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Parallel Activin and BMP signaling
coordinates R7/R8 photoreceptor
subtype pairing in the stochastic
Drosophila retina
Brent S Wells, Daniela Pistillo, Erin Barnhart, Claude Desplan*

Center for Developmental Genetics, Department of Biology, New York University,
New York, United States

Abstract Drosophila color vision is achieved by comparing outputs from two types of color-

sensitive photoreceptors, R7 and R8. Ommatidia (unit eyes) are classified into two subtypes, known

as ‘pale’ or ‘yellow’, depending on Rhodopsin expression in R7 and R8. Subtype specification is

controlled by a stochastic decision in R7 and instructed to the underlying R8. We find that the

Activin receptor Baboon is required in R8 to receive non-redundant signaling from the three Activin

ligands, activating the transcription factor dSmad2. Concomitantly, two BMP ligands activate their

receptor, Thickveins, and the transcriptional effector, Mad. The Amon TGFb processing factor

appears to regulate components of the TGFb pathway specifically in pale R7. Mad and dSmad2

cooperate to modulate the Hippo pathway kinase Warts and the growth regulator Melted; two

opposing factors of a bi-stable loop regulating R8 Rhodopsin expression. Therefore, TGFb and

growth pathways interact in postmitotic cells to precisely coordinate cell-specific output.

DOI: https://doi.org/10.7554/eLife.25301.001

Introduction
During development, cells make both autonomous and non-autonomous decisions to give rise to

functional organs. The compound eye of Drosophila provides a beautiful example of how these pro-

cesses are integrated. It is composed of approximately 800 units, the ommatidia, each consisting of

eight photoreceptor cells (R1 to R8), as well as accessory cone and pigment cells (for review see

[Hafen, 1991]). Photoreceptors express one of six different types of photosensitive Rhodopsins (Rh).

The six outer photoreceptors R1-R6 all express Rh1 and are involved in motion detection and image

formation in dim light (Heisenberg and Buchner, 1977). In function, they resemble vertebrate rods.

Their six rhabdomeres, which are made up of widely expanded membranes that contain the light-

sensitive Rhs, are arranged in a trapezoid. They surround the rhabdomeres of the two inner photore-

ceptors R7 and R8, which are located on top of one another, thus sharing the same optic path

(Figure 1A). R7 and R8 are involved in color vision and can be considered the equivalent of the ver-

tebrate cones. Two primary ommatidial subtypes specialized in color vision can be identified in the

main part of the retina, based on their Rh content in R7 and R8. They coordinately express UV-sensi-

tive Rh3 in R7 with blue-Rh5 in R8 (pale ommatidia), or UV-Rh4 in R7 with green-Rh6 in R8 (yellow

ommatidia). These two subtypes are stochastically distributed with a conserved ratio of 35% pale

and 65% yellow (Figure 1B) (for review see [Rister et al., 2013]). Tight coupling of Rh expression in

R7 with R8 likely allows flies to distinguish colors by comparing outputs from R7 and R8 cells belong-

ing to the same ommatidium. Comparison between pale and yellow ommatidia also likely occurs, as

several classes of neurons contact axons from both subtypes in the medulla (Takemura et al., 2013).
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The decision to adopt the pale or the yellow subtype is originally made in R7: In the absence of

R7 cells (i.e. in a sevenless (sev) mutant), most R8 cells express Rh6, suggesting the loss of an Rh5

signal from 35% of R7 cells. In contrast, R7 cells still express Rh3 or Rh4 in the correct 35%:65% ratio

when R8s are absent (Chou et al., 1996; Chou et al., 1999; Papatsenko et al., 1997). Therefore, a

stepwise mechanism appears to be responsible for the specific expression of the different Rhs in R7

and R8: Stochastic expression of the transcription factor Spineless (Ss) in about 65% of R7 cells indu-

ces the yellow R7 subtype and represses the pale R7 subtype (Wernet et al., 2006). Pale R7 cells

that do not express Ss activate Rh3 and signal to the underlying R8 to induce the pale subtype

(Rh5). Signaling affects a bi-stable loop between the gene encoding the Drosophila homologue of

the human LATS tumor suppressor, Warts (Wts), which is expressed in Rh6-positive yellow R8 cells,

and the cell growth regulator Melted (Melt), which is co-expressed in pale R8 cells with Rh5, ensur-

ing that the decision communicated by R7 to R8 is unequivocally fixed in R8 (Figure 1B) (Mikeladze-

Dvali et al., 2005). The molecular nature of the signal from R7 to R8 has so far remained elusive.

Mutations in this signaling pathway are expected to modify the expression of R8 Rhs (Rh5 and Rh6)

but not R7 Rhs (Rh3 and Rh4).

Figure 1. Ommatidia architecture and the mechanisms of TGFb pathway signaling. (A) The six outer

photoreceptors R1-R6 all express Rh1 and are involved in motion detection and image formation in dim light. They

surround the rhabdomeres of the two inner photoreceptors R7 and R8, which are located on top of each other,

thus sharing the same optic path. (B) The transcription factor Ss is expressed in 65% of R7 cells (yellow cells),

activating Rh4 and repressing Rh3. Ss inhibits the instructive signal from R7 to R8, allowing for the default

phosphorylation and activation of Wts in R8 and subsequent expression of Rh6 and repression of Rh5. Wts makes

up one half of a double-negative feedback loop that establishes and maintains R8 subtypes. The other half of the

loop, Melt, is expressed in R8s downstream of the other 35% of R7 cells (pale cells). These pale R7 cells lack Ss

expression, allowing for expression of Rh3 and instructive signaling to R8 (red arrow). The instructive signal likely

activates Melt, which represses Wts, allowing for Rh5 expression. (C) TGFb superfamily ligands induce

oligomerization of Type I and Type II serine-threonine kinase receptors. Binding of the ligand dimer to the Type II

receptor initiates its kinase activity, phosphorylating residues on the Type I receptor, which becomes activated.

Type I receptors then phosphorylate members of the receptor regulated (R)-SMAD family of transcription factors,

allowing them to bind co-SMADs, translocate to the nucleus and activate or repress transcription of downstream

target genes. (D) The TGFb pathway in Drosophila contains both BMP and Activin subfamilies. The BMP subfamily

is composed of three ligands, Dpp, Gbb and Scw, two Type I receptors, Tkv and Sax and one R-SMAD, Mad. The

Activin subfamily also contains three ligands, dActb, Daw and Myo, but only one Type I receptor, Babo and one

R-SMAD, dSmad2. Both subfamilies share the Type II receptors Punt and Wit as well as the Co-SMAD, Med.

DOI: https://doi.org/10.7554/eLife.25301.002
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We report here that signaling from R7 to R8 is mediated by both arms of the TGFb superfamily

(Figure 1C). In Drosophila, each arm (BMP and Activin) utilizes different ligands, Type I receptors

and downstream R-SMADs (reviewed in [Feng and Derynck, 2005]): BMP homologues Decapenta-

plegic (Dpp), Glass Bottom Boat (Gbb), and Screw (Scw) signal through Type I receptors Thickveins

(Tkv) and Saxophone (Sax) to induce phosphorylation of Mad. In the Activin branch, Activinb (dActb),

the Activin-like protein Dawdle (Daw), and Myoglianin (Myo) signal through Type I receptor Baboon

(Babo) to induce phosphorylation of dSmad2. The Drosophila Smad4 homologue, Medea (Med),

serves as the co-SMAD for both branches of the pathway. Type II receptors Punt (Put) and Wishful

Thinking (Wit) can bind to both BMP and Activin Type I receptors (Figure 1D). Little is known about

an additional orphan ligand, Maverick (Mav), which has not been assigned to either the Activin or

BMP pathway (for review see [Peterson and O’Connor, 2014]).

We find that both arms of the TFGb signaling pathways specifically instruct the pale photorecep-

tor subset in R8. The Activin arm utilizes the three ligands dActb, Daw, and Myo non-redundantly to

activate Babo and downstream dSmad2 in R8, while the BMP arm signals by way of Dpp and Gbb to

Tkv and Mad. Removing either babo or tkv leads to a dramatic increase in the yellow R8 subtype,

without affecting R7 subtype. This is also true for removing pathway ligands and R-SMADs. More-

over, overexpression of constitutively activated forms of Babo or Tkv gives the opposite phenotype

of high pale R8 subtypes. We show that most of the ligands are expressed in all R7 cells while regu-

lation of their processing by the processing factor Amon appears to control their pale-specific func-

tion. We also demonstrate that both Activin and BMP signaling determine the R8 subtype by

regulating the Wts/Melt bi-stable loop in pale R8 cells, revealing the presence of a crosstalk

between the Hippo/Wts tumor suppressor and TGFb pathways.

Results

The Type I receptors Babo and Tkv and their multiple TGFb ligands are
required to specify pale R8 subtype
To reveal factors involved in the specification of R8 subtypes, we performed an RNAi screen of tran-

scription factors (described previously [Hsiao et al., 2013]) and membrane-associated factors for

severe deviations from the wild type (WT) 35/65 ratio of pale/yellow ommatidia (Figure 2A,E). We

uncovered the Activin Type I receptor Babo, which when removed with RNAi, dramatically reduced

the percentage of pale R8 cells from 38% in controls to 5%. This residual Rh5 expression is very simi-

lar to the low pale R8 phenotype seen in the absence of R7 in sev mutants (Chou et al., 1996;

Papatsenko et al., 1997) (Figure 2B,E, Figure 2—figure supplement 1A) and suggests that Babo

is necessary for pale R8 subtypes. To determine whether Babo was also sufficient to drive the pale

R8 subtype, we used the lGMR-Gal4 driver (Wernet et al., 2006) to overexpress an activated form

of Babo (Babo*) in all photoreceptors R1-8. This increased pale R8 subtypes to 80% (Figure 2C,E).

To ensure that Babo’s role on R8 subtypes was not a secondary consequence of changing the R7

subtype, we examined Rh expression in R7 cells in retinas where we expressed Babo*. The ratio of

Rh3/Rh4 expression in R7 was normal (35%/65%), leading to Rh4/Rh5 mispairing between R7 and R8

(Figure 2D), which is never observed in WT retinas (Chou et al., 1996) (Figure 2—figure supple-

ment 1B).

Babo is the sole Type I receptor for the Activin family of ligands: dActb, Daw, and Myo

(Figure 1D) (Brummel et al., 1999). To determine whether these Activin ligands were involved in

specifying R8 subtype, we removed each using the lGMR driver to express RNAi. To our surprise, we

found an independent requirement for all three (Figure 2F–I). Testing additional RNAi constructs

with different target regions for these same genes yielded similar results (Figure 2—figure supple-

ment 2A).

The babo gene produces three distinct isoforms that vary in their ligand-binding domains: Babo-

a, -b, and -c. Babo-a and Babo-b have redundant activity in specific developmental contexts

(Ng, 2008; Zheng et al., 2006), although only Babo-a has been shown to specifically bind both Myo

(Awasaki et al., 2011) and dActb (Song et al., 2017). Babo-c has been shown to bind Daw

(Jensen et al., 2009). To investigate whether one or more isoforms are involved in specifying pale

subtype, we drove isoform-specific RNAi and overexpression lines using lGMR-Gal4. Removing

Babo-a eliminated all pale fate (0%) while overexpressing it significantly increased pale fate (64%).
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Figure 2. Many TGFb ligands and receptors are required non-redundantly to specify R8 subtypes. Graph Legend: Red is the percentage of R8

photoreceptors that expressed Rh6, Blue is the percentage that expressed Rh5 and Purple is Co-expression of Rh5 + Rh6. Error bars report standard

error of the mean. Paired t-tests were performed against percentages of Rh5 expression and significance is denoted where applicable (***=p�0.01,

**=p�0.05, *=p�0.1, ns = not significant). Where significance (or non-significance) is noted, follow the horizontal bar above the significance value to its

Figure 2 continued on next page
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Likewise, removing or overexpressing Babo-b significantly reduced (16%) and increased (65%) pale

fate, respectively. Neither removal nor overexpression of Babo-c affected pale fate (Figure 2—fig-

ure supplement 1C–I). These results suggest that Babo-a and -b are each required non-redundantly

for pale fate. However, Babo-a appeared to be critical for all pale fates, while removing Babo-b was

far less effective. It is possible that RNAi for Babo-b might be weak and insufficient in fully knocking

down endogenous activity. Indeed, overexpressing Babo-b increased pale fates similarly to Babo-a.

The potential implications of these results on ligand usage are described below.

We also examined the role of Type II-receptor-binding partners, Put and Wit. We used RNAi to

remove them under the control of lGMR-Gal4. We could show that Put but not Wit is required for

R8 subtypes (Figure 2—figure supplement 1A). This is not unexpected as Put but not Wit has been

described as the binding partner for Babo (Jensen et al., 2009). Similar to Babo, the BMP Type I

receptor Tkv is also a binding partner of Put (Ruberte et al., 1995). To examine the role of Tkv in

determining R8 subtype, we expressed TkvRNAi using lGMR-Gal4, and observed a dramatic reduc-

tion in pale R8 photoreceptors to 3%. However, removal (or overexpression) of the other BMP Type

I receptor, sax, had no effect (Figure 2J,M; Figure 2—figure supplement 2B). To determine

whether Tkv was also sufficient to induce pale R8 subtypes, we overexpressed an activated form

(Tkv*) in all photoreceptors, which increased Rh5 expression to 80% (Figure 2K,M). Similar to Babo,

manipulation of Tkv altered R8 subtype but not the R7 subtypes (Figure 2L). It should be noted that

expressing Tkv* also resulted in co-expression of Rh5 and Rh6 in 36% of R8 cells. This appears to be

due to derepression of Rh5 into yellow R8 photoreceptors since the percentage of R8 photorecep-

tors expressing Rh5 nearly doubled while the percentage of yellow R8s remained similar to controls.

We next tested the three BMP pathway ligands. We found roles for both Dpp and Gbb but not

Scw in the specification of R8 subtype (Figure 2N–P, Figure 2—figure supplement 2A). We did not

find a role for the TGFb orphan ligand Mav (Figure 2—figure supplement 2A).

Maturation of TGFb ligands requires cleavage of their precursor proteins by furin-type proprotein

convertases (Cui et al., 2001; Degnin et al., 2004). In Drosophila, Furin 1 (Fur1) and Furin 2 (Fur2)

have been shown to cleave redundantly at FSII and FSIII sites. However, Fur2 is unique in also cleav-

ing at FSI (Fritsch et al., 2012; Künnapuu et al., 2009; Künnapuu et al., 2014). Drosophila also has

a third Furin-type protease family member, Amontillado (Amon) (Rayburn et al., 2003) (Figure 2Q).

As an alternative approach to verify the role of TGFb ligands in R8 subtype specification, we knocked

down factors required for their processing. Using RNAi, we found roles for Amon and Fur2

(Figure 2R–S,W, Figure 2—figure supplement 2C). Furthermore, overexpressing Fur2 in all photo-

receptors increased pale R8 subtypes to 64%, an effect that was eliminated by concomitantly

Figure 2 continued

termination in a vertical tick to find the comparative genotype. Percentage values for each genotype are listed as (Rh5/(Rh5 + Rh6)/Rh6). (A) lGMR-

Gal4 > UAS-Dcr2 control retinas (32/6/62) (n = 6). Antibodies label Rh5 in blue and Rh6 in red. (B) lGMR-Gal4 > UAS-Dcr2; UAS-BaboRNAi drastically

reduced pale subtypes (5/0/95) (n = 13). (C) lGMR-Gal4 > UAS-Babo* increased pale subtypes (80/2/19) (n = 20). (D) lGMR-Gal4 > UAS-Babo* retinas

altered subtype ratios of R8 cells without altering R7, resulting in mispairing of yellow, Rh4-expressing R7 cells (green) and pale, Rh5-expressing R8 cells

(blue) (arrows). (E) Quantification of experiments A-C with the addition of a lGMR-Gal4 control (39/0/61) (n = 7). (F) Using lGMR-Gal4 to express UAS-

Dcr2 and UAS-dActbRNAi (14/0/86) (n = 5), UAS-DawRNAi (7/0/93) (n = 10) (G), and UAS-MyoRNAi (16/0/84) (n = 5) (H) decreased pale subtypes. (I)

Quantification for F-H. (J) lGMR > UAS-Dcr2; UAS-TkvRNAi (3/0/97) (n = 6) also reduced pale R8 subtypes. (K) lGMR-Gal4 >UAS-Tkv* increased pale

subtypes (46/34/20) (n = 16). (L) lGMR-Gal4 >UAS-Tkv* retinas altered the subtype ratios of R8 cells without altering R7, resulting in mispairing of yellow,

Rh4-expressing R7 cells and pale, Rh5-expressing R8 cells (arrows). Some Rh5 +Rh6 co-expression occurred in UAS-Tkv* retinas (red + blue staining).

(M) Quantification of J-K. (N) lGMR-Gal4 > UAS-Dcr2 and UAS-DppRNAi (5/0/95) (n = 5) or UAS-GbbRNAi (15/0/85) (n = 9) (O) reduced pale subtypes.

(P) Quantification of N-O. (Q) Schematic of TGFb ligand regulation: Amon, Fur1 and Fur2 are furin-type proprotein convertases capable of cleaving and

activating ligands. Tsg and Sog bind ligands and prevents their activity while Tld can cleave Sog to undue repression or cleave ligands directly to

activate them. (R) lGMR-Gal4 > UAS-Dcr2 with AmonRNAi (9/0/91) (n = 4) or Fur2RNAi (5/0/95) (n = 4) (S) reduced pale subtypes. (T) lGMR-Gal4 > UAS-

Fur2 increased pale subtypes (64/0/36) (n = 3). (U) Removing babo prevented UAS-Fur2 from increasing pale subtypes (lGMR-Gal4 > UAS-Dcr2; UAS-

BaboRNAi; UAS-Fur2) (13/3/84) (n = 6). (V) lGMR-Gal4 > UAS-Dcr2; UAS-TldRNAi (5/0/95) (n = 3) reduced pale subtypes. (W) Quantification of R-V.

DOI: https://doi.org/10.7554/eLife.25301.003

The following figure supplements are available for figure 2:

Figure supplement 1. Babo-a, -b, and Put but not Babo-c or Wit are required for R8 subtypes.

DOI: https://doi.org/10.7554/eLife.25301.004

Figure supplement 2. Result validation using additional alleles.

DOI: https://doi.org/10.7554/eLife.25301.005
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removing babo using RNAi (13% Rh5) (Figure 2T–U,W). This is consistent with Babo acting down-

stream of Fur2-processed Activin ligands in specifying pale R8. We did not find a role for Fur1, which

is expected as evidence suggests Fur2 is sufficient for cleavage at all FS sites (Figure 2—figure sup-

plement 2C). The fact that Amon was also required suggests that it is not redundant with Fur2 and

that each may be responsible for processing distinct TGFb ligands (Künnapuu et al., 2009).

In addition to Furin-type convertases, the Tolloid (Tld) metalloprotease is also required for TGFb

signaling. Tld promotes signaling by cleaving Short Gastrulation (Sog), which dimerizes with Twisted

Gastrulation (Tsg) to bind to and inhibit mature BMP ligands in the intercellular space. Cleavage of

Sog disrupts the Sog/Tsg complex, releasing the ligand, which is then free to activate receptors

(Decotto and Ferguson, 2001; Shimmi and O’Connor, 2003). Tld can also cleave the pro-domains

of Activin ligands leading to enhanced signaling activity in the case of Daw (Figure 2Q) (Serpe and

O’Connor, 2006). Consistently, Tld was required to generate the pale R8 subtype (Figure 2V–W,

Figure 2—figure supplement 2C). However, removing tsg or sog did not increase pale R8 subtypes

by allowing unrestricted ligand-receptor binding, nor did removing them in combination (Figure 2—

figure supplement 2C). This may be due to limited ligands or pro-processing factors, or perhaps

because different regulatory mechanisms are deployed tissue-specifically.

Collectively, the loss-of-function phenotypes for Activin (Babo) and BMP (Tkv) receptors, ligands,

and ligand-processing factors strongly supports a role for the TGFb pathway in regulating R8 cell

subtype.

Babo and Tkv are activated by canonical family ligands
Non-canonical ligand-receptor cross-activation within the TGFb superfamily is not common but has

been reported (Peterson and O’Connor, 2014; Hevia and de Celis, 2013; Peterson et al., 2012).

Considering the involvement of ligands and receptors from both BMP and Activin families, we asked

whether BMP ligands were specifically signaling through Tkv while Activin ligands were signaling

through Babo. To address this, we removed specific ligands while overexpressing activated forms of

Babo* or Tkv*. If Babo is downstream of Activin ligands, overexpressing Babo* should significantly

rescue the loss in pale subtypes seen when removing dActb, daw, or myo. Indeed, we found that

this was the case (Figure 3A–D). However, the increase of pale/yellow R8 ratio was not as complete

as in UAS-Babo* alone and was quite mild in the case of rescuing dawRNAi. We then overexpressed

Tkv* while removing each of the Activin ligands individually and found that Tkv* was unable to res-

cue the decreased pale R8 subtypes induced by dActbRNAi and MyoRNAi. Tkv* did, however,

induce enough co-expression in dawRNAi retinas to achieve a statistically significant rescue (28%

Rh5) (Figure 3E–H). This may suggest that RNAi against daw is weakened in the UAS-Tkv* genetic

background.

Likewise, we asked whether Tkv* or Babo* could rescue loss of dpp or gbb. Overexpression of

Tkv* in the absence of dpp or gbb resulted in significant rescue of lost pale subtypes. However, it

did not result in the same high pale/yellow ratios seen in UAS-Tkv* retinas. Similar results were

obtained when expressing Babo* with dppRNAi or with gbbRNAi (Figure 3I–L,N). We suspect that

even though Babo is not the canonical receptor for Dpp or Gbb, the activated form is capable of

rescue due to Tkv-independent activation of Mad, which has been described before (Hevia and de

Celis, 2013; Peterson et al., 2012) and is further addressed below.

Together, these results confirm that, for specification of the pale R8 subtype, Tkv signaling is

downstream of Dpp and Gbb while Babo lies downstream of dActb, Daw and Myo (Figure 6F).

Why is there a requirement for so many ligands and why can’t Babo* or Tkv* completely rescue

their loss? TGFb ligands can heterodimerize to bind Type I receptors at the cell membrane

(Peterson and O’Connor, 2014; Matsuda and Shimmi, 2012). Therefore, Dpp and Gbb may form a

heteromeric complex to activate Tkv for pale R8 subtypes (Figure 3M). For Babo activation, dActb,

Daw, and Myo would need to form at least two dimers. A trimer would represent the first example

of such a complex in TGFb signaling.

Therefore, activating Babo in R8 might require tightly regulated levels of heterodimeric Activin

ligand signaling. To explore this, we asked whether removing combinations of Activin ligands could

further reduce pale subtypes in retinas. Removing either dActb or myo in combination with daw did

not exacerbate the decreased pale phenotype, but they did when combined with each other (1%

Rh5) (Figure 3O). Taken together, we suggest that Babo is activated in the retina by the combined

signaling of dActb/Daw and Myo/Daw dimers (Figure 3M). This is based on the following evidence:
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Figure 3. BMP and Activin ligands signal to their canonical receptors. Graph Legend: Red is the percentage of R8 photoreceptors that expressed Rh6,

Blue is the percentage that expressed Rh5 and Purple is Co-expression of Rh5 + Rh6. Error bars report standard error of the mean. Paired t-tests were

performed against percentages of Rh5 expression and significance is denoted where applicable (***=p�0.01, **=p�0.05, *=p�0.1, ns = not significant).

Where significance (or non-significance) is noted, follow the horizontal bar above the significance value to its termination in a vertical tick to find the

comparative genotype. Percentage values for each genotype are listed as (Rh5/(Rh5 + Rh6)/Rh6). (A) Expressing UAS-Babo* rescued some yellow

subtypes induced by removing dActb (lGMR-Gal4 > UAS-Dcr2; UAS-Babo*; UAS-dActbRNAi) (57/0/43) (n = 6), daw (to a lesser extent) (lGMR-

Gal4 > UAS-Dcr2; UAS-Babo*; UAS-DawRNAi) (21/1/78) (n = 23) (B) and myo (lGMR-Gal4 >UAS-Dcr2; UAS-Babo*; UAS-MyoRNAi) (49/2/48) (n = 6) (C).

(D) Quantification of A-C. (E) Expressing UAS-Tkv* could not rescue yellow subtypes induced by removing dActb (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*;

UAS-dActbRNAi) (12/1/86) (n = 6). (F) Tkv* did slightly, yet significantly, rescue loss of daw (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*; UAS-DawRNAi) (9/18/72)

(n = 13) but could not rescue loss of myo (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*; UAS-MyoRNAi) (14/10/76) (n = 8) (G). (H) Quantification of E-G. (I)

Expressing UAS-Tkv* rescued many yellow subtypes induced by removing dpp (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*; UAS-DppRNAi) (25/18/56) (n = 15)

or gbb (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*; UAS-GbbRNAi) (38/8/54) (n = 12) (J). (K) Expressing UAS-Babo* also rescued many yellow subtypes induced

by removing dpp (lGMR-Gal4 > UAS-Dcr2; UAS-Babo*; UAS-DppRNAi) (46/0/54) (n = 7) or gbb (lGMR-Gal4 > UAS-Dcr2; UAS-Babo*; UAS-GbbRNAi)

(38/0/62) (n = 6) (L). (M) Schematic for hypothetical ligand dimerization possibilities upstream of Tkv and Babo activation. Dpp + Gbb may

heterodimerize to activate Tkv while Daw + dActb and Daw + Myo may heterodimerize and signal at highly regulated levels for Babo activation. (N)

Quantification of I-L. (O) Co-expression of dActbRNAi and MyoRNAi (lGMR-Gal4 > UAS-Dcr2; UAS-dActbRNAi; UAS-MyoRNAi) (1/0/99) (n = 6)

exacerbated specification of yellow subtypes induced in dActbRNAi or MyoRNAi retinas alone. However, combining DawRNAi with either dActbRNAi

(lGMR-Gal4 > UAS-Dcr2; UAS-dActbRNAi; UAS-DawRNAi) (15/0/85) (n = 7) or MyoRNAi (lGMR-Gal4 > UAS-Dcr2; UAS-MyoRNAi; UAS-DawRNAi) (15/0/

85) (n = 12) could not exaggerate the phenotypes of any of the three alone. † denotes a change in Rh5/Rh6 ratio that was significant but in the

unexpected direction.

DOI: https://doi.org/10.7554/eLife.25301.006
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(1) Removing daw resulted in a higher percentage of yellow R8 cells than when either dActb or myo

were removed, presumably because it disrupts both potential heterodimers (Figure 3O). (2) Remov-

ing daw with either dActb or myo did not exaggerate the daw phenotype while removing dActb

+myo (which would affect both heterodimers) resulted in exaggerated yellow R8 subtypes relative to

either dActb or myo alone (Figure 3O). (3) Babo-a and Babo-b isoforms were required for pale sub-

types while Babo-c is dispensable (Figure 2—figure supplement 1C–I). Since Daw normally utilizes

the Babo-c isoform for signaling (Jensen et al., 2009), heterodimerization with dActb or Myo may

be required to enable its signaling in pale subtype specification.

Babo instructs R8 subtype through dSmad2 while Tkv does so through
Mad
Mad represents the R-SMAD downstream of Tkv activity while dSmad2 acts downstream of Babo

(Figure 1D) (Peterson and O’Connor, 2014). Consistent with its canonical role in Babo signaling,

removing dSmad2 resulted in a sharp decrease in pale R8 subtypes (15%) (Figure 4A,E), a decrease

that was still observed even when Babo* was overexpressed (23%) (Babo*+dSmad2 RNAi;

Figure 4B,E). Thus, dSmad2 is required downstream of Babo signaling for specification of the pale

R8 subtype. Removing mad with RNAi also resulted in a decrease of pale R8 subtypes (4%)

(Figure 4C,E), even when overexpressing Tkv* (6%) (Tkv*+madRNAi; Figure 4D–E), placing Mad

downstream of Tkv signaling in specifying pale R8 subtypes. Removing med, like removing its bind-

ing partners dSmad2 or mad, also resulted in loss of pale R8 subtypes (15%) (Figure 4—figure sup-

plement 1A).

Babo and Tkv are required upstream of Melt, Wts and Yorkie to
regulate pale R8 subtypes
Previous studies have shown that inhibitory feedback between the Hippo pathway kinase, Wts, and

the PH domain protein, Melt, establish and maintain pale R8 subtypes downstream of an R7 to R8

signal (Figure 1B) (Mikeladze-Dvali et al., 2005). Wts and Melt are expressed in a mutually exclu-

sive pattern with Wts in Rh6-expressing yellow R8 and Melt in pale R8 (Rh5) (Figure 4F). Removing

wts results in 100% pale R8 subtypes while removing melt results in nearly 100% yellow R8 subtypes

(Figure 4G–H,T). We therefore asked whether Melt and Wts acted downstream of Babo and Tkv sig-

naling. Expressing Babo* in all ommatidia led to loss of Wts and subsequent expression of Melt and

Rh5 in 80% of R8 cells (Figure 4I; Figure 4—figure supplement 1B). Removing melt while express-

ing Babo* resulted in yellow R8 subtypes in 100% of ommatidia (Figure 4J,T). Similar to Babo*,

expressing Tkv* also activated Melt and Rh5 with corresponding loss of Wts. In some photorecep-

tors that co-expressed Rh5 +Rh6, Wts expression was reduced but not completely lost and, in these

ommatidia, Melt was not induced (Figure 4K; Figure 4—figure supplement 1C – yellow arrow-

heads). Removing melt resulted in loss of Tkv*-induced pale R8 subtypes (10%) (Figure 4L,T).

Removing wts increased pale R8 subtypes to almost 100% from the low levels seen when removing

either dSmad2 (WtsRNAi + dSmad2 RNAi) or mad (WtsRNAi + MadRNAi) (Figure 4M–N,T). These

results suggest that Wts and Melt are epistatic to Babo and dSmad2 as well as Tkv and Mad.

The coactivator Yorkie (Yki) acts with the transcription factor Scalloped (Sd), downstream of Wts.

Downregulation of Wts allows for Yki/Sd induction of Rh5 expression (Jukam et al., 2013). Consis-

tent with this, we found that yki was indeed epistatic to both Babo/dSmad2 and Tkv/Mad for Rh5

regulation (Figure 4O–T).

TGFb ligands are processed in pale R7 cells and activate their receptors
and subsequent R-SMADs in R8 cells
To determine in which cells receptors were acting to confer pale R8 subtype, we removed specific

factors using cell-specific Gal4 drivers. We removed babo, tkv, mad, and dSmad2, which we expect

to each act in R8 cells. Removing them in R7 (using PM181-Gal4 + Pros-Gal4) had no effect on pale

R8 subtypes (Figure 5A), while removing them in R8 (using Sca-Gal4 + Sens-Gal4) dramatically

decreased Rh5 expression (Figure 5B). Furthermore, the decreased number of pale R8 subtypes

observed when removing either babo or tkv in all photoreceptors under the control of lGMR-Gal4

was returned to wild-type levels by co-expressing the Gal4 inhibitor Gal80 specifically in R8

(Figure 5C).
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Figure 4. Babo, through dSmad2 and Tkv, through Mad, regulate Wts and Melt. Graph Legend: Red is the percentage of R8 photoreceptors that

expressed Rh6, Blue is the percentage that expressed Rh5 and Purple is Co-expression of Rh5 +Rh6. Error bars report standard error of the mean.

Paired t-tests were performed against percentages of Rh5 expression and significance is denoted where applicable (***=p � 0.01, **=p � 0.05,

ns = not significant). Where significance (or non-significance) is noted, follow the horizontal bar above the significance value to its termination in a

vertical tick to find the comparative genotype. Percentage values for each genotype are listed as (Rh5/(Rh5 +Rh6)/Rh6). (A) Expressing UAS-Dcr2 and

UAS-dSmad2RNAi with lGMR-Gal4 reduced pale subtypes (lGMR-Gal4 >UAS-Dcr2; UAS-dSmad2RNAi) (15/0/85) (n = 4) and this reduction was

maintained even when UAS-Babo* was co-expressed (lGMR-Gal4 >UAS-Dcr2; UAS-dSmad2RNAi; UAS-Babo*) (23/0/77) (n = 7) (B). (C) Expressing UAS-

Dcr2 and UAS-madRNAi with lGMR-Gal4 also reduced pale subtypes (lGMR-Gal4 >UAS-Dcr2; UAS-MadRNAi) (4/0/96) (n = 7). (D) Expressing UAS-Tkv*

could not rescue MadRNAi-induced loss of pale subtypes (lGMR-Gal4 >UAS-Dcr2; UAS-MadRNAi, UAS-Tkv*) (6/0/94) (n = 9). (E) Quantification of A-D.

(F) Wild-type retinas express Melt (red) and Wts (green) in mutually exclusive subsets of R8 cells; Melt (red) with Rh5 (blue) in the pale subset and Wts

(green) with Rh6 (not shown) in the alternate, yellow R8 subset. (G) Removing wts (lGMR-Gal4 > UAS-Dcr2; UAS-WtsRNAi) (100/0/0) (n = 8) led to total

loss of yellow subtype while removing melt (lGMR-Gal4 > UAS-Dcr2; UAS-MeltRNAi) (2/8/90) (n = 5) resulted in the opposite, loss of pale subtypes (H).

(I) Expressing Babo* increased pale subtypes (blue), which was concomitant with a loss of Wts expression (green). (J) Removing melt in retinas that

overexpress Babo* (lGMR-Gal4 > UAS-Dcr2; UAS-Babo*; UAS-MeltRNAi) (0/0/100) (n = 11) prevented Babo*-induced pale subtypes. (K) Overexpression

of Tkv* increased the number of ommatidia expressing Rh5 (blue) in R8. In this genotype, increased Rh5 expression was often co-expressed with Rh6

(magenta). Increased Rh5 expression was coincident with loss of Wts, even in some instances where Rh6 was still present (white arrows); however, Wts

remained in other R8 cells that co-expressed Rh5 + Rh6 (yellow arrowheads). (L) Removing melt from Tkv* retinas (lGMR-Gal4 > UAS-Dcr2; UAS-Tkv*;

UAS-MeltRNAi) (7/3/90) (n = 46) resulted in a loss of Tkv*-induced Rh5 expression. (M) While significantly different from wtsRNAi controls (due to

extremely low variance), removing wts prevented increased yellow subtypes seen in dSmad2RNAi (lGMR-Gal4 > UAS-Dcr2; UAS-dSmad2RNAi; UAS-

WtsRNAi) (95/0/5) (n = 6) and MadRNAi (lGMR-Gal4 > UAS-Dcr2; UAS-MadRNAi; UAS-WtsRNAi) (97/0/3) (n = 12) (N) retinas. (O) lGMR-Gal4 > UAS Yki

retinas exhibited 100% pale subtypes (100/0/0) (n = 7). (P) Expressing UAS-Yki overcame the high incident of yellow subtypes induced by expressing

BaboRNAi (lGMR-Gal4 > UAS-Dcr2; UAS-BaboRNAi; UAS-Yki) (100/0/0) (n = 6), TkvRNAi (lGMR-Gal4 > UAS-Dcr2; UAS-TkvRNAi; UAS-Yki) (100/0/0)

(n = 6) (Q), MadRNAi (lGMR-Gal4 >UAS-Dcr2; UAS-MadRNAi; UAS-Yki) (100/0/0) (n = 6) (R) and dSmad2RNAi (lGMR-Gal4 >UAS-Dcr2; UAS-

dSmad2RNAi; UAS-Yki) (100/0/0) (n = 6) (S). (T) Quantification of G-H, J, L-S. Letters (P, Q, O. . .) have been added to applicable bars to help identify

corresponding image panels.

Figure 4 continued on next page
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Additionally, we asked whether expressing Babo* or Tkv* could rescue the decreased pale R8

subtypes in a sev mutant that lacks R7 cells and – due to lack of signaling – exhibits almost entirely

yellow R8 subtypes (Figure 2—figure supplement 1A) (Chou et al., 1999). We found an increase in

pale subtypes similar to phenotypes observed in WT retinas, when either Babo* (Figure 5E–F) or

Tkv* (Figure 5E,G) was expressed, suggesting that both can induce pale R8 subtypes even in the

absence of R7 cells. Together, these results suggest that Babo, Tkv, Mad, and dSmad2 are required

in R8 cells to induce the expression of Rh5.

We then asked where the signaling ligands were being expressed. We examined ligand reporter

constructs between 45 and 55 hr after pupation (APF), when subtype decisions are thought to occur

(Jukam and Desplan, 2011). A protein reporter for dActb was strongly expressed in R7 photorecep-

tors, showing overlap with the transcription factor R7 marker, Prospero (Pros), as well as in some R3

cells (Figure 5H–H”). To further examine whether dActb was expressed in pale or yellow R7 cells,

we co-stained with Ss, which is expressed specifically in yellow R7s at this stage of their develop-

ment. Here we found that dActb was expressed in all R7 cells (Figure 5I–I’ - Ss-positive cells circled

in purple, Ss-negative cells circled in red). Since pale R8 subtype is dependent upon the signaling of

multiple ligands, another ligand might be uniquely expressed in pale R7 cells. To this end, we inves-

tigated additional reporter constructs for Myo, Dpp and Daw. We found that Myo was expressed in

all R4 and R7 cells (Figure 5J–J”) and that Dpp was expressed weakly in all photoreceptors

(Figure 5K’, arrows). A Daw transcriptional reporter did not yield conclusive results and may be

expressed at levels too low to detect or it might report on an enhancer region unused in the retina.

Given that ligand expression was promiscuous amongst ommatidia subtypes, we hypothesized

that ligand activation by processing factors could provide a subtype-specific signaling mechanism.

To explore this, we examined a reporter for the processing factor Amon, which, when removed,

resulted in decreased pale subtypes (Figure 2R,W). Consistent with our hypothesis, we found that

Amon was expressed almost exclusively in pale R7 cells (Figure 5L–L” – circled in purple) and very

rarely overlapped with Ss-positive yellow R7 cells (1%) (Figure 5L–L” – circled in red).

However, many pale R7 cells were also not positive for Amon (Figure 5L–L” – circled in white).

This may be due to transient expression of Amon in activating ligands to instruct pale subtype in R8

cells. Pupal retinas expressed Amon non-uniformly: Some regions expressed Amon in a percentage

of R7 cells similar to what is observed for pale R7s in WT retinas and some in many fewer

(Figure 5M–M’ – compare 23% with 4% in the same retina). This could be due to temporally distinct

activation of Amon within regions of the retina coupled with its transient nature. Consistent with

this, some pupal retina (45–55 hr APF) exhibited high Amon expression (>30%) in pale R7s, which

was completely absent in slightly older pupae. However, even across expanded developmental time,

Amon expression in pale R7s averaged 9%, which is highly significant compared to 1% in yellow cells

(9.9E-06 using a paired t-test). Amon was also expressed in outer photoreceptors where it may be

required for processing ligands that are expressed in those cells for a different function (Figure 5L–

L” – circled in blue). Rare expression of Amon in yellow R7 cells may represent a signaling mistake,

which would result in Rh4/Rh5 mispairing in adults, although this is almost never observed. This

would lend reason for non-redundant signaling by multiple TGFb ligands; alternative regulation of

other ligands would prevent the propagation of such a mistake.

We also examined a transcriptional reporter for the processing factor Fur2, which was required

for pale subtypes (Figure 2S–U,W), but found no expression in photoreceptors. This may be due to

the nature of the Gal4 insertion, which may miss an important enhancer. Taken together, these

results provide a mechanism for ligand activation specific to pale ommatidia, capable of driving R8

subtype downstream of Ss-negative pale R7 cells (Figure 6F).

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.25301.007

The following figure supplement is available for figure 4:

Figure supplement 1. Med, Babo, and Tkv are required for R8 subtypes.

DOI: https://doi.org/10.7554/eLife.25301.008
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Figure 5. TGFb ligands are processed specifically in pale R7 and activate their receptors and subsequent R-SMADs in R8. Graph Legend: Red is the

percentage of R8 photoreceptors that expressed Rh6, Blue is the percentage that expressed Rh5 and Purple is Co-expression of Rh5 +Rh6. Error bars

report standard error of the mean. Paired t-tests were performed against percentages of Rh5 expression and significance is denoted where applicable

(***=p � 0.01, ns = not significant). Percentage values for each genotype are listed as (Rh5/(Rh5 +Rh6)/Rh6). Control for A is PM1.81-Gal4; Pros-

Gal4 >UAS-Dcr2 (29/0/71) (n = 6). For B, the control is Sca-Gal4; Sens-Gal4 > UAS-Dcr2 (28/0/72) (n = 7). Control for C is lGMR-Gal4 > UAS-Dcr2; Sca-

lexA > lexAOP-Gal80 (42/0/58) (n = 7). (A) Removing babo (PM1.81-Gal4; Pros-Gal4 > UAS-Dcr2; UAS-BaboRNAi) (23/0/77) (n = 6), tkv (PM1.81-Gal4;

Pros-Gal4 > UAS-Dcr2; UAS-TkvRNAi) (35/0/65) (n = 7), mad (PM1.81-Gal4; Pros-Gal4 >UAS-Dcr2; UAS-MadRNAi) (28/0/72) (n = 5), or dSmad2 (PM1.81-

Gal4; Pros-Gal4 >UAS-Dcr2; UAS-dSmad2RNAi) (33/0/67) (n = 6) specifically in R7 had no effect on Rh5/Rh6 ratios. (B) Removing babo (Sca-Gal4; Sens-

Gal4 > UAS-Dcr2; UAS-BaboRNAi) (4/0/96) (n = 6), tkv (Sca-Gal4; Sens-Gal4 > UAS-Dcr2; UAS-TkvRNAi) (10/0/90) (n = 7), mad (Sca-Gal4; Sens-

Figure 5 continued on next page
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Figure 5 continued

Gal4 > UAS-Dcr2; UAS-MadRNAi) (8/0/92) (n = 4), or dSmad2 (Sca-Gal4; Sens-Gal4 > UAS-Dcr2; UAS-dSmad2RNAi) (12/0/88) (n = 4) specifically in R8

reduced the number of pale subtypes as we saw with lGMR-Gal4 drivers. (C) Silencing Gal4 expression specifically in R8 attenuated the lGMR-

Gal4 > UAS BaboRNAi- and TkvRNAi-induction of yellow R8 subtypes (lGMR-Gal4 > UAS-Dcr2; UAS-BaboRNAi; Sca-lexA > lexAOP-Gal80) (37/0/63)

(n = 6) (lGMR-Gal4 > UAS-Dcr2; UAS-TkvRNAi; Sca-lexA > lexAOP-Gal80) (52/0/48) (n = 4). (D) sev mutations genetically ablate R7 cells resulting in

increased amounts of default yellow R8 cells. Our sev mutant control, which carries a lGMR-Gal4 driver, expressed higher levels of pale subtypes (29/0/

71) than observed in sev mutants in a WT background (4/0/96), likely due to genetic background (n = 3). (E) Quantification of D, F-G. (F) Expressing

UAS-Babo* in a sev mutant (sev14; lGMR-Gal4 > UAS-Babo*) (74/0/26) (n = 5) increased the number of pale subtypes significantly. (G) Expressing UAS-

Tkv* in a sev mutant (sev14; lGMR-Gal4 > UAS-Tkv*) (84/12/4) (n = 5) increased pale subtypes significantly. (H-M) Pupal retinas, 45–55 hr APF. (H) dActb

was expressed in all R7 cells (circled in purple) and less strongly in some R3 cells (circled in orange). (H’) Single-channel staining of the Prospero (Pros)

transcription factor, which is expressed in all R7 cells. (H’). Single-channel dActb protein reporter overlaped with Pros expression. (I) The Spineless (Ss)

antibody marks yellow R7 cells (circled in purple). (I’) dActb was expressed in both Ss-positive yellow R7 cells (circled in purple) and Ss-negative pale R7

cells (circled in red). (J) A Myo protein reporter was expressed in all R7 cells (circled in purple) as well as R4 cells (circled in orange). Bristle cells also

labeled brightly (marked with asterisks). (J’) Single-channel Pros staining. (J’) Single-channel Myo reporter. (K) A Dpp-GFP transcriptional reporter was

expressed in all photoreceptors. Pros marks R7 cells (red arrows). (K’) Single-channel Dpp reporter. Blue arrows mark R6 expression; green arrows mark

expression in photoreceptors 1–5; pink arrows mark expression in R7. (L) An Amon-Gal4 transcriptional reporter was expressed in some pale R7 cells

(circled in purple) but is absent in others (circled in white). It was absent from yellow R7 cells (circled in red). The reporter was also expressed in some

outer photoreceptors (circled in blue). (L’) Single channel Ss staining marks yellow R7 cells (circled in red). (L’) Single-channel Amon reporter. Amon pale

R7 expression – 9%, yellow R7 expression – 1%. N = 2678 ommatidia. (M) Amon expression was variable across individual pupal retina. (M’) Single

channel Amon reporter expression.

DOI: https://doi.org/10.7554/eLife.25301.009

Figure 6. Tkv and Babo signal in parallel to establish a ‘double-checked’ pathway, ensuring correct R7/R8 pairing. Graph Legend: Red is the

percentage of R8 photoreceptors that expressed Rh6, Blue is the percentage that expressed Rh5 and Purple is Co-expression of Rh5 + Rh6. Error bars

report standard error of the mean. Paired t-tests were performed against percentages of Rh5 expression and significance is denoted where applicable

(***=p � 0.01, ns = not significant). Where significance (or non-significance) is noted, follow the horizontal bar above the significance value to its

termination in a vertical tick to find the comparative genotype. Percentage values for each genotype are listed as (Rh5/(Rh5 + Rh6)/Rh6). (A) Removing

babo resulted in a high incidence of yellow subtypes even when UAS-Tkv* was expressed (lGMR-Gal4 > UAS-Dcr2; UAS-BaboRNAi; UAS-Tkv*) (6/2/92)

(n = 6). (B) Removing tkv could not eliminate increased pale subtypes in UAS-Babo* retinas (lGMR-Gal4 > UAS-Dcr2; UAS-TkvRNAi; UAS-Babo*) (77/0/

23) (n = 9). (C) Removing mad significantly reduced pale subtypes induced by expressing UAS-Babo* (lGMR-Gal4 > UAS-Dcr2; UAS-MadRNAi; UAS-

Babo*) (23/0/77) (n = 15). (D) Expressing both UAS-Tkv* and UAS-Babo* (lGMR-Gal4 > UAS-Tkv*; UAS-Babo*) (93/5/3) (n = 7) significantly increased

pale subtypes above that induced by either alone. (E) Quantification of A-D. (F) Model. Lack of ss in pale R7 cells allows for expression of Amon and

possibly other proprotein convertases to activate signaling of BMP and Activin ligands, which activate canonical receptors and R-SMADs Tkv/Mad and

Babo/dSmad2, respectively, in R8. Cooperative action of Mad and dSmad2 then regulate the Melt/Wts bi-stable loop, allowing Yki/Sd to induce

expression of Rh5 and repression of Rh6.

DOI: https://doi.org/10.7554/eLife.25301.010
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Tkv and Babo signaling establish a ‘double-checked’ pathway, ensuring
correct R7/R8 pairing
Next, we examined the relationship between Tkv and Babo in specifying the pale R8 subtype. In

most developmental contexts, only one TGFb pathway – either BMP or Activin – is utilized. Why

then is there a requirement for both in R8 specification? To examine this question, we asked how

each pathway depended upon the other. Expression of Tkv*+BaboRNAi resulted in loss of pale sub-

types similar to BaboRNAi alone (8% vs 5%) (Figure 6A,E), while expression of TkvRNAi + Babo*

resulted in a gain of pale subtypes similar to Babo* alone (77% vs 80%) (Figure 6B,E). These results

suggest that Babo is epistatic to Tkv, presumably: TkvfiMadfiBabofidSmad2. If this were true,

Babo* should be sufficient to rescue MadRNAi-induced yellow R8 subtypes (Babo* + MadRNAi).

However, this was not the case (Figure 6C,E). Alternatively, Tkv might activate Babo, which then

activates both Mad and dSmad2 to drive pale R8 subtypes. This would be consistent with ours and

other’s data showing activation of Mad by Babo (Figure 3K,N) (Hevia and de Celis, 2013;

Peterson et al., 2012; Bickel et al., 2008; Gesualdi and Haerry, 2007). If this were true, simulta-

neously expressing activated forms of Tkv* and Babo* (Tkv* + Babo*) should be identical to Babo*

alone. However, we observed a significant increase in pale subtypes above what was seen when

either Babo* or Tkv* were expressed alone (Figure 6D–E). Therefore, parallel activity of both Babo/

dSmad2 and Tkv/Mad appears to be required for specification of pale subtypes. Perceived epistasis

between Babo and Tkv is likely due to the ability of Babo to activate some levels of Mad indepen-

dent of Tkv, allowing for necessary signaling by both dSmad2 and Mad. In contrast, Tkv signaling in

the absence of Babo (Tkv* + BaboRNAi) would only activate Mad and fail to specify pale subtypes

without dSmad2 activity. We propose a model where pale R7-specific ligand processing by Amon

and possibly additional factors instructs non-redundant signaling by two arms of the TGFb family to

specify pale R8 subtypes as part of a ‘double-check’ mechanism, ensuring correct R7/R8 photorecep-

tor pairing (Figure 6F).

dSmad2 and Mad may work as part of a complex (Grönroos et al., 2012), or independently, to

bind enhancers of the wts or melt genes and regulate their expression. In this case, the stoichiometry

of Babo and Tkv activity could be important. Retinas that lack both Melt and Wts exhibit the wts

mutant phenotype, suggesting that Wts is downstream of Melt regulation (Mikeladze-Dvali et al.,

2005). Therefore, the specification of pale subtypes may occur through positive regulation of Melt

rather than negative regulation of Wts by Mad and dSmad2.

Discussion
Here, we describe the long-sought signaling mechanisms that ensure correct pairing of yellow R7

with yellow R8, and pale R7 with pale R8 during Drosophila retinal development. Our results

describe non-redundant, parallel signaling from both Activin and BMP pathways that converge to

activate Melt, thereby inhibiting Wts and instructing the pale subtype in R8 photoreceptors. In one

arm of a double-checked mechanism for subtype specification, Activin pathway ligands dActb, Daw,

and Myo induce Babo activation of dSmad2. A second arm utilizes BMP ligands Dpp and Gbb to

instruct Tkv activation of Mad. Repression of Hippo signaling in R8 cells then allows for Yki to medi-

ate, along with Sd, the expression of Rh5 and repression of Rh6 (Figure 6F). Our results provide the

first evidence for interaction between TGFb signaling and Melt in Drosophila, although it has been

recently shown in mouse cell culture (Shathasivam et al., 2015), and therefore may represent a con-

served interaction across species.

Furthermore, we find that cell fate may be regulated through pale-localized processing of widely

expressed TGFb ligands. In Drosophila, localized furin-type proprotein convertases have been shown

to dictate gradients of BMP ligands in the developing embryo and imaginal discs, regulating critical

developmental boundaries (Künnapuu et al., 2014; Sopory et al., 2010). However, to our knowl-

edge, this would be the first example in which the specific localization of a convertase is being uti-

lized to specify fate. Many convertases have previously been shown to be broadly expressed in

specific tissue types, though some, including furin-type Class one convertases are ubiquitous and

widespread (reviewed in [Seidah et al., 1998]). Few mechanisms for such tight regulation of conver-

tases have been observed and include localized convertase inhibitory signals such as Emilin-1 and

ESL-1, described in mice, alternative convertase motifs within the same ligand; and distinctions in

convertase recognition motifs and flanking sequences (reviewed in [Constam, 2014]). Here, we
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describe ligand regulation by a convertase on a very precise scale. This suggests that widespread

transcription of ligands could be fine-tuned post-transcriptionally to specify fate in close-knit groups

of cells making up complex organs. More work is necessary to determine how this process is regu-

lated upstream of convertases and specifically how Ss might be preventing expression of Amon, and

possibly Fur2, in yellow R7s.

Ligands of the TGFb superfamily have been implicated in numerous morphogenetic developmen-

tal processes that depend on long-range diffusion to instruct regional patterning over a distance of

many cell diameters (Gurdon and Bourillot, 2001; Lawrence et al., 1972; Wolpert, 1989). While it

may not be surprising to see the reuse of patterning systems already utilized in early eye morpho-

genesis and axonal targeting (Heberlein et al., 1993; Zheng et al., 2003; Ting et al., 2014), it is

unclear why or how such long-range signals are deployed for one R7 cell to instruct only the underly-

ing R8 and how that signal is confined to a single ommatidial cartridge, and even from R7 to R8,

without accidental activation from an outer photoreceptor, where several signals are expressed. Use

of a long-range signaling mechanism would require insulation of ommatidial arrays and photorecep-

tors to prevent ligand ‘leakage’ to internal and surrounding R8 cells, which would result in mispairing

and large, non-stochastic ‘clumps’ of similar subtype. Indeed, confinement of cell signaling may

reflect a need for the intact boundaries observed between ommatidia throughout pupal develop-

ment (reviewed in [Treisman, 2013]). There are many described mechanisms for limiting the diffu-

sion of morphogens (reviewed in [Rogers and Schier, 2011]). One possible mechanism for limiting

the action of morphogens to single-cell resolution has been described in the ovarian niche: here

BMP molecules are required to specify adjacent germline stem cells (GSC). This is achieved through

expression of the glypican, Dally, in cap cells, which binds and stabilizes BMPs on the surface of the

contacting cell. Signaling is then mediated through physical contact of cap cell and GSC (Guo and

Wang, 2009; Dejima et al., 2011). A similar mechanism may exist in inner R7 and R8 cells, which sit

adjacently, to help facilitate TGFb signaling specifically in the pale subtype.

Previous work from our lab outlined an intricate network of factors necessary for post-mitotic con-

trol of R8 subtype (Mikeladze-Dvali et al., 2005; Jukam et al., 2013; Jukam and Desplan, 2011).

There, the Hippo tumor suppressor pathway has been repurposed to regulate R8 Rh expression. We

find that TGFb signaling can switch off the Hippo pathway to establish pale fate, which is maintained

by further Wts/Melt feedback. Though there are several examples of signaling that regulate the

Hippo pathway during growth (reviewed in [Grusche et al., 2010]), few have been shown to have a

capacity for specification of cell fate. Our work suggests that many roles of Hippo signaling may

remain uncovered.

Why use two signaling pathways to activate pale fate? One possibility is that combinatorial signal-

ing results in synergistic activation of Rh5 and repression of Rh6. Indeed, activating either Babo* or

Tkv* resulted in ~80% pale subtypes while Babo*+Tkv* resulted in 98%. Synergistic activation

between cAMP and Arachidonic Acid signaling pathways has been described in vertebrate steroido-

genesis (Stocco et al., 2005) and suggests that the stoichiometry of each signaling pathway is criti-

cal. Stoichiometry would ultimately impact the level of dSmad2 and Mad and may play a role in

binding site affinity or in formation of a transcriptional complex. Alternatively, Rh5 expression may

require a temporal series of events: Babo and dSmad2 might first inactivate Wts, followed by Tkv/

Mad activation of Melt, again requiring both for robust activation. This may explain the observed

Rh5 + Rh6/Wts co-expression when we drive Tkv*: If an R8 cell is first specified as yellow (lack of

babo), subsequent activation of Tkv* could induce expression of Rh5 without completely eliminating

Wts or Rh6 (see Figure 4K, yellow arrowheads). Authentication of a signaling event by using two

pathways would also help to prevent misexpression of pale fate target genes in a yellow ommatid-

ium, that is Rh4 in R7 coupled with Rh5 in R8, which is never observed in the WT.

In general, removing components of either Activin or BMP signaling pathways reduces the ratio

of pale subtypes to levels observed when genetically ablating all R7 cells in sev mutants (4%) (Fig-

ure 2—figure supplement 1A), suggesting that they account for the entire instructive signal. But

what accounts for the remaining 4% pale subtypes in sev mutant retinas? This could represent an

ancestral pathway that allowed for an autonomous subtype choice in R8 before the divergence of

pale and yellow R7 cell types. Indeed, the UV Rhs duplicated early in the dipteran lineage while R8

expressing Blue or Green Rhs are more ancient (Pichaud et al., 1999). Yet, local cell-cell interactions

are a conserved mechanism for photoreceptor pairing across evolutionarily distant species. In the

butterfly, P. xuthus, stochastic Ss expression directs the specification of additional types of
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photoreceptors through the addition of a second R7 cell per ommatidium, thus generating a third

ommatidial subtype. The choice made in each of the two R7s dictates which Rhs are expressed in

surrounding photoreceptors, similarly to the way R7 dictates R8 subtype in Drosophila. Interestingly,

photoreceptors homologous to the outer photoreceptors of Drosophila also differentially express

color-sensitive Rhs in the three butterfly ommatidial types, suggesting that the R7 signal also influen-

ces outer photoreceptor fate in butterflies. It is likely that honeybees use similar mechanisms for pro-

ducing three ommatidial types (Perry et al., 2016). It will be interesting to see if the TGFb pathways

affect photoreceptor subtype specification in the visual systems of other insect species. Alternatively,

residual pale cells could exist in sev mutants since removing signaling factors from R7 (sev mutant)

would leave ligands in other photoreceptors intact, which may be permissive for a small amount of

signaling. Indeed, we find expression of dActb, Myo, Dpp and Amon in some outer photoreceptors.

This may explain the difficulty in achieving fully penetrant phenotypes. In fact, Myo signals redun-

dantly from astrocyte-like and larval cortex glia via Babo to remodel neurons of the mushroom body

g lobe (Awasaki et al., 2011). Further, dActb signaling via Babo from both R7 and R8 cells is

required in restricting arborizations of photoreceptor target neurons (Ting et al., 2014).

Materials and methods

Fly strains
The following transgenic and mutant Drosophila strains were used in this study:

UAS-babo* (9B3); dppRNAi (8A3); dppRNAi (8D2); dppRNAi (9B2-9B3); UAS-saxQD (HA1A);

UAS-saxQD (HA3X); UAS-saxQD (HA5D3); tsgRNAi; sogRNAi; sogY121; UAS-babo-A; UAS-babo-B;

UAS-babo-C; and sogY506 were generated in the M. O’Connor lab. Actbd80 (Zhu et al., 2008);

UAS-Dcr2, ey-Gal4 + lGMR Gal4 (Dietzl et al., 2007); melt:nucLacZ reporter (Mikeladze-

Dvali et al., 2005); lGMR-Gal4 (Wernet et al., 2003); Rh5-GFP (Pichaud and Desplan, 2001); sens-

Gal4 (gift form G. Mardon); UAS-tkv2DGSK (Haerry et al., 1998); wts-GFP reporter (gift of J. Rister);

scabrous-Gal4 (Hinz et al., 1994); prospero-Gal4 (Ohshiro et al., 2000); PM1.81-Gal4 (Lee et al.,

2001); UAS-tkv* (Das et al., 1998); Dpp::GFP (Teleman and Cohen, 2000).

ActbRNAi (42493-RRID:BDSC_42493; 29597-RRID:BDSC_29597; 42795-RRID:BDSC_42795);

DppRNAi (36779-RRID:BDSC_36779; 25782-RRID:BDSC_25782; 31531-RRID:BDSC_31531; 33618-

RRID:BDSC_33618); GbbRNAi (34898-RRID:BDSC_34898); DawRNAi (34974-RRID:BDSC_34974;

50911-RRID:BDSC_50911); MyoRNAi (31200-RRID:BDSC_31200; 31114-RRID:BDSC_31114; 36840-

RRID:BDSC_36840); MavRNAi (34650-RRID:BDSC_34650; 36809-RRID:BDSC_36809); TkvRNAi

(41904-RRID:BDSC_41904; 31040-RRID:BDSC_31040; 31041-RRID:BDSC_31041; 35166-RRID:

BDSC_35166; 40937-RRID:BDSC_40937); UAS-Fur2 (11429-RRID:BDSC_11429); Fur2RNAi (25959-

RRID:BDSC_25959; 51743-RRID:BDSC_51743); Fur1RNAi (25837-RRID:BDSC_25837; 41914-RRID:

BDSC_41914); AmonRNAi (29009-RRID:BDSC_29009; 41635-RRID:BDSC_41635; 29010-RRID:

BDSC_29010; 44001-RRID:BDSC_44001); UAS-Sog (15500-RRID:BDSC_15500); SogRNAi (37405-

RRID:BDSC_37405); wtsRNAi (34064-RRID:BDSC_34064); UAS-Yki (28816-RRID:BDSC_28816);

Sca-lexA (52763-RRID:BDSC_52763); lexAOP-Gal80 (32213-RRID:BDSC_32213); UAS-Dcr2

(24650-RRID:BDSC_24650; 24651-RRID:BDSC_24651); sev14 (5691-RRID:BDSC_5691); PutRNAi

(35195-RRID:BDSC_35195); WitRNAi (25949-RRID:BDSC_25949); Amon-Gal4 (30554-RRID:BDSC_

30554); Babo-A-RNAi (44400-RRID:BDSC_44400); Babo-B-RNAi (44401-RRID:BDSC_44401); Babo-

C-RNAi (44402-RRID:BDSC_44402) lines were obtained from the Bloomington Stock Center. baboR-

NAi (106092, 853); ActbRNAi (11062); ScwRNAi (21400, 21399, 105303); DawRNAi (105309,

13420); TkvRNAi (105834, 3059); SaxRNAi (42436, 46350, 46356, 9433, 9434); Fur2RNAi (101242);

AmonRNAi (110788); TldRNAi (1215, 100930); SogRNAi (105853); TsgRNAi (14894, 45355, 108750);

MeltRNAi (105110); MadRNAi (12635); dSmad2RNAi (14609); MedRNAi (19688, 19689); Myo

reporter (3180650); dActb reporter (318136) lines were obtained from the Vienna Drosophila

Research Center.

Fly lines appearing in bold were used for experiments described in Figures 2–6. All other lines

make up supplemental data.

Flies were raised on cornmeal–agar–molasses–yeast medium at 25˚C for epistasis testing. y1w67;

lGMR-Gal4, y1w67; UAS-Dcr2; lGMR-Gal4 and CantonS flies were used as wild-type controls for Rho-

dopsin expression.

Wells et al. eLife 2017;6:e25301. DOI: https://doi.org/10.7554/eLife.25301 15 of 20

Research article Developmental Biology and Stem Cells

https://scicrunch.org/resolver/BDSC_42493
https://scicrunch.org/resolver/BDSC_29597
https://scicrunch.org/resolver/BDSC_42795
https://scicrunch.org/resolver/BDSC_36779
https://scicrunch.org/resolver/BDSC_25782
https://scicrunch.org/resolver/BDSC_31531
https://scicrunch.org/resolver/BDSC_33618
https://scicrunch.org/resolver/BDSC_34898
https://scicrunch.org/resolver/BDSC_34974
https://scicrunch.org/resolver/BDSC_50911
https://scicrunch.org/resolver/BDSC_31200
https://scicrunch.org/resolver/BDSC_31114
https://scicrunch.org/resolver/BDSC_36840
https://scicrunch.org/resolver/BDSC_34650
https://scicrunch.org/resolver/BDSC_36809
https://scicrunch.org/resolver/BDSC_41904
https://scicrunch.org/resolver/BDSC_31040
https://scicrunch.org/resolver/BDSC_31041
https://scicrunch.org/resolver/BDSC_35166
https://scicrunch.org/resolver/BDSC_40937
https://scicrunch.org/resolver/BDSC_11429
https://scicrunch.org/resolver/BDSC_25959
https://scicrunch.org/resolver/BDSC_51743
https://scicrunch.org/resolver/BDSC_25837
https://scicrunch.org/resolver/BDSC_41914
https://scicrunch.org/resolver/BDSC_29009
https://scicrunch.org/resolver/BDSC_41635
https://scicrunch.org/resolver/BDSC_29010
https://scicrunch.org/resolver/BDSC_44001
https://scicrunch.org/resolver/BDSC_15500
https://scicrunch.org/resolver/BDSC_37405
https://scicrunch.org/resolver/BDSC_34064
https://scicrunch.org/resolver/BDSC_28816
https://scicrunch.org/resolver/BDSC_52763
https://scicrunch.org/resolver/BDSC_32213
https://scicrunch.org/resolver/BDSC_24650
https://scicrunch.org/resolver/BDSC_24651
https://scicrunch.org/resolver/BDSC_5691
https://scicrunch.org/resolver/BDSC_35195
https://scicrunch.org/resolver/BDSC_25949
https://scicrunch.org/resolver/BDSC_30554
https://scicrunch.org/resolver/BDSC_30554
https://scicrunch.org/resolver/BDSC_44400
https://scicrunch.org/resolver/BDSC_44401
https://scicrunch.org/resolver/BDSC_44402
https://doi.org/10.7554/eLife.25301


RNAi-based screen
The RNAi screen included 250 UAS-RNAi lines, which targeted around 100 membrane-associated

factors. The Gal4 driver line contained both eyeless-Gal4 and lGMR-Gal4 drivers recombined on

chromosome 2. Eyeless-Gal4 is expressed early in the entire eye disc, whereas lGMR-Gal4 is

expressed only after the morphogenetic furrow and maintained in adults. Together, these two driv-

ers induce RNAi expression in the whole eye from the time the eye is specified until adulthood. In

addition, the RNAi driver stock carries UAS-Dicer2 to enhance the efficiency of generating small

interfering RNA. Rh5-GFP, which is expressed only in pale R8 photoreceptors, was used as a readout

in the screen. UAS-RNAi lines were crossed to the driver line (eyeless >Gal4, lGMR >Gal4; UAS-

Dicer2; Rh5-GFP) at 25˚C. The F1 progeny were analyzed under water immersion for a change in

Rh5-GFP reporter expression (Pichaud and Desplan, 2001). Flies were raised at 29˚C to strongly

drive UAS-constructs for secondary screening purposes. Here, each line was dissected, immunos-

tained and imaged according to methods outlined below.

Sample size and replicates
Due to the robust nature of Rh5/Rh6 ratios in unique genotypic backgrounds, we looked at �5 bio-

logical replicates (never analyzing two retinas from one individual). This was sufficient to achieve

extremely low variance in photoreceptor subtype ratios and little standard deviation from the mean.

Experiments resulting in higher variance were technically replicated (indicated by N values of �10)

to verify initial results.

Immunohistochemistry, microscopy and quantification
Whole-mounted retina stainings were performed as previously described (Cook et al., 2003).

Primary antibodies used were: chicken anti-bGal (1:200, Gallus Immunotech, ABGTD, Canada),

sheep anti-GFP (1:500, Bio-Rad, Hercules, California, 4745–1051), Alexa Fluor 488-conjugated Phal-

loidin (1:200, Molecular Probes, Eugene, Oregon), mouse anti-Prospero (RRID:AB_528440) (1:10,

DSHB, Iowa City, Iowa), monoclonal mouse anti-Rh5 1:400 (RRID:AB_2567309) (Chou et al., 1996),

guinea pig anti-Ss 1:100 (Johnston and Desplan, 2014), rabbit anti-Defective Proventriculus (Dve,

RRID:AB_2568983) 1:250 (Johnston et al., 2011), rat anti-Rh6 1:1000; guinea pig anti-Rh4 1:500

(generated in this study). Secondary antibodies used were: Alexa Fluor 488-coupled made in donkey,

anti-sheep, -guinea pig, -rabbit; Alexa Fluor 555-coupled made in donkey, anti-rat, -mouse, -guinea

pig; Alexa Fluor 647-coupled made in donkey, anti-mouse, -chicken, -sheep (Molecular Probes). All

secondary antibodies were used at a 1:800 dilution. Samples were mounted in Slowfade gold

(Invitrogen, Carlsbad, California). Confocal microscopy was performed using a Leica SP5 confocal

laser scanning microscope and processed with Leica AF-Lite software.

Peptide epitopes used for antibody production are as follows:

DmRh6: LACGKDDLTSDSRTQ

DmRh4: LGVNEKSGEISSAQS

The number of R8 cells that expressed Rh5, Rh6 or both were counted using custom-written

Python code. R8 cells were identified by detecting local maxima in the Rh5 and Rh6 channels within

a 10-pixel neighborhood. Local maxima with fluorescent intensities above an arbitrary threshold in

either the Rh5 or Rh6 channel were counted as either Rh5- or Rh6-expressing cells; maxima with

intensities above the threshold in both channels were counted as expressing both Rh5 and Rh6. The

quality of the automatic labeling was assessed by eye for each sample. Custom Python source code

is attached as Source code 1. Amon-expressing ommatidia were scored by hand.
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Künnapuu J, Björkgren I, Shimmi O. 2009. The Drosophila DPP signal is produced by cleavage of its proprotein
at evolutionary diversified furin-recognition sites. PNAS 106:8501–8506. DOI: https://doi.org/10.1073/pnas.
0809885106, PMID: 19433798
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