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CT Perfusion Characteristics Identify Metastatic Sites in Liver
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Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new
blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging
modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium.
This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a
variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication,
prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be
used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues.The neuroendocrine liver metastases
were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT),
permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion
as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and
treatment selection.

1. Introduction

Tumor angiogenesis is the process of proliferation of new
blood vessel during the growth and spread of tumors.
Quantification of this process provides assessment of tumor
growth at early stages and can provide prognostic, predictive,
and surrogate power. In general, the tumor vessels increase
in density over time, and they also function abnormally. For
example, tumor vessels tend to be less leaky and more easily
compressed [1]. This limits the traditional morphological
imaging techniques, which emphasize the quantification sim-
ply of structural information. Computed tomography (CT)
perfusion is an emerging functional imaging modality that
measures characteristics pertaining to the vascular perfusion
of tissues. Perfusion imaging, which provides a quantitative
basis for assessing vasculature heterogeneity induced by
tumor angiogenesis, has much potential in cancer detection,
disease prognostication, and treatment monitoring. Many
other imaging technologies such as magnetic resonance
(MR) imaging, ultrasound (US), and positron emission
tomography (PET) are being developed tomeasure perfusion

characteristics [2]. Compared to these techniques, CT perfu-
sion is most widely used because it can easily be integrated
into routine CT imaging without additional technical
training. Moreover, the wide availability of standardized CT
imaging makes CT perfusion more accessible compared with
other tools.

CT perfusion has been utilized in a number of organs
including prostate, colorectal, liver, head and neck, and lung
[3]. By providing functional information about the microen-
vironment surrounding tumor tissue, CT perfusion can assist
cancer diagnosis, treatment prognostication, prediction, and
monitoring. It has shown promising results for diagnosing
primary or metastatic tumors [4]. It also enables assessment
of tumor vascularity and perfusion changes that result from
chemotherapy and radiation therapy. Moreover, it has been
suggested that tumors with high vascularity tend to be
more aggressive and respond poorly to chemotherapy and
radiation therapy [5].

In this paper, we review the CT perfusion technology
and discuss its application to a case study to assess the
extent to which CT perfusion characteristics can be used to
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discriminate liver metastases from neuroendocrine tumors
from normal liver tissues. Liver is the second most common
metastatic site after lymph nodes. Early detection is the key
for successful treatment of liver tumors. Currently, diagnosis
and treatmentmonitoring of liver cancer ismostly performed
using morphological imaging such as MR, CT, and US.
With the introduction of molecularly targeted therapies,
these approaches may not fully access tumor information.
Assessment of perfusion provides functional information of
the tissue microenvironment. A variety of perfusion param-
eters have been produced to characterize tissue perfusion.
The most frequently encountered parameters are blood flow
(BF), the rate of blood passing through the vasculature in
a tissue region, measured in mL/min/100 g; blood volume
(BV), the volume of blood that is actually flowing within the
vasculature in a tissue region, measured in mL/100 g; mean
transit time (MTT), the average time for blood traversing
from the arterial input to the venous outlet, measured in
seconds. Both BF and BV correlate with the density of
microvessels. Increased number of vessels would increase BF
and BV correspondingly. MTT reflects perfusion pressure in
a way that higher perfusion pressure pushes blood traveling
at a higher velocity and results in a shorter mean transit
time. Permeability surface area product (PS) is anotherwidely
studied perfusion parameter; it is the product of permeability
and the total surface area of capillary endothelium in a unit
mass of tissue, measured in units of mL/min/100 g. PS is a
surrogate measure of vascular leakiness and it reflects the
flux of solutes from blood plasma to the interstitial space. In
the study of liver, hepatic arterial fraction (HAF) is another
important parameter. The liver has a dual system of blood
supply from the hepatic artery and the portal vein. HAF,
which is the proportion of liver blood supplied by the hepatic
artery, provides a measure of liver perfusion derived from
arterial rather than portal blood.

Existing studies have shown that perfusion characteristics
correlate well with the presence of tumor vessels [6].The rela-
tionship between perfusion parameters and tumor angiogen-
esis is complex [3, 6, 7]. The growth and spread of tumor rely
heavily on proliferation of new blood vessels. The increased
density of microvessels will result in increased tumor perfu-
sion and consequently changes in the distributions of perfu-
sion parameters [8]. Guyennon et al. [9] have demonstrated
that, compared with healthy tissues, metastatic neuroen-
docrine tumors had significantly higher blood flow, blood
volume, and permeability surface area product and signifi-
cantly shorterMTT. Reiner et al. [10] have shown significantly
increased hepatic arterial perfusion and decreased portal
venous perfusion in colorectal cancer. Moreover, the differ-
ence in permeability of malignant and normal tissues varies
with the target organ. Permeability levels for brain tumor are
considerably higher, while in other organs the difference is
generally lower in comparison to brain [8]. In general, tumor
vessels tend to have incomplete basement membranes which
lead to increased permeability and leakage space. Our study
yielded statistically significant evidence to suggest that four
perfusion characteristics, BF, MTT, PS, and HAF, effectively
discriminate between ROIs that contain neuroendocrine
metastases from sites containing healthy liver tissues.

2. Materials and Methods

The study focused on patients with neuroendocrine liver
metastases who underwent CT perfusion of a target lesion in
the liver, in which malignancy was determined clinically or
radiologically. The study collected data between April 2007
and September 2009 on 16 patients. CT perfusion images
(Figure 1) were obtained from a dual phase protocol spanning
a duration of 590 seconds (s). The images were obtained with
a 64-row multidetector CT scanner (VCT, GE Healthcare,
Waukesha, WI). The scans were obtained in two phases:
Phase 1, cine acquisition during a breath-hold, followed by
Phase 2, consisting of intermittent short breath-hold helical
scans. The dataset analyzed here consisted of fifty-nine 8-
slice cine images temporally sampled at 0.5 s from the Phase 1
acquisition, together with eight anatomicallymatched images
from the Phase 2 acquisition. Five perfusion characteristics
were acquired: blood flow (BF), blood volume (BV), mean
transit time (MTT), permeability surface area product (PS),
and hepatic arterial fraction (HAF). Figure 1 illustrates the
fiveCTp characteristics obtained for a single patient at the end
of the acquisition duration. Our analysis used the average BF,
BV, MTT, PS, and HAF values obtained at acquisition time
590 s, a duration that was shown to yield stable acquisition in
the liver. The values of the CTp characteristics were averaged
over all 8 slices of the acquired CT perfusion images. More
information of the study is available in [11].

2.1. Acquisition of CT Perfusion. Typically, CT perfusion
acquisition requires intravenous injection of iodinated con-
trast medium and repeated CT data from the target tissue.
The contrast medium passes through human body within
the intravascular space and the extravascular extracellular
space. The tissue enhancement is proportional to the local
concentration of the contrast medium at any given time.
By tracking the local concentration of the contrast medium
in the tissue over time, the time-intensity curve can be
observed for any region of interest (ROI). The distribution
of contrast medium largely reveals blood flow and perfusion.
Different approaches have been developed to estimate perfu-
sion parameters. One approach is the distributed parameter
model, which uses the deconvolution of the tissue and vascu-
lar time-intensity curves [12]. For the distributed parameter
model, the tissue and vascular time-intensity curves over
the whole acquisition are used for calculating perfusion
parameters.

The quality of the resulting perfusion data depends on
the manner in which the data is acquired. When specifying
an acquisition protocol, investigators must determine several
factors that could affect the quality of the resultant perfusion
measurements. In particular, these include duration of scan
acquisition, temporal sampling frequency, and the preen-
hancement set point. Additionally, some imaging preprocess-
ing, such as motion correction, may be necessary.

2.1.1. Duration of Scan. In current clinical applications of
CT perfusion in liver, the durations of acquisitions vary
between half a minute and 10 minutes. Reduced acquisition
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Figure 1: Maps for BF, BV, MTT, PS, and HAF at acquisition durations of 590 seconds ((a)–(e), resp.). BF is expressed in mL/min per 100 g;
BV, in mL/100 g; MTT, in seconds; and PS, in mL/min per 100 g.

duration offers less radiation exposure but may compromise
the quality of the CT perfusion parameter values. Ng et al.
[13] have shown in a study of lung cancer that CT perfusion
parameter values derived from deconvolution modeling can
bemarkedly affected by the acquisition duration. Ng et al. [11]
described that determination of appropriate and sufficiently
long acquisition durations depends on the degree of confi-
dence required for those parameters. Moreover, the results
can vary depending on the specific parameter of interest. 160 s
was required to obtain at least low confidence of stability
for any of the CT perfusion parameters in liver. PS requires
longer acquisition time when compared with BF, BV, MTT,
and HAF.

2.1.2. Sampling Interval. Another factor that affects the
overall radiation exposure is the frequency of CT scan, or
the sampling interval (SI). The CT images are acquired
at relatively high temporal sampling frequencies, typically
with a temporal sampling interval of 1 second or less. The
overall radiation exposure could be reduced if the temporal
SI could be increased. Ng et al. [14] investigated the effect
of SIs on CT perfusion parameter values in liver tumors and
normal tissue and, in particular, one that implements the dual
vascular (arterial and portal venous) inputs that are relevant
to this particular organ. They have shown that increasing SIs
beyond 1 second yielded significantly different CT perfusion
parameter values when compared with the reference values at
SI of 0.5 seconds.

2.1.3. Preenhancement Set Point. Perfusion parameters cal-
culated using the distributed parameter model also depend
on the input tissue and vascular time-intensity curves. The
preenhancement set point (𝑇

1
), that is, the time when the

arterial concentration first begins to rise, is one crucial factor
in defining these time-intensity curves.This is a user-defined
variable and is inevitably subject to observer variation.There
have been a few studies that have investigated the potential
effects of the positioning of 𝑇

1
on CT perfusion parameter

values using distributed parameter modeling. Sanelli et al.
[15] have shown that, in the study of brain, variations in
the delineation of 𝑇

1
could lead to significant change in

the resultant CT perfusion parameter values. Ng et al. [16]
compared varying preenhancement displacements in a study
of liver metastases and showed that the absolute values of
CT perfusion parameters were affected by the positioning of
𝑇
1
. Moreover, positive displacements in 𝑇

1
greater than or

equal to 1.0 secondweremore deleterious than corresponding
negative displacements, when comparing the impact on CTp
values in relation to the reference.

2.2. Statistical Analysis. Receiver operating characteristics
(ROCs) were computed to evaluate the extent to which
perfusion characteristics acquired using CT can be used to
discriminate betweenROIs that contain livermetastases from
those with healthy liver tissues. Univariate logistic regression
analysis was implemented to estimate the extent to which
the odds that given ROI contains a metastatic lesion change
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Table 1: Summary of raw data by CT perfusion parameter. BF, in mL/min/100 g; BV, in mL/100 g; MTT, in seconds; PS, in mL/min/100 g;
HAF, ratio without units.

Parameter Tumor Normal liver
Median Interquartile range Median Interquartile range

BF 203.6 138.8–361.9 133.50 94.01–174.50
BV 16.61 9.93–23.02 14.58 11.81–18.61
MTT 6.151 5.057–7.116 8.908 7.826–9.470
PS 55.39 42.67–62.71 82.90 74.31–89.35
HAF 0.4336 0.3625–0.5360 0.21070 0.07761–0.28670

Table 2: Results of statistical analyses for association between ROI
status (metastatic site versus healthy liver tissue) and perfusion
parameters. 𝑝 values obtained from logistic regression are provided
for each characteristic as well as the corresponding AUC.

𝑝 value AUC
BF 0.00444 0.7407
BV 0.586 0.5793
PS 0.000475 0.9407
MTT 0.000318 0.9215
HAF 0.001201 0.9096

as function of each of the five characteristics separately. For
each characteristic, two-sided Wald tests were applied to
test for a trend. We report the resulting 𝑝 values as well
as the corresponding areas under the ROC curves (AUCs).
Bonferroni correction was applied to adjust for multiple
comparisons among the five comparisons. A 𝑝 value of
0.01 was used to confer statistical significance. Additionally,
multiple logistic regression was used to evaluate the extent
to which discrimination could be improved in multivariate
analysis. All plots and analyses were performed using the
statistical software R 3.0.1 (R Foundation, Vienna, Austria).

3. Results

Table 1 provides summary statistics for each characteristic for
metastatic tumor and normal liver ROIs. Table 2 provides
the 𝑝 values that result from univariate logistic regression
analysis as well as the AUCs. Figure 2 shows the ROCs
for classifying liver metastases from normal tissue using
perfusion parameters BF, PS, MTT, and HAF, respectively.
With the exception of BV, the CT perfusion characteristics
were significantly associated with ROI status (tumor versus
normal liver). Moreover, MTT, PS, and HAF were highly
associated with the presence of a metastatic ROI, with tissues
surrounding liver tumors exhibiting significantly elevated
HAF and decreased MTT and PS. PS demonstrated the
highest utility for discriminating ROIs with tumor from
normal liver ROIswith anAUCof 0.94 on univariate analysis.
The AUCs aforementioned were obtained from univariate
analysis of each characteristic. Our ability to discriminate
tumor from normal ROIs was improved using multivariate
logistic regression analysis based on all five perfusion param-
eters, AUC = 0.97.

The aforementioned results and statistical models pertain
to analysis of the extent of association between perfusion
parameters and pathologic status. Naturally, the results
for predicting metastatic sites are attenuated using these
approaches. However, owing to the fact that perfusion char-
acteristics tend to be highly correlated among ROIs within a
given patient due to shared features of the hepatic vasculature,
predictive detection of metastatic sites can be improved
using models that account for interparameter and inter-
ROI dependence. For example, increasedmicrovessel density
often leads to higher blood flow, higher blood volume, and
lower MTT. Moreover, the extent of interdependence varies
substantially in magnitude and direction between vascula-
tures surrounding malignant and healthy tissues, providing
additional signal for detecting sites where angiogenesis is
taking place within the tumor microenvironment. Wang et
al. [17] proposed a spatial multivariate Bayesian approach to
quadratic discriminant analysis that can be used to predict
the status of multiple ROIs simultaneously. The multivariate
model was shown to dramatically improve performance
for predicting the status of liver ROIs using the perfusion
characteristics acquired in our study. In fact, the simultaneous
Bayesian method properly predicted the status of every ROI
that contains a metastasis.

4. Discussion

Over the past two decades, the development of fast CT
scanners and the improvement of analysis techniques have
made CT perfusion a promising tool for quantitative analysis
of tissue perfusion through features that characterize bio-
logical processes associated with tumor angiogenesis. Our
study suggests that perfusion parameters obtained in liver
effectively discriminate between ROIs that contain neu-
roendocrine metastases from sites containing healthy liver
tissues. Moreover, the resulting characteristics are potentially
useful for prognostication and staging, since it has been
demonstrated that tumors exhibiting high vascularity tend to
be more aggressive and respond poorly to chemotherapy and
radiation therapy. CT perfusion also offers the potential for
quantitative assessment of treatment response since it enables
evaluation of tumor vascularity and perfusion changes that
occur following chemotherapy and radiation therapy. This
promising technology may realize its full potential as a tool
for constructing biomarkers from features of the hepatic
vasculature for guiding cancer detection, prognostication,
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Figure 2: ROCs for classifying liver metastases from normal tissue using perfusion parameters BF, PS, MTT, and HAF with corresponding
AUCs: 0.74, 0.94, 0.92, and 0.91, respectively.

and treatment selection through the implementation of mul-
tivariate models that leverage the sources of interdependence
between parameters and ROIs. Additionally, multivariate
modeling enhances the understanding of vascular hetero-
geneity.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] K. Miles, C. Charnsangavej, F. Lee, E. Fishman, K. Horton, and
T.-Y. Lee, “Application of CT in the investigation of angiogenesis
in oncology,” Academic Radiology, vol. 7, no. 10, pp. 840–850,
2000.

[2] A. K. Dixon and F. J. Gilbert, “Standardising measurement of
tumour vascularity by imaging: recommendations for ultra-
sound, computed tomography, magnetic resonance imaging
and positron emission tomography,” European Radiology, vol.
22, no. 7, pp. 1427–1429, 2012.



6 BioMed Research International

[3] K. A. Miles, T.-Y. Lee, V. Goh et al., “Current status and
guidelines for the assessment of tumour vascular support with
dynamic contrast-enhanced computed tomography,” European
Radiology, vol. 22, no. 7, pp. 1430–1441, 2012.

[4] S. Bisdas, M. Baghi, J. Wagenblast et al., “Differentiation of
benign and malignant parotid tumors using deconvolution-
based perfusion CT imaging: feasibility of the method and
initial results,” European Journal of Radiology, vol. 64, no. 2, pp.
258–265, 2007.

[5] D. V. Sahani, S. P. Kalva, L. M. Hamberg et al., “Assessing
tumor perfusion and treatment response in rectal cancer with
multisection CT: initial observations,” Radiology, vol. 234, no.
3, pp. 785–792, 2005.

[6] S. H. Kim, A. Kamaya, and J. K.Willmann, “CT perfusion of the
liver: principles and applications in oncology,” Radiology, vol.
272, no. 2, pp. 322–344, 2014.

[7] V. Goh, S. Halligan, F. Daley, D. M. Wellsted, T. Guenther,
and C. I. Bartram, “Colorectal tumor vascularity: quantitative
assessment with multidetector CT—do tumor perfusion mea-
surements reflect angiogenesis?” Radiology, vol. 249, no. 2, pp.
510–517, 2008.

[8] K. A. Miles, “Functional computed tomography in oncology,”
European Journal of Cancer, vol. 38, no. 16, pp. 2079–2084, 2002.

[9] A. Guyennon, M. Mihaila, J. Palma, C. Lombard-Bohas, J.
A. Chayvialle, and F. Pilleul, “Perfusion characterization of
livermetastases from endocrine tumors: computed tomography
perfusion,” World Journal of Radiology, vol. 2, no. 11, pp. 449–
454, 2010.

[10] C. S. Reiner, R. Goetti, I. A. Burger et al., “Liver perfusion
imaging in patients with primary and metastatic liver malig-
nancy: prospective comparison between 99𝑚Tc-MAAspect and
dynamic CT perfusion,” Academic Radiology, vol. 19, no. 5, pp.
613–621, 2012.

[11] C. S. Ng, B. P. Hobbs, A. G. Chandler et al., “Metastases to the
liver from neuroendocrine tumors: effect of duration of scan
acquisition on CT perfusion values,” Radiology, vol. 269, no. 3,
pp. 758–767, 2013.

[12] T. Y. Lee, “Functional CT: physiological models,” Trends in
Biotechnology, vol. 20, no. 8, pp. S3–S10, 2002.

[13] C. S.Ng,A.G.Chandler,W.Wei et al., “Effect of duration of scan
acquisition on CT perfusion parameter values in primary and
metastatic tumors in the lung,” European Journal of Radiology,
vol. 82, no. 10, pp. 1811–1818, 2013.

[14] C. S. Ng, B. P. Hobbs, W. Wei et al., “Effect on perfusion
values of sampling interval of computed tomographic perfusion
acquisitions in neuroendocrine liver metastases and normal
liver,” Journal of Computer Assisted Tomography, vol. 39, no. 3,
pp. 373–382, 2015.

[15] P. C. Sanelli, M. H. Lev, J. D. Eastwood, R. G. Gonzalez, and T.
Y. Lee, “The effect of varying user-selected input parameters on
quantitative values in CT perfusionmaps,”Academic Radiology,
vol. 11, no. 10, pp. 1085–1092, 2004.

[16] C. S. Ng, A. G. Chandler, J. C. Yao et al., “Effect of pre-
enhancement set point on computed tomographic perfusion
values in normal liver andmetastases to the liver fromneuroen-
docrine tumors,” Journal of Computer Assisted Tomography, vol.
38, no. 4, pp. 526–534, 2014.

[17] Y. Wang, B. P. Hobbs, J. Hu, C. S. Ng, and K. A. Do, “Predictive
classification of correlated targets with application to detection
of metastatic cancer using functional CT imaging,” Biometrics,
2015.


