy
ðiÞ
L;g ;gÞ

pðf testjx̂ test
L;g ; ŷ

ðiÞ
L;gÞpðx̂ test

L;g jgÞ;

where values of γ are obtained via grid search over a small interval [Δγ, dΔγ] with step-size Δγ
and number of grid points d. Here we infer new latent variables x̂ test

L;g that explain the patterns

of spontaneous activity in the test data ftest. The selected latent variables for the training data

are then those that correspond to the optimal θ and γ,

x̂L ¼ argmax
x�0

pðfjx; ŷLÞpðxjĝLÞ:

We used Δγ = 0.2, d = 10 and imax = 5. For the example zebrafish used in the main text we
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selected L as the number of factors after which the mean correlation coefficient between the

raw fluorescence traces and model-reconstructions failed to substantially improve (i.e., at the

‘elbow’ in Fig 3D).

Fitting CILVA for testing and preliminary data analysis required a computation time of

*10 minutes on a 64-bit MacBook Pro with a 3.1 GHz Intel Core i7 Processor and 8 GB

DDR3 RAM running Python 3.6.4. For the model fits in this paper we allowed the optimisa-

tion procedure to run to a user-specified number of alternations of Eqs 8 and 9 (typically

*100), performed on a computer cluster with 17 Dell EMC PowerEdgeR740 compute nodes,

each comprised of two Intel Xeon Gold 6132 processors with 384 GB DDR4 RAM. Scheduled

jobs were allocated 2 CPUs and 5GB RAM, and required*1 hour to complete.

Simulated data

To generate simulated data we sampled the latent factors from a zero-inflated exponential dis-

tribution with probability ξ of a non-zero latent event,

xlðtÞ � ð1 � xÞdðxlðtÞÞ þ xExpðgxÞ:

This ensured the latent factor activity was sparse. We also introduced a private SA term zn(t)
for neuron n at time t by sampling from a zero-inflated exponential with probability π of a

non-zero private event,

znðtÞ � ð1 � pÞdðznðtÞÞ þ pExpðgzÞ:

The intensity function was then given by

lnðtÞ ¼ w>n sðtÞ þ b
>

n xðtÞ þ znðtÞ

with the fluorescence levels following the standard CILVA model with a common imaging

noise variance σ2,

fnðtÞ ¼ anðk � λnÞðtÞ þ bn þ �nðtÞ

�nðtÞ � N ð0; s2Þ:

We sampled αn from the discrete uniform distribution on {2, . . ., 10} and for simplicity set

βn = 0. The tuning curves wn were defined as Gaussian functions x 7! exp(−(x − μn)2/2ν). For

the simulation of data in response to well-spaced, low dimensional stimuli (cf. Fig 3) we sam-

pled the centres μn uniformly from the interval [0, K], where K is the number of stimuli, and

sampled the widths νn uniformly from [0, K/2]. For the simulation of data in response to rap-

idly presented, high dimensional stimuli (cf. Fig 5) we chose our receptive fields to be more

selective and sampled νn uniformly from ½0;
ffiffiffiffi
K
p
�.

Factor coupling vectors bn were defined by evenly assigning the N neurons to L factors, and

sampling bnl* U[q, 1] if neuron n is assigned to factor l, and bnl* U[0, 1 − q] otherwise. We

found q = 0.85 provided simulations that appeared similar to the experimental data. We char-

acterised the model reconstruction quality in terms of π and σ2 in S2 and S3 Figs, with the asso-

ciated model parameters provided in S1 and S2 Tables.

Supporting information

S1 Video. Reconstructed calcium imaging data from the larval zebrafish optic tectum with

stimulus and inferred factor activity. 143 neurons recorded from the optic tectum in

response to 9 visual stimuli. Latent factors explain the presence of structured patterns of spon-

taneous activity between stimulus onset times. Stimulus and factor activity have been
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convolved with a GCaMP6s calcium kernel for improved visual comparison between stimuli,

factors, and neural activity. Individual neuron intensities are normalised to range from 0 to 1.

This data corresponds to 5 minutes of activity from the example zebrafish in Figs 1–4.

(MP4)

S2 Video. Decoupled evoked and spontaneous activity from the larval zebrafish optic tec-

tum. Decomposition of the activity in S1 Video into its evoked and spontaneous components.

(MP4)

S1 Table. Parameters for simulated data corresponding to the presentation of a low dimen-

sional stimulus with prolonged interstimulus intervals (analogous to the zebrafish data).

Parameters related to time are defined with respect to imaging rate. Listed values of π and σ2

are defaults, but are varied over the range specified in parentheses.

(PDF)

S2 Table. Parameters for simulated data with rapid presentation of a high dimensional

stimulus (analogous to the mouse data). Parameters related to time are defined with respect

to imaging rate. Listed values of π and σ2 are defaults, but are varied over the range specified in

parentheses.

(PDF)

S3 Table. Numerical values for the histograms in S11 Fig. Zebrafish 5 corresponds to the

example used in Figs 1–4 and S1 and S4–S7 Figs.

(PDF)

S1 Fig. Residual NMF approach to decoupling EA and SA in larval zebrafish optic tectum.

(A) Fluorescence traces from 10 example neurons. Dashed vertical lines indicate stimulus

onset; colour represents azimuth angle of presented stimulus. (B) Example fluorescence trace

segment illustrating that spontaneous calcium transients can occur just before stimulus onset.

(C) A simple estimate of the stimulus-driven component of population data can be obtained

by multiple regression of fluorescence traces onto stimulus regressors using non-negative least

squares. (D) After estimating the stimulus-driven component, low dimensional structure in

the residual data can be estimated using non-negative matrix factorisation. (E) Patterns of SA

shared between groups of neurons found via NMF. For consistency with later results, we here

applied NMF with three latent factors. Each row corresponds to the activity of one factor. (F)

Top: component of the raw fluorescence trace (black) considered to be SA by the residual

NMF approach (blue). NMF often produces estimates with erratic and sudden changes in cal-

cium levels that fail to respect the stereotypical structure of calcium activity. Bottom: additional

examples of shared SA estimated from the residuals using NMF (blue). For comparison, the

same estimates are shown when expressed in a basis of calcium impulse response functions

located at each time point (orange, Methods). Deviations from the orange curve demonstrate

atypical calcium behaviour. Samples were selected for illustration from among the 10 neurons

best explained by the residual NMF approach.

(PDF)

S2 Fig. Results on simulated data (analogous to the zebrafish data). To validate perfor-

mance we fit the model to simulated data (see Methods). The two primary constraints on

model performance are (i) the rate π of private spontaneous events, and (ii) the variance σ2 of

the imaging noise. We systematically varied these two parameters and observed the ability of

the model to recover the underlying evoked and spontaneous components. Parameters used in

the simulations are given in S1 Table. (A) Ten randomly chosen neurons from an example

simulation with π = 0.05 and σ2 = 0.1. Black traces show simulated raw fluorescence data. The
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true composition of the fluorescence trace is given in red (EA) and blue (shared SA). (B) The

correlation coefficient between the raw fluorescence trace and model reconstruction decreases

as the rate of private spontaneous events increases. (C) Histograms of correlation coefficients

for three example values of π. (D), While the correlation coefficient decreases with π, recovery

of the evoked (left) and spontaneous (right) fluorescence components remains highly accurate.

(E)—(G) Same as (B)—(D) but with varying noise variances σ2. High noise variances limit the

correlation between the raw (noisy) fluorescence trace and (noiseless) model reconstruction,

but recovery of the evoked and spontaneous components is still very robust. All shaded regions

represent 95th percentiles.

(PDF)

S3 Fig. Results on simulated data with rapidly presented high-dimensional stimuli (analo-

gous to the mouse data). Parameters used in the simulations are given in S2 Table. (A) Ten

randomly chosen neurons from an example simulation with π = 0.05 and σ2 = 0.1. Black traces

show simulated raw fluorescence data. The true composition of the fluorescence trace is given

in red (EA) and blue (shared SA). (B) The correlation coefficient between the raw fluorescence

trace and model reconstruction decreases as the rate of private spontaneous events increases.

(C) Histograms of correlation coefficients for three example values of π. (D) While the correla-

tion coefficient decreases with π, recovery of the evoked (left) and spontaneous (right) fluores-

cence components remains highly accurate. (E)—(G) Same as (B)—(D) but with varying noise

variances σ2. All shaded regions represent 95th percentiles.

(PDF)

S4 Fig. Consistency of modelling outcomes with CaImAn preprocessing of zebrafish in

Figs 3 and 4. (A) Results of fitting CILVA and decoupling EA (red) and shared SA (blue) in an

experimental recording with CaImAn preprocessing (cf. Fig 3A). Inset numbers denote the

Pearson correlation coefficient between raw fluorescence trace and model fit. The 10 neurons

with the highest correlations between data and model fit are shown. (B) Distribution of corre-

lation coefficients between data and model fits (cf. Fig 3B). Shuffled data obtained by cyclically

permuting each trace by a random offset while preserving its temporal structure. (C) Estimated

factor coupling matrix shows that latent factors target distinct, non-overlapping sets of neu-

rons. (D) Spatial organisation of latent factors underlying SA (cf. Fig 4G). The three non-over-

lapping factors are spatially localised and tile the imaging plane. (E) Spatial organisation of the

evoked and spontaneous variance components (cf. Fig 4H and 4I). Cell opacity is proportional

to the fraction of variance attributable to EA or SA for the given neuron.

(PDF)

S5 Fig. Model fits for 35 neurons sampled from the larval zebrafish in Fig 3. Example fluo-

rescence traces (black) and corresponding model fits (green). Dashed vertical lines indicate

stimulus onset times. Inset numbers denote Pearson correlation coefficient between raw trace

and model fit. Sampled neurons are sorted by correlation. Poor fits can result from neurons

that show inconsistent responses (or no responses) to presented stimuli or neurons dominated

by private SA (and therefore that cannot be assigned to a latent factor). Another potential rea-

son the model would fit poorly is segmentation errors when identifying neurons. However,

manual inspection of the raw data suggested that this was not the case for the neurons shown

here.

(PDF)

S6 Fig. Decoupling of evoked (red) and spontaneous (blue) calcium transients correspond-

ing to the neurons from S5 Fig.

(PDF)
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S7 Fig. Residuals corresponding to the neurons from S5 Fig. Residual data obtained by sub-

tracting model fit from the raw data (i.e. fn � f̂ n). Inset numbers denote the correlation coeffi-

cients from the model fits in S5 Fig. Ideal residuals appear as independent and identically

distributed samples from a Gaussian noise distribution. Systematic deviations from Gaussian

noise reflect calcium transients not captured by the model, and contribute to measurements of

private variability.

(PDF)

S8 Fig. Decoupling of evoked and spontaneous activity corresponding to neurons in Fig

3H. Neurons ordered the same as Fig 3H, with the neuron marked by an asterisk (11th trace)

corresponding to the similarly marked neuron in Fig 3H.

(PDF)

S9 Fig. Model fit from a second zebrafish demonstrating similar features to fish shown in

the main text. (A) Example fluorescence traces (black) and model fits (green) for the twelve

best fitting neurons. Inset numbers denote the Pearson correlation coefficient between raw

trace and model fit. (B) Application of the statistical model to decouple EA (red) and shared

SA (blue). (C) Distribution of correlation coefficients between data and model fits. Shuffled

data (gray) obtained by cyclically permuting each model fit by a random offset while preserv-

ing its temporal structure. (D) Inferred latent factor timeseries. Inset numbers denote the fac-

tor contribution indices. (E) Factor coupling matrix. (F) Cumulative factor contribution

indices for 0-3 latent factors. (G) Correlation coefficient between raw fluorescence trace and

model fit with and without incorporation of SA. Neurons with strongly negative drive ratios

show marked improvement in quality of model fit. (H) Cross-correlograms show little interac-

tion between latent factors. (I) Example stimulus filters (red). Tuning curves obtained by aver-

aging fluorescence levels over a small window following stimulus presentation provided for

comparison (gray). Shaded error bars represent one standard deviation. (J) Retinotopic maps

obtained by averaging (left) and by fitting CILVA (right).

(PDF)

S10 Fig. Model fit from a third zebrafish. (A) Example fluorescence traces (black) and model

fits (green) for the twelve best fitting neurons. Inset numbers denote the Pearson correlation

coefficient between raw trace and model fit. (B) Application of the statistical model to decouple

EA (red) and shared SA (blue). (C) Distribution of correlation coefficients between data and

model fits. Shuffled data (gray) obtained by cyclically permuting each model fit by a random

offset while preserving its temporal structure. (D) Inferred latent factor timeseries. Inset num-

bers denote the factor contribution indices. (E) Factor coupling matrix. (F) Cumulative factor

contribution indices for 0-3 latent factors. (G) Correlation coefficient between raw fluores-

cence trace and model fit with and without incorporation of SA. Neurons with strongly nega-

tive drive ratios show marked improvement in quality of model fit. (H) Cross-correlograms

show little interaction between latent factors. (I) Example stimulus filters (red). Tuning curves

obtained by averaging fluorescence levels over a small window following stimulus presentation

provided for comparison (gray). Shaded error bars represent one standard deviation. (J) Reti-

notopic maps obtained by averaging (left) and by fitting CILVA (right).

(PDF)

S11 Fig. Consistency of CILVA fits across a population of zebrafish larvae. Black triangles

point to the example fish from the main text. (A) Mean and interquartile range (IQR) of corre-

lation coefficient distributions for n = 8 larvae. (B) Distribution of factor contribution indices.

For model fits with 3 latent sources of SA, each factor has a contribution index of * 0.1. (C)
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Distribution of fraction of neurons ‘shared’ between multiple factors. Neurons were consid-

ered shared if they were coupled to more than one factor with coupling strengths exceeding a

threshold of 25% of the maximum coupling strength for that factor. (D) Mean improvement

in correlation coefficients with incorporation of latent sources of SA. (E) Distribution of mean

drive ratios across the population of larvae, centered at −0.01, suggesting that SA and EA are

largely balanced within individual fish. (F) The mean absolute values of the drive ratio are

greater than 0, showing that individual neurons tend to be biased towards either EA or SA.

Histograms in panels B—F obtained by non-parametric density estimation with Gaussian ker-

nels. Raw data points used for histograms given in S3 Table.

(PDF)

S12 Fig. Application of CILVA to mouse visual cortex. (A) We fit the model with 10 latent

factors. While the contribution indices for the factors gradually diminished (panel D), varying

the number of factors from 1 to 20 did not identify a point at which the overall quality of fit

failed to increase, including in held-out test data. (B) Cross-correlograms between latent factor

timeseries indicate factors underlying SA are mutually independent. (C) Cumulative contribu-

tion of factors to quality of model fit. (D) Correlation coefficients between raw fluorescence

trace and model fit with and without the SA component. Neurons with negative drive ratios

(blue circles) demonstrate substantial improvement in the quality of model fit when incorpo-

rating SA. (E) Improvement in the quality of model fit when incorporating the SA component

is statistically significant (p< 0.001, Wilcoxon signed-rank test). (F) Example decoupling of

EA and SA for the 30 best fit neurons (top) and underlying latent factor timeseries (bottom).

(G) Close-up of model fit from neurons in dashed region in panel G. Inset numbers denote

Pearson correlation between raw data and full model fit.

(PDF)
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