
Hemagglutination-inhibition (HI) and neutralization are 
used to evaluate vaccines against influenza virus A (H5N1); 
however, poor standardization leads to interlaboratory 
variation of results. A candidate antibody standard (07/150) 
was prepared from pooled plasma of persons given clade 
1 A/Vietnam/1194/2004 vaccine. To test human and sheep 
antiserum, 15 laboratories used HI and neutralization and 
reassortant A/Vietnam/1194/2004, A/turkey/Turkey/1/2005 
(clade 2.2), and A/Anhui/1/2005 (clade 2.3.4) viruses. Inter-
laboratory variation was observed for both assays, but when 
titers were expressed relative to 07/150, overall percentage 
geometric coefficient of variation for A/Vietnam/1194/2004 
was reduced from 125% to 61% for HI and from 183% to 
81% for neutralization. Lack of reduced variability to clade 
2 antigens suggested the need for clade-specific standards. 
Sheep antiserum as a standard did not reliably reduce 
variability. The World Health Organization has established 
07/150 as an international standard for antibody to clade 
1 subtype H5 and has an assigned potency of 1,000 IU/
ampoule.

Influenza viruses agglutinate erythrocytes by binding to 
cell surface sialic acid. Agglutination may be blocked 

by strain-specific antibody detectable in hemagglutination-

inhibition (HI) tests (1). Because serum HI titers correlate 
with protection (2), they are used to evaluate immunoge-
nicity of influenza vaccines (3–5). However, conventional 
HI is generally insensitive for the detection of antibody to 
avian strains (6,7). Alternative serologic assays, includ-
ing neutralization and HI with horse erythrocytes (hHI), 
are used to evaluate vaccine for pandemics (7–9). HI sen-
sitivity for avian influenza increases when erythrocytes 
that express sialic acid containing α2,6-galactose linkages 
are used; these erythrocytes are preferentially recognized 
by avian hemagglutinin (8,9). Virus neutralization can be 
developed for any influenza subtype, although use of live 
virus may require heightened biocontainment.

Variability of influenza serologic assay results is partly 
attributed to differences in protocols and expression of end-
points (10,11). Assay variability limits comparison of can-
didate influenza virus subtype H5N1 vaccines in different 
clinical trials, posing challenges for licensure, particularly 
if specific seroprotective titers are required as endpoints 
(3–5). The use of bioassay standards to improve interlabo-
ratory agreement is well recognized (12,13). However, the 
antigenic diversity of subtype H5N1 viruses (14) may pose 
challenges in maintaining relevant strain-specific antibody 
standards. We assessed the reproducibility of neutralization 
and hHI tests for influenza virus A (H5N1) and evaluated 
the suitability of a standard (freeze-dried plasma pool, ob-
tained from persons vaccinated with clade 1 subtype H5N1, 
called 07/150) for detection of antibody.

Methods

Serum Samples
We used 14 serum samples (coded A–N) from per-

sons who had received nonadjuvanted or adjuvanted split-
product vaccine derived from reassortant clade 1 virus (A/
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Vietnam/1194/2004 or A/Vietnam/1203/2004). Samples 
included 3 prevaccination and postvaccination paired sam-
ples and 4 postvaccination samples. Postvaccination sam-
ples were generally obtained within 42 days of vaccination. 
Samples A and L were identical duplicates from a person 
primed with clade 0 vaccine and boosted with adjuvanted 
clade 1 vaccine. Sample K was from a person known to 
show nonspecific assay reactivity for antibodies to H5. 
Sample M was pooled negative human serum. Sheep antise-
rum to influenza subtype H5N1 (samples O and P) was sup-
plied by the US National Institute of Allergy and Infectious 
Diseases and the UK National Institute for Biologic Stan-
dards and Controls, respectively. Serum P was produced by 
intramuscular administration of 20 µg hemagglutinin (HA) 
from A/Vietnam/1194/NIBRG-14 with Freund complete 
adjuvant, followed by 3 more injections with 10 µg HA 
with Freund incomplete adjuvant. Serum was collected 5 
weeks after the first vaccination. Serum O was produced 
in a similar manner, with bromelin-cleaved purified HA. A 
single animal was vaccinated with A/turkey/Wisconsin/68 
H5 bromelin-cleaved HA and received booster vaccina-
tions with purified HA from A/Vietnam/1203/2004.

Candidate Standard 07/150
Standard 07/150 contained freeze-dried plasma from 

9 persons who had received inactivated whole-virus A/
Vietnam/1194/NIBRG-14 vaccine. Four donations (total 
volume 3 L) were obtained from Omninvest, Hungary (vac-
cine contained aluminum phosphate), and 5 donations (to-
tal volume 2 L) were obtained from Sinovac, People’s Re-
public of China (vaccine contained aluminum hydroxide). 
Persons gave informed consent after studies had received 
approval by appropriate ethics committees. Donations 
were negative for antibodies to HIV-1, HIV-2, hepatitis B 
surface antigen, and hepatitis C RNA. Plasma was pooled 
and freeze dried at the National Institute for Biologic Stan-
dards and Controls, according to standard procedures (15) 
to produce 1-mg ampoules and stored at –20°C. Stability 
studies found no significant change in titers after 8 months 
at –20°C, +4°C, or +20°C when compared with samples 
stored at –70°C.

Virus Reagents
Reassortant subtype H5N1 influenza viruses were pre-

pared by reverse genetics from wild-type viruses, amplified 
in 10-day-old embryonated hens’ eggs, and stored at –80°C. 
Each virus passed internationally approved safety testing 
(16), which permitted use at Biosafety Level 2–enhanced 
facilities. The National Institute for Biologic Standards and 
Controls supplied NIBRG-14 (A/Vietnam/1194/2004, clade 
1) and NIBRG-23 (A/turkey/Turkey/1/2005, clade 2.2) vi-
ruses, and the Centers for Disease Control and Prevention 
supplied IBCDC-RG5 (A/Anhui/1/2005, clade 2.3.4).

Study Design
Fifteen laboratories from 9 countries agreed to par-

ticipate and were assigned a code from 1 to 15. One addi-
tional laboratory returned titers from 1 neutralization and 1 
pseudotype assay and was excluded from analysis.

The participating laboratories were sent reagents on 
solid CO2, asked to store serum at –20°C and viruses at 
–70°C, and instructed to reconstitute 07/150 with 1 mL dis-
tilled water and to test it and the serum for antibodies to 
each antigen, using hHI and neutralization, on at least 3 
separate occasions. Suggested protocols were supplied, but 
participating laboratories could use in-house assays.

Statistical Analyses
Neutralization and hHI data consisted of replicate ab-

solute titers, expressed as the reciprocal of serum dilution, 
and represented the last dilution giving a positive response 
from a doubling-dilution series. If the initial dilution did 
not give a positive response, the titer was recorded as less 
than the reciprocal initial dilution, e.g., <10 if the starting 
dilution was 1:10. Serum was interpreted as negative if no 
titer was detected and positive if any titer was detected. 
For calculation, negative titers were assigned the value of 
half the minimum detectable titer, and titers greater than 
the final dilution were assigned a value 2× the largest titer. 
These values represent the hypothetical adjacent dilution 
steps in the doubling-dilution series. This convention en-
ables comparison of overall mean titers among groups on a 
consistent basis.

We calculated the geometric mean titer (GMT) for each 
serum, virus, and assay combination. Overall titers were 
calculated as the GMT of the individual laboratory means. 
Interlaboratory variation was expressed as percentage geo-
metric coefficient of variation (%GCV) between the indi-
vidual laboratory GMTs. The distribution of hHI or neu-
tralization titers does not represent a continuous variable, 
and the results from using different viruses within labora-
tories are not independent. Thus, use of parametric model-
ing techniques, such as analysis of variance, to characterize 
intra- and interlaboratory variability was precluded.

To assess intralaboratory variation, we calculated the 
percentage of endpoints of replicate tests for identical se-
rum samples A and L that differed >2-fold or >4-fold for 
each antigen and assay in each laboratory. We also com-
pared the percentage of replicate tests returned for all se-
rum samples and postvaccination samples that differed by 
>2-fold or >4-fold for each antigen and assay.

To assess interlaboratory variation, we compared dif-
ferences between hHI and neutralization GMTs for 07/150 
by different laboratories by using a paired nonparametric 
Wilcoxon signed-rank test for each antigen separately. For 
each laboratory, the difference in GMT between hHI and 
neutralization for NIBRG-14 was calculated, and these dif-

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 8, August 2009	 1251	



RESEARCH

ferences were compared with zero by using the Wilcoxon 
signed-rank test. Similarily, the results for hHI with each 
antigen were compared, taking the laboratory differences 
between the hHI GMT for NIBRG-14 and NIBRG-23 
and the differences between NIBRG-14 and IBCDC-RG5 
and comparing these differences with zero. The same was 
done for neutralization assays. We also compared differ-
ences among overall (for all laboratories) mean GMT for 
all serum samples by using a paired nonparametric Wil-
coxon signed-rank test for each antigen separately; e.g., for 
NIBRG-14, the difference between the overall mean GMT 
for hHI and neutralization was calculated for each sample, 
and these differences were compared with zero. The non-
parametric tests use the ranks of observed titers to calculate 
the significance of differences among groups and are un-
affected by the value chosen to represent titers below the 
initial dilution or greater than the highest dilution used in 
the individual assays.

To assess a standard’s ability to improve interlabora-
tory agreement, we expressed titers relative to 07/150 by 
taking the ratio of the GMT for a sample to the GMT for 
07/150 and multiplying it by an assigned value for 07/150. 
The assigned value was the overall GMT by hHI and neu-
tralization. The effect on interlaboratory agreement and 
%GCV is independent of the value chosen.

To evaluate improvement in interlaboratory agreement 
from expressing titers relative to 07/150 (or sheep antise-
rum), we calculated %GCV between laboratory GMTs, 
both absolute and relative, for each sample. We then calcu-
lated the difference between the %GCV of the laboratory 
GMT of absolute titers and the %GCV of the laboratory 
GMT of relative titers. Using the Wilcoxon signed-rank 
test for each antigen separately, we compared these differ-
ences with zero.

Results

Assays
All participating laboratories returned at least 3 repli-

cates by both assays, except laboratory 11, which did not 
perform hHI. Negative serum M was excluded because all 
titers were negative, except in laboratory 3, which reported 
1 positive ( titer 45) and 2 negative neutralization titers.

Intralaboratory Reproducibility:  
Identical Samples A and L

The numbers of intralaboratory comparisons of 
samples A and L differing by >2-fold were 1 (2.4%), 2 
(4.8%), and 1 (2.4%) of 42 for NIBRG-14, NIBRG-23, 
and IBCDC-RG5, respectively, by hHI compared with 3 
(7.1%), 3 (7.1%), and 1 (2.4%) of 42 by neutralization. 
Overall, 4 of 126 (3.1%) comparisons of identical sam-
ples by hHI differed by >2-fold compared with 7 of 127 

(5.5%) by neutralization. No samples differed by >4-fold 
by either assay.

Intralaboratory Reproducibility: Replicate Assays
The proportion of serum samples for which replicate 

assays differed by >2-fold and >4-fold was assessed in each 
laboratory for all serum and postvaccination serum samples 
(Figure 1). By hHI, 13 of 14 (93%) laboratories reported 
>90% replicate titers within a 2-fold range. By neutraliza-
tion, intralaboratory reproducibility was more variable; 9 of 
15 (60%) laboratories reported >90% replicate titers within 
a 2-fold range. For postvaccination serum, greater variabil-
ity was found with neutralization; laboratories 7, 14, and 15 
reported >25% replicates differing by >2-fold. Three labo-
ratories reported 3.7%–7.4% of replicate samples differing 
by >4-fold by either assay.

Interlaboratory Reproducibility of  
Absolute Titers: 07/150

All laboratories reported positive titers to 07/150, but 
variation was marked (Table 1). By hHI, the GMTs, ranges, 
and %GCVs in all laboratories to NIBRG-14, NIBRG-23, 
and IBCDC-RG5 were 140 (25–406; 16-fold difference, 
112%), 102 (25–320; 13-fold difference, 109%), and 91 
(25–256; 10-fold difference, 101%), respectively. By neu-
tralization, the GMTs, ranges, and %GCVs of titers to 
NIBRG-14, NIBRG-23, and IBCDC-RG5 were 518 (127–
2032; 16-fold difference, 120%), 291 (52–1810; 35-fold 
difference, 140%), and 299 (80–806; 10–fold difference, 
109%), respectively. Titers were higher with neutralization 
than with hHI (p = 0.003, NIBRG-14; p = 0.005, NIBRG-
23; p = 0.005, IBCDC-RG5; Wilcoxon signed-rank test for 
all comparisons). The GMT for NIBRG-14 was higher than 
that for clade 2 viruses (hHI: p = 0.039, NIBRG-23; p = 
0.028, IBCDC-RG5; neutralization: p = 0.004, NIBRG-23; 
p = 0.008, IBCDC-RG5; Wilcoxon signed-rank test).

Interlaboratory Reproducibility of Absolute Titers 
GMT and %GCV for each serum sample, virus, and 

assay were calculated (Table 2). For postvaccination se-
rum, both assays showed higher titers to NIBRG-14 than 
to clade 2 viruses. For all serum, neutralization gave higher 
titers than hHI (p = 0.001, NIBRG-14; p = 0.008, NIBRG-
23; p = 0.001, IBCDC-RG5; Wilcoxon signed-rank test) 
and fewer negative values but displayed more range varia-
tion, particularly in prevaccination serum. Absolute titers 
for sheep serum samples O and P were highly variable; 
%GCV was 147%–582% for hHI and 117%–283% for 
neutralization.

When summarized over all serum samples, the best in-
terlaboratory agreement was for IBCDC-RG5 by hHI and 
neutralization; %GCVs were 108% and 112%, respectively 
(Table 3). The worst interlaboratory agreement was for 
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neutralization with NIBRG-23 and NIBRG-14; %GCVs 
were 185% and 183%, respectively.

Reproducibility of Relative Titers: 07/150  
or Sheep Serum as Standard

To evaluate the ability of 07/150 to improve interlabo-
ratory agreement, GMTs were expressed relative to 07/150 
for each sample (Table 2) and then summarized for all 
samples (Table 3). For all serum, interlaboratory reproduc-
ibility improved significantly for NIBRG-14; the median 
%GCV for hHI decreased from 125% to 61% (p = 0.001) 
and for neutralization from 183% to 81% (p = 0.002, Wil-
coxon signed-rank test). However, for clade 2 viruses, in-
terlaboratory variation did not change significantly. Figures 
2 and 3 display the range of absolute and relative 07/150 
titers for each antigen in serum F (shown as an example of 
postvaccination serum with midpoint GMT and wide range 
of values).

For sheep antiserum, the interlaboratory variability 
was increased because some laboratories reported nega-
tive hHI titers, resulting in high %GCV when test serum 
samples were expressed relative to them (Table 3). How-
ever, when these laboratories were excluded from analysis, 
the interlaboratory variation for NIBRG-14 by hHI became 
comparable to that found for 07/150. Laboratory 5 reported 
negative hHI titers for serum P; when that laboratory was 
excluded from analysis, the range of %GCV by hHI im-
proved from 689%–796% to 51%–71%. Laboratories 5, 6, 
and 12 reported negative hHI titers for serum O; when they 
were excluded, the range of %GCV improved from 306%–
442% to 39%–113%. When neutralization titers were ex-
pressed relative to serum O, interlaboratory variation to NI-
BRG-14 was reduced, in contrast with serum P, for which 
interlaboratory variation by hHI or neutralization did not 
improve for any antigen, even when laboratory 5, which 
failed to detect antibody in this sample, was excluded.
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Figure 1. Intralaboratory reproducibility showing proportion (%) of replicate assays differing by >2-fold (A, B) and >4-fold (C, D) by horse 
hemagglutination-inhibition and neutralization assays for each participating laboratory for all serum samples (A, C) and postvaccination 
serum samples (B, D). Laboratory 11 did not return hemagglutinin-inhibition result.
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Relationship between hHI and Neutralization
Because a serum HI titer ≈40 is considered seropro-

tective (2), the establishment of a consistent equivalence 
factor between an hHI titer of 40 and neutralization would 
be useful. However, the relationship of hHI and neutraliza-
tion is dependent on the virus-serum-laboratory combina-
tion and cannot be generalized. Equivalence factors display 
large differences of 0.1–40.3 based on absolute titers and 
0.3–6.3 based on titers relative to 07/150 for NIBRG-14 
(online Appendix Table 1, available from www.cdc.gov/
EID/content/15/8/1250-appT1.htm).

Serum K: False-positive Serum
Serum K was prevaccination serum from a person with 

detectable antibodies against influenza subtype H5 (by neu-
tralization and hHI in the trial laboratory) but no known ex-
posure to influenza subtype H5N1. Using NIBRG-14, NI-
BRG-23, and IBCDC-RG5 as test antigens, 13/14 (93%), 
12/14 (86%), and 3/14 (21%) laboratories reported positive 
titers by both hHI and neutralization, respectively.

Assay Operating Protocols
Thirteen laboratories supplied hHI protocols. Although 

similar (online Appendix Table 2, available from www.
cdc.gov/EID/content/15/8/1250-appT2.htm), they differed 
in some respects: pretest serum hemabsorption, erythrocyte 
suspension concentration (<1% vol/vol or >1% vol/vol), 
and time and temperature of erythrocyte-settling period (60 

or >120 min, 4°C or room temperature). Although no re-
lationship between protocol and intralaboratory reproduc-
ibility was found, laboratories that used lower erythrocyte 
concentrations or read plates at 4°C tended to report higher 
titers. Laboratories that performed pretest hemabsorption 
tended to report lower titers.

Thirteen laboratories supplied neutralization protocols 
(online Appendix Table 3, available from www.cdc.gov/
EID/content/15/8/1250-appT3.htm) that were grouped into 
3 broad methods: use of cell suspension for virus infec-
tion with short incubation time to endpoint (<26 hours), use 
of cell suspension with long incubation (>3 days), and use 
of cell monolayer for infection with long incubation (>3 
days). Although no parameters were clearly associated with 
reproducibility, laboratories that used monolayers tended 
to report lower titers than those that used cell suspensions, 
and those that used longer incubation times had more inter-
laboratory variation by more frequently reporting titers at 
either end of the range (i.e., highest or lowest) than labo-
ratories that used shorter times. Expression of initial serum 
dilution varied among laboratories as dilution of test serum 
was calculated either before or after the addition of virus.

Discussion
Having effective vaccines against influenza virus A 

(H5N1) is a public health priority. However, interlabora-
tory assay variation limits comparison of vaccine strategies 
without direct comparative studies. We compared the re-
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Table 1. Geometric mean titers (reciprocal shown) and geometric coefficient of variation for the candidate antibody standard 07/150,	
measured by each participating laboratory for each influenza virus*  

Assay tested and virus used (phylogenetic clade) 
hHI† Neutralization†

Laboratory no.  
NIBRG-14‡§

clade 1 
NIBRG-23‡
clade 2.2 

IBCDC-RG5§ 
clade 2.3

NIBRG-14‡§
clade 1 

NIBRG-23‡
clade 2.2 

IBCDC-RG5§ 
clade 2.3 

1 101 160 80 480 605 419
2 25 25 101 1016 640 806
3 403 320 160 1810 1810 226
4 160 80 80 336 233 469
5 406 256 256 450 270 632
6 80 160 202 320 320 202
7 101 63 63 127 101 80
8 160 80 80 320 160 160
9 160 183 115 160 52 80
10 160 80 105 960 210 733
11¶ ND ND ND 640 254 320
12 403 160 202 320 160 160
13 80 32 25 640 320 320
14 160 127 25 2032 905 508
15 101 63 63 731 313 471
Overall GMT 140 102 91 518 291 299
GCV,	%	 112 109 101 120 140 109
*GMT.	geometric	mean	titer;	GCV,	geometric	coefficient of variation; hHI, hemagglutination-inhibition assay using horse erythrocytes; neutralization, virus 
neutralization	assay;	ND,	not	done.	
†GMT	neutralization	vs.	hHI	(NIBRG-14,	p	=	0.003;	NIBRG-23,	p	=	0.005;	IBCDC-RG5,	p	=	0.005	by	Wilcoxon	signed-rank	test).	
‡GMT	NIBRG-14	vs.	NIBRG-23	(hHI,	p	=	0.039;	neutralization, p = 0.004 by Wilcoxon signed-rank test). 
§GMT	NIBRG-14	vs.	IBCDC-RG5	(hHI,	p	=	0.028;	neutralization,	p	=	0.008	by	Wilcoxon	signed-rank	test).	
¶Laboratory 11 did not return hHI data. 
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producibility of hHI and neutralization against a candidate 
standard. Overall, both assays were consistent, although 
neutralization displayed more intralaboratory variability 
than did hHI; 3 of 15 laboratories reported >2-fold differ-
ences in >25% of identical replicates.

Titers determined by neutralization were higher and 
had a greater range than those determined by hHI, which 
suggests that neutralization may be more sensitive, particu-
larly with low-titered serum. However, for some prevacci-
nation serum, e.g., sample N, 6 (40%) laboratories reported 
neutralization titers of 20–160 but negative hHI titers, 
which suggests nonspecific reactivity or that neutraliza-
tion detects functionally different antibodies than HI. This 
finding is consistent with findings of seroprevalence sur-
veys in which titers to influenza virus subtype H5N1 may 
be detected by neutralization but not HI or Western blot 
among some persons with no exposure to subtype H5N1 
(7). Sample K was from a person who had no known expo-
sure but had detectable antibodies against H5. Most (93%) 
laboratories detected anti-H5 reactivity to NIBRG-14 by 
neutralization in this sample, but fewer (21%) detected an-
tibodies to IBCDC-RG5. Studies suggest that antibodies 
against subtypes H1N1 and H3N2 detected by neutraliza-
tion may be more strain specific than those detected by HI 
(10,17); however, we did not observe this difference.

Consistent with previous serologic comparisons 
(10,11), interlaboratory variation was noted when absolute 

titers for the same serum samples were compared. Neutral-
ization displayed more variability and had differences of 
35-fold (%GCV 68%–232%) compared with differences of 
16-fold (%GCV 22%–163%) for hHI. Although difficulty 
of measuring hHI values due to fragility of erythrocytes 
has been noted, the intralaboratory reproducibility of hHI 
appears better than that of seasonal HI (10,11). Both as-
says for subtype H5N1 compared favorably with those for 
subtype H3N2 evaluated previously, which found 128-fold 
(%GCV 138%–261%) and 724-fold differences (%GCV 
256%–359%) with HI and neutralization, respectively (10), 
and up to 32-fold differences (%GCV 90%–128%) with HI 
to human influenza subtypes H1N1, H3N2, and B viruses 
(11).

Although HI is straightforward, most laboratories 
preferred their own assays. Variable parameters that may 
influence hHI include pretest serum hemabsorption (low-
ers titers) and erythrocyte suspension (higher concentration 
lowers titers). Because no common neutralization proto-
cols exist, laboratories have developed their own protocols, 
which creates potential for variability. Because operator 
inexperience may have influenced reproducibility of assays 
for subtype H3N2 (10), laboratories were selected for ex-
pertise in serologic testing for H5. Although most used mi-
croneutralization based on an assay described by the World 
Health Organization (18), protocols differed by starting 
dilution of serum; preparation of cells; and virus inocula-

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 8, August 2009	 1255	

Table 2. Geometric mean titers and percentage coefficient of variations of absolute titers and titers relative to candidate antibody 
standard	07/150	for	each	serum	sample	for	each	influenza virus by hHI and neutralization*†

Virus	assay,	antigen,	and		clade	
hHI	(GMT,	%GCV,	%GCV	relative	to	07/150)	 Neutralization	(GMT,	%GCV,	%GCV	relative	to	07/150)

Serum sample 
NIBRG-14

clade 1 
NIBRG-23
clade 2.2 

IBCDC-RG5 
clade 2.3 

NIBRG-14
clade 1 

NIBRG-23
clade 2.2 

IBCDC-RG5 
clade 2.3 

Prevaccination
 B 7, 110, 72 7, 111, 86 6, 112, 85 12, 176, 202 12, 141, 173 10, 68, 223 
	 N	 6, 31, 46 5, 29, 18 5, 22, 0 14, 175, 228 13, 160, 215 10, 186, 250 
	 J	 10, 111, 123 8, 81, 155 6, 43, 96 19, 175, 228 18, 218, 309 11, 102, 287 
Postvaccination

Low 
  C 34, 84, 36 17, 29, 18 10, 126, 164 63, 183, 80 27, 201, 236 23, 122, 206 
  D 15, 141, 105 8, 110, 127 6, 68, 45 19, 232, 248 15, 215, 288 12, 98, 226 

High
  E 104, 133, 58 60, 96, 36 8, 128, 141 148, 191, 81 87, 159, 42 20, 118, 223 
  F 78, 97, 55 16, 141, 116 20, 104, 105 83, 144, 62 18, 152, 234 35, 147, 196 
  G 281, 152, 61 147, 102, 131 44, 163, 144 504, 132, 37 274, 217, 83 140, 103, 45 
  H 95, 118, 66 42, 144, 116 18, 106, 111 130, 166, 74 91, 157, 33 34, 127, 154 
  I 351, 125, 60 93, 91, 47 107, 75, 44 379, 199, 71 106, 207, 191 161, 136, 41 
  A 391, 138, 55 335, 114, 34 448, 119, 51 1,389, 86, 45 1,313,125, 76 2,893, 78, 63 
  L 391, 147, 61 398, 145, 42 480, 108, 44 1,453, 104, 63 1,520, 101, 85 3,097, 73, 52 
False positive (K) 37, 120, 34 24, 136, 135 8, 81, 117 52, 185, 143 44, 185, 53 13, 112, 298 
Sheep
 O 48, 262, 285 30, 245, 338 17, 147, 319 216, 139, 53 148, 170, 33 49, 117, 156 
 P 1,857, 582, 535 1,171, 496, 487 1,338, 487, 545 7,317, 148, 196 732, 283, 144 3,806, 145, 59 
*GMT	geometric	mean	titer;	%GCV,	percentage	geometric	coefficient	of variation; hHI, hemagglutination-inhibition assay using horse erythrocytes; 
neutralization,	virus	neutralization	assay.	(Paired	samples	were	B	and	C,	N	and	F,	and	J	and	H.)	
†Overall serum samples, GMT by neutralization vs. hHI (p = 0.001,	NIBRG-14;	p	=	0.008,	NIBRG-23;	p	=	0.001,	IBCDC-RG5;	Wilcoxon signed-rank test). 
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tion, incubation, and endpoint estimation. Laboratories that 
performed assays with virus infection of cell monolayers 
generally reported lower titers than those that used suspen-
sions. Assays with long incubation times and non-ELISA 
endpoints (e.g., cytopathic activity) were associated with 
greater interlaboratory variation than ELISAs with shorter 
incubation times. A biostandard should reduce variation as-
sociated with assay differences because standardization of 
protocols may be limited by local availability of reagents.

Expression of the initial serum dilution, which clearly 
influences absolute titers, should be standardized. Although 
HI titers are typically expressed as the serum starting di-
lution before any addition of virus, calculation of starting 
dilutions for neutralization varies among laboratories. We 
propose that the calculated starting dilution for seasonal 
and avian influenza neutralization be expressed as serum 
dilution before the addition of virus (e.g., 5 µL serum in 
45µL diluent plus 50 µL virus solution is considered as 
1:10) as it is with HI.

Because the correlation between serum antibodies 
detected by hHI and protective efficacy against influenza 
subtype H5N1 is unclear, by default, immunogenicity cri-
teria established for seasonal vaccines (3–5) are used for 
subtype H5N1 vaccines despite the lack of established im-
mune correlates for neutralizing antibodies. Although hHI 
and neutralization titers correlate closely (9,19), this and 
other studies (10) find that the relationship depends on indi-

vidual laboratory-antigen-serum combinations and cannot 
be generalized.

A potential limitation to this study is that 07/150 was 
derived from recipients of adjuvanted whole-virus vaccine 
but test serum samples were obtained from persons who re-
ceived plain or adjuvanted split-product vaccines. Interlab-
oratory agreement improved when NIBRG-14, but not het-
erologous antigens, was used, which suggests that 07/150 
is clade specific. Although no association between vaccine 
formulation and %GCV was noted in test serum, the qual-
ity and cross-reactivity of antibodies induced by whole-
virus vaccine may differ from quality and cross-reactivity 
induced by alternative formulations including adjuvanted, 
subunit, or recombinant vaccines. To reduce potential 
variation in antibody isotypes, we obtained day-42 post-
vaccination samples when possible; however, the avidity of 
antibody to hemagglutinin or presence of antibody against 
denatured viral proteins after whole-virus vaccination (20) 
could influence the effectiveness of 07/150 against test se-
rum. Differences among vaccine formulations should be 
examined, if possible, during evaluation of clade 2 stan-
dards; however, because production requires substantial 
donations of plasma, providing separate standards for spe-
cific vaccine formulations is impractical.

The overall reproducibility of sheep antiserum raised 
against clade 1 H5 hemagglutinin was poor; reported titers 
ranged widely. Because some laboratories failed to detect 
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Table 3. Interlaboratory geometric coefficients of variation of absolute titers and titers and relative to candidate antibody standard 
07/150	and	sheep	serum	summarized	over	all	serum	for	each influenza virus tested by hHI and neutralization* 

%GCV,	virus	strain	
hHI, all serum samples, 

median (min–max) 
Neutralization,		all	serum	

samples, median (min–max) 
%GCV	of	absolute	titer	
   A/Vietnam/1194/NIBRG-14 clade 1 125 (31–582)† 175 (86–232)† 
			A/Turkey/23/NIBRG-23	clade	2.2	 114 (29–496) 170 (101–283)
			A/Anhui/IBCDC-RG5	clade	2.3	 108 (22–487) 112 (68–147) 
%GCV	of	titers	relative	to	07/150	
   A/Vietnam/1194/NIBRG-14 clade 1 61 (34–535) 77 (37–285) 
			A/Turkey/23/NIBRG-23	clade	2.2	 106 (18–487) 144 (33–309) 
			A/Anhui/IBCDC-RG5	clade	2.3	 105 (0–545) 196 (41–298) 
%GCV	of	titers	relative	to	serum	P
   A/Vietnam/1194/NIBRG-14 clade 1 796 (39–1,020) 249 (162–381) 
			A/Turkey/23/NIBRG-23	clade	2.2	 689 (7–953) 237 (90–844) 
			A/Anhui/IBCDC-RG5	clade	2.3	 752 (0–1,005) 195 (66–263) 
   A/Vietnam/1194/NIBRG-14 clade 1 (excluding laboratory 5) 68 (32–174) 255 (162–396) 
			A/Turkey/23/NIBRG-23	clade	2.2 (excluding laboratory 5) 70 (7–222) 237 (90–844) 
			A/Anhui/IBCDC-RG5	clade	2.3	(excluding laboratory 5) 51 (0–148) 195 (66–262) 
%GCV	of	titers	relative	to	serum	0
   A/Vietnam/1194/NIBRG-14 clade 1 442 (21–725) 78 (41–213) 
			A/Turkey/23/NIBRG-23	clade	2.2	 373 (20–804) 111 (29–204) 
			A/Anhui/IBCDC-RG5	clade	2.3	 306 (0–812) 199 (44–323) 
   A/Vietnam/1194/NIBRG-14 clade 1 (excluding laboratories 5, 6, 12) 39 (24–91) 82 (34–225) 
			A/Turkey/23/NIBRG-23	clade	2.2	(excluding laboratories 5, 6, 12) 113 (22–225) 97 (25–186) 
			A/Anhui/IBCDC-RG5	clade	2.3	 100 (0–198) 194 (47–299) 
*%GCV,	geometric	coefficient	of	variation; hHI, hemagglutination-inhibition assay using horse erythrocytes; neutralization, virus neutralization assay; min–
max, minimum–maximum. Boldface indicates homologous clade 1 strain.  
†%GCV	absolute	titer	vs.	relative	07/150	for	NIBRG-14	(*hHI p = 0.001, neutralization p = 0.002; Wilcoxon signed-rank test). 
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antibodies in sheep antiserum, the expression of relative ti-
ters did not reduce %GCV. When these laboratories were 
excluded from analysis, sheep serum improved interlabora-
tory agreement to NIBRG-14 by hHI but not by neutraliza-
tion or for clade 2 antigens. This finding suggests that if 
assays can detect antibodies, sheep antiserum is a useful in-
ternal control; however, its role as an international standard 
is limited if some hHI assays appear unable to detect anti-
body titers. The reason for this discrepancy is unexplained 
because no clear association with assay method has been 
found. The antibody repertoire induced by cleaved hemag-
glutinin in Freund adjuvant in sheep antiserum will differ 
from that induced in humans by purified antigens. An al-
ternative animal source and/or production method may be 
more reliable.

The World Health Organization Expert Committee 
on Biologic Standards has accepted 07/150 as an antibody 
standard for clade 1 H5 hemagglutinin and has assigned an 
arbitrary value of 1,000 IU. The assigned value of 1,000 IU 
is equivalent to an hHI titer of 140 (i.e., GMT to NIBRG-

14 found across study laboratories), giving a seroprotective 
titer for 07/150 of ≈285 IU. For neutralization, a standard 
value of 1,000 IU for 07/150 would be equivalent to a neu-
tralization GMT of 518. Because the relationship between 
hHI and neutralization is inconsistent and immune corre-
lates are lacking, assigning a seroprotective level to neutral-
ization is not possible. Useful information may be obtained 
by retesting serum from completed trials of clade 1 subtype 
H5N1 vaccine candidates against 07/150. Regulators will 
be required to discuss the interpretation of a standard be-
fore vaccine licensure for clinical use.

For standardizing serologic assays that use different 
influenza (H5N1) clades, a reliable animal serum source 
would be most convenient, but failure of some laborato-
ries to detect antibody in sheep antiserum limits their use. 
The production of clade-specific standards for subtype H5 
viruses will require human plasma donations, which can 
only be produced after initial clinical trials have been con-
ducted. This requirement must be considered in future vac-
cine studies.
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Figure 2. Range of hemagglutination-inhibition (HI) and neutralization titers to clade 1 homologous NIBRG-14 virus in postvaccination 
serum sample F: the number of laboratories reporting specific titer dilution of absolute titers and titers relative to 07/150. A) Absolute horse 
HI titers, B) absolute neutralization titers, C) titers relative to 07/150 horse HI titers, D) titers relative to 07/150 neutralization titers. 
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