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Abstract

Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in
the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory
rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline
in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of A and
tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to in-
creased AB production suffer from seizures and epilepsy before the development of plaques. Similarly, patho-
logic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the
hippocampus. We present common and divergent roles of tau and AB on neuronal hyperexcitability in AD,
and hypotheses that could serve as a template for future experiments.
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Abnormal neuronal network excitability may lead to hypersynchrony, aberrant oscillatory rhythmic activity
and interneuron dysfunction, which may contribute to cognitive decline in Alzheimer’s disease (AD). The
main goals of this review are the following: (1) to provide an overview of the current knowledge on the asso-
ciation between abnormal network dysfunction and AD; (2) discuss the role of pathologic A8 and tau on
neuronal hyperexcitability; and (3) present potential hypotheses that can be tested for future studies, which
\could lead to more effective strategies to prevent, diagnose, and manage AD and related disorders. /
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million Americans (Alzheimer’s Association, 2019). Worldwide,
AD and related dementias affect ~47 million people (Prince,
2015). In the year 2019, the total health care expenditure for

Introduction

Alzheimer’s disease (AD): health care burden and

neuropathology

AD is an age-dependent chronic progressive neurode-
generative disorder, and is the leading cause of dementia
worldwide (Ballard et al., 2011; Cornutiu, 2015;
Alzheimer’s Association, 2019). It is the sixth leading
cause of mortality in the United States and affects ~5.8
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AD and related dementias in United States was nearly 290 bil-
lion dollars, making it one of the costliest chronic diseases
(Alzheimer’s Association, 2019). To date, there is no effective
disease-modifying therapy for AD.
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Histopathologically, AD is characterized by two major le-
sions: amyloid as diffuse and neuritic plaques composed of
amyloid B (AB) peptide, and neurofibrillary tangles (NFTs)
composed of abnormally hyperphosphorylated tau protein
(Glenner and Wong, 1984; Grundke-Igbal et al., 1986a,b).
Besides AB plagues and NFTs, impairments in adult hippo-
campal neurogenesis and synaptic plasticity, profound syn-
aptic loss, and neurodegeneration are also major features of
AD (Terry et al., 1991; Selkoe, 2002; Scheff and Price, 2003;
Scheff et al., 2007; Li et al.,, 2008; Demars et al., 2010;
Shruster et al., 2010; Mu and Gage, 2011). The hippocampal
formation in the brain is the hub of learning and memory
(Neves et al., 2008; Battaglia et al., 2011), and entorhinal cor-
tex (EC), within the hippocampal formation, is one the first
brain regions to be affected by AD pathology (Braak and
Braak, 1991, 1995, 1996). Despite the dramatic advances in
understanding the molecular pathology underlying neurode-
generation in AD during the past few decades, current knowl-
edge of the physiological basis of memory loss in AD is
limited.

Network dysfunction in AD

Network abnormalities and their contribution to cogni-
tive dysfunction in AD have been reviewed before (Palop
and Mucke, 2010a,b, 2016; Zott et al., 2018; Busche and
Hyman, 2020; Jun et al., 2020). Network hypersynchrony,
altered oscillatory rhythmic activity, interneuron dysfunc-
tion, and synaptic depression may be key mediators of
cognitive deficits in AD (Palop and Mucke, 2010a,b,
2016). Emerging evidence suggests that brain network al-
terations begin even decades before the symptomatic
onset of AD (Busche and Konnerth, 2016; Nakamura et
al., 2017). Besides, recent studies have provided evi-
dence that abnormal neuronal network activities could
contribute to the spread of pathology across functionally
connected brain circuitry in AD (Wu et al., 2016; Schultz et
al., 2018). It can thus be speculated that early brain net-
work dysfunction not only contributes to cognitive dys-
function but also to disease progression in AD.
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Brain activity in humans can be evaluated by employing
functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), single-photon emission
computed tomography (SPECT), electroencephalography
(EEG), or local field potentials (LFPs) recordings (Palop
and Mucke, 2016). In healthy individuals, cognitive tasks
increase fMRI signals in particular brain regions (e.g., the
hippocampus during learning) but also lead to a profound
large-scale deactivation in brain regions that are jointly re-
ferred to as the default mode network (DMN; Raichle et
al., 2001; Boyatzis et al., 2014; Palop and Mucke, 2016).
The DMN includes several brain regions such as the pre-
cuneus, posterior cingulate cortex, lateral and inferior pa-
rietal cortex, and regions of the temporal and medial
prefrontal cortex (Raichle et al., 2001). A consistent fMRI
signature of AD, specifically during the early stages of the
disease, is hippocampal hyperactivation and reduced de-
activation of DMN components during memory encoding
tasks (Bookheimer et al., 2000; Dickerson et al., 2005;
Celone et al., 2006; Trivedi et al., 2008; Filippini et al.,
2009; Sperling et al., 2009; Quiroz et al., 2010; Bakker et
al., 2012, 2015; Sepulveda-Falla et al., 2012; Kunz et al.,
2015). Early hippocampal hyperactivation was traditional-
ly thought of as a compensatory mechanism for emerging
cognitive dysfunction in early AD (Dickerson et al., 2004;
Kunz et al., 2015). However, recent evidence points to-
ward a primary pathogenic role of this early hippocampal
hyperactivity, and it may play a major role in cognitive de-
cline in AD (Putcha et al., 2011; Bakker et al., 2012, 2015).
This will be discussed in detail in later (see below,
Seizures and neuronal network hyperexcitability in AD: a
late-onset consequence of neurodegeneration or an early
component of AD pathophysiology contributing to cogni-
tive impairment? and Beneficial effect of levetiracetam, an
antiepileptic drug, on cognition in AD patients and mouse
models: evidence for the role of neuronal network hyper-
excitability in cognitive impairment?).

Neural oscillations (or brain rhythms) are rhythmic fluc-
tuations of electrical activity in the CNS that emerge be-
cause of the physiological properties of different types of
neural cells and their interactions (Buzsaki et al., 2012,
2013). Normal neuronal synchrony underlies the generation
of oscillatory brain rhythms that promote cognitive functions
including memory. Oscillations, from lowest to highest fre-
quencies, are classified into 8, 6, «, B, v, and sharp-wave
ripples (SWRs). y Oscillations, in particular, are of interest
because of their proposed role in organization of functional
neural circuits and formation of functional neuronal assem-
blies, contributing to sensory processing, attention, and
memory (Fries, 2015; Lundqvist et al., 2016). Accumulating
evidence shows that y power as well as interareal y coher-
ence is severely affected in AD patients (Stam et al., 2002;
Koenig et al., 2005; Guillon et al., 2017). More recently, Jun
and his colleagues demonstrated that remapping capabil-
ities of CA1 cells and grid cells are severely affected by ex-
pression of human mutant gene of APP (APP-knockin; APP-
KIl). The authors found that CA1 neurons from APP-KI mice
exhibited reduced firing peaks and less spatial tuning, with
lower mean spatial information compared with those of
wild-type (WT) CA1 neurons. To investigate the impact of
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human AB precursor protein (hAPP) on remapping of CA1,
the authors recorded from CA1 neurons while WT and APP-
KI mice were subjected to two different environments. While
WT CA1 neurons showed distinct firing patterns with re-
spect to their environment, APP-KI CA1 neurons showed no
changes in firing patterns between the environments.
Further analyses revealed that fast y oscillations, but not
slow vy oscillations, were found to be diminished in APP-KI
mice (Jun et al., 2020). Also, reduced v is observed in sev-
eral AD mouse models, remarkably even at the presympto-
matic stage (Verret et al., 2012; laccarino et al., 2016).
Recent studies have demonstrated reduction of disease pa-
thology by induction of vy oscillations via sensory stimulation
(y entrainment using sensory stimulus or GENUS) in AD
mouse models (Adaikkan et al., 2019; Martorell et al., 2019).
Similarly, alterations in other brain rhythms such as hippocam-
pal SWRs and 6 oscillations have also been implicated in AD
and will be discussed in detail in later (see High-frequency os-
cillations or SWRs, epilepsy, and tau; and Phosphorylation of
tau reduces hippocampal excitability).

Neural network synchrony and brain oscillatory rhythms
are governed by the activity of inhibitory GABAergic inter-
neurons (Buzsaki and Draguhn, 2004). Certain types of in-
hibitory interneurons such as parvalbumin-positive (PV™)
or vasoactive intestinal polypeptide-positive (VIP™) cells
fire mainly during brain states that promote memory en-
coding (Lapray et al., 2012; Fu et al., 2014). Inhibitory in-
terneuron dysfunction has been linked to network
abnormalities in AD (Lapray et al., 2012; Fu et al., 2014;
Palop and Mucke, 2016). It was found that impairments of
inhibitory interneurons contribute to network hypersyn-
chrony, altered oscillatory rhythms, and behavioral defi-
cits in hAPP-J20 mouse model of AD (Verret et al., 2012).
In fact, accumulating evidence implicates inhibitory inter-
neuron dysfunction as a potential common mediator of al-
tered brain rhythms and cognitive impairment in several
neuropsychiatric disorders (Sohal et al., 2009; Chao et al.,
2010; Marin, 2012; Verret et al., 2012). Recent studies
show that modulating the interneuron function amelio-
rates altered brain rhythms and cognitive impairments in
AD and other neurologic disorders (Verret et al., 2012;
Hunt et al., 2013; Tong et al., 2014; Dargaei et al., 2018;
Martinez-Losa et al., 2018).

In experimental rodent models, high AB levels were
shown to cause synaptic loss, decrease glutamatergic
synaptic transmission and long-term potentiation (LTP),
and increase long-term depression (LTD; Hsia et al.,
1999; Mucke et al., 2000; Kim et al., 2001; Walsh et al.,
2002; Kamenetz et al., 2003; Hsieh et al., 2006; Li et al.,
2009; Mucke and Selkoe, 2012). Because of several pro-
posed shared underlying mechanisms, synaptic depres-
sion and aberrant excitatory network activity have been
hypothesized to be the two faces of the same coin con-
tributing to network dysfunction in AD (Palop and Mucke,
2010a,b). AB was reported to block neuronal glutamate
uptake at synapses, resulting in glutamate spillover and
aberrant activation of extrasynaptic or perisynaptic
GluN2B-containing NMDA receptors (NMDARs) and me-
tabotropic glutamate receptors (mGIuRs), ultimately lead-
ing to enhanced LTD (Hsieh et al., 2006; Li et al., 2009).
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ApB-induced NMDAR-dependent and mGluR-dependent
LTD can be mimicked by employing the glutamate reup-
take inhibitor threo-3-benzyloxyaspartate (TBOA), which
can also induce synchronized epileptiform discharges in
WT brain slices (Campbell et al., 2014). Thus, AB-induced
neuronal network hyperexcitability and synaptic depres-
sion in AD may be interlinked through common mediator
pathways (Palop and Mucke, 2010a,b, 2016).

Seizures and epilepsy in AD

It has long been known that AD patients are at in-
creased risk of developing seizures and epilepsy
(Friedman et al., 2012; Vossel et al., 2013, 2017). Early-
onset familial AD (EOFAD), caused by genetic mutations
in APP, presenilin 1 (PSEN1), and presenilin 2 (PSEN2), is
associated with a remarkable 87-fold higher seizure inci-
dence compared with the general population (Amatniek et
al., 2006; Cloyd et al., 2006). In contrast, the late-onset
sporadic AD is associated with a 3-fold rise in seizure inci-
dence (Amatniek et al., 2006; Cloyd et al., 2006). Also, AD
severity was reported to correlate with seizure occur-
rence. In prospective studies of mild neurocognitive dys-
function because of probable AD, seizures were found to
occur in 0.5-16% of patients (Hauser et al., 1986;
Romanelli et al., 1990; Amatniek et al., 2006); however, in
more advanced, institutionalized AD patients, the inci-
dence of seizures ranged from 9% to 64% (Sulkava,
1982; Risse et al., 1990; McAreavey et al., 1992).

Seizures and neuronal network hyperexcitability in
AD: a late-onset consequence of neurodegeneration
or an early component of AD pathophysiology
contributing to cognitive impairment?

A widely prevalent classical notion was that dementia
and seizures exemplify two primarily independent disorders,
a supportive argument being that not every individual with
generalized seizures goes on to develop progressive cogni-
tive dysfunction. Nonetheless, epilepsy does interfere with
cognitive development in temporal lobe epilepsy (TLE) indi-
viduals with hippocampal sclerosis (Helmstaedter and Elger,
2009). Thus, despite AD being widely known as a risk factor
for seizures, seizures in AD were thought to be a conse-
quence of neurodegeneration (Scarmeas et al., 2009).
However, during the last decade, several mouse model
studies have challenged this notion, and have suggested a
different view regarding the relationship between epileptic
seizures and AD: instead of being a complication of AD, epi-
leptiform activity including both convulsive and non-convul-
sive seizures may represent a primary disturbance and
contribute to network dysfunction, cognitive impairment,
and disease progression in AD (Leonard and McNamara,
2007; Palop et al., 2007; Palop and Mucke, 2009, 2016;
Noebels, 2011; Chin and Scharfman, 2013; Vossel et al.,
2013). It has been proposed that both the recurrent seizure
activity and compensatory homeostatic responses to this
seizure activity may interfere with normal neuronal and syn-
aptic functions essential for learning and memory (Leonard
and McNamara, 2007; Palop and Mucke, 2009, 2016;
Noebels, 2011; Scharfman, 2012a,b; Chin and Scharfman,
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2013). Seizures, epileptiform activity, and hippocampal neu-
ronal network hyperactivity were reported in the mild cogni-
tive impairment (MCI) and early stages of AD in humans
(Bakker et al., 2012; Vossel et al., 2013). In fact, in MCI and
AD patients, cognitive decline began five to seven years ear-
lier in those with epilepsy than in those without, further
strengthening the idea of a possible causal association be-
tween network hyperexcitability and memory impairment
(Vossel et al., 2013). Also, AD patients with subclinical epi-
leptiform activity were found to have an early onset of cogni-
tive decline (Vossel et al., 2013). Additionally, in AB-based
AD transgenic mice, epileptiform activity and neuronal net-
work hyperexcitability have been reported much before the
development of AB plaques and overt cognitive impairment
(Del Vecchio et al., 2004; Westmark et al., 2010; Bezzina et
al., 2015; Kazim et al., 2017; Zott et al., 2019). Also, neural
hyperactivity was reported to increase tau release and
spread, critical processes in the progression of AD pathol-
ogy (Pooler et al., 2013; Wu et al., 2016). Neuronal activity
was also found to regulate the brain regional vulnerability to
AB deposition (Bero et al., 2011). These data provide strong
evidence of a potential role of neuronal network hyperexcit-
ability in cognitive deficit and disease progression in AD,
and further studies in this field may yield potential therapeu-
tic strategies for AD.

Beneficial effect of levetiracetam, an antiepileptic
drug, on cognition in AD patients and mouse models:
evidence for the role of neuronal network
hyperexcitability in cognitive impairment?

Remarkably, reduction of hippocampal hyperactivity by
treatment with an antiepileptic drug, levetiracetam (in low
dose), was found to improve memory task performance in
MCI patients (Bakker et al., 2012, 2015). Another recent
study reported a beneficial effect of low dose levetirace-
tam in early AD patients by inducing a pattern in brain os-
cillations of decreased coherence in the lower frequency
bands and increased coherence in the higher frequency
bands (Musaeus et al., 2017). Additionally, several studies
on rodent models of AD and aging have demonstrated
beneficial effects of levetiracetam treatment not only on
learning and memory impairments but also on disease pa-
thology and disease-associated neurogenic and synaptic
failure (Koh et al., 2010; Sanchez et al., 2012; Devi and
Ohno, 2013; Shi et al., 2013; Das et al., 2018; Fu et al.,
2019).

Targeting hippocampal hyperactivity, peripheral admin-
istration of low-dose levetiracetam in aged impaired rats
improved cognitive function in two separate hippocam-
pus-dependent spatial reference memory tasks (Koh et
al., 2010). Similarly, another study reported that pretrain-
ing administration of levetiracetam reduced memory dys-
function in aged C57BL/6 mice in the contextual fear
conditioning task (Devi and Ohno, 2013). Acute levetirace-
tam immediately following training also rescued contextual
memory decline in aged mice, however, administration 3 h
after training interval had no effect (Devi and Ohno, 2013).
These data showed that suppressing hyperexcitability with
acute levetiracetam around the time of acquisition or during
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early consolidation may be sufficient to reverse memory de-
cline associated with aging (Devi and Ohno, 2013).

Levetiracetam was found not only to reduce abnormal
spike activity (on subdural EEG recordings) but chronic
treatment with levetiracetam also reversed hippocampal
remodeling, behavioral abnormalities, synaptic dysfunc-
tion, and learning and memory impairments in hAPP-J20
mice (Sanchez et al., 2012). Nonetheless, levetiracetam
did not affect AB deposition in hAPP-J20 mice, and the
behavioral and molecular abnormalities reversed within
35d after the end of levetiracetam treatment. Contrarily,
another study showed that chronic levetiracetam treat-
ment not only alleviated behavioral deficits but also re-
duced amyloid plaques in APPswe/PS1dE9 transgenic
mice (overexpressing the Swedish mutation of APP to-
gether with PS1 deleted in exon 9; Shi et al.,, 2013).
Levetiracetam increased AB clearance, upregulated A
transport and autophagic degradation, and inhibited A
generation and suppressed y-secretase activity (Shi et
al., 2013). Another study reported that levetiracetam treat-
ment not only reduced network hypersynchrony in human
tau transgenic mice (htau-A152T) but also rapidly and per-
sistently reversed brain dysrhythmia, thus ameliorating net-
work dysfunction (Das et al., 2018). A recent study reported
that early seizure activity accelerated depletion of hippo-
campal neural stem cells and impaired spatial discrimination
in hAPP-J20 mice, and treatment with levetiracetam re-
stored neurogenesis and improved performance in a neuro-
genesis-associated spatial discrimination task in this AD
mouse model (Fu et al., 2019).

Overall, the rescue of cognitive dysfunction by antiepi-
leptic drug, levetiracetam, in human AD patients and in
aging and AD rodent models, provides an indirect evi-
dence for the role of neuronal network hyperexcitability in
memory impairment associated with the disease.
Neuronal network hyperexcitability may interfere with en-
coding or consolidation of memory, and an antiepileptic
drug treatment could ameliorate this memory dysfunction
by suppressing hyperexcitability.

Neuronal network hyperexcitability in AD mouse
models: roles of Ap and tau

The role of AB in enhancing neuronal network excitabil-
ity in AD mouse models is well characterized (Palop et al.,
2007; Palop and Mucke, 2010a,b, 2016; Noebels, 2011;
Scharfman, 2012a,b; Chin and Scharfman, 2013; Born et
al., 2014; Bezzina et al., 2015; Born, 2015; Kazim et al.,
2017; Zott et al., 2019). However, the role of tau, the other
major neuropathological hallmark of AD besides AB and a
better correlate of cognitive impairment in AD (Nelson et
al., 2012), in neuronal network excitability remains unclear
with different studies reporting conflicting roles, i.e., en-
hancement versus suppression (Roberson et al., 2007;
Garcia-Cabrero et al., 2013; Holth et al., 2013; Angulo et
al., 2017; Hatch et al., 2017; Mondragén-Rodriguez et al.,
2018a; Busche et al., 2019). Furthermore, recent studies
indicate that experimental models that use expression of
both AB and tau are more physiologically relevant.
Indeed, current understanding of AD pathophysiology is
that AB initiates a cascade of pathologic events that lead
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to tau misfolding and aggregation. Ultimately, tau spreads
throughout the cortex, resulting in neurodegeneration and
cognitive deficits (Busche and Hyman, 2020).

In this paper, we review the relevant literature to date
and offer perspectives on the similar versus divergent
roles of AB and tau in neuronal network excitability in AD.

Ap Induces Neuronal Network
Hyperexcitability in AD, Even before the
Development of Plaques

Seizures and epilepsy as a co-morbidity in familial AD
patients harboring mutations which lead to increased
Ap production

Seizures and epilepsy are a frequent co-morbidity in in-
dividuals with EOFAD which is caused by autosomal
dominant mutations in APP, PSEN1, or PSEN2 genes, re-
sulting in increased AB production and altered AB 4o/
AB 4o ratio (Noebels, 2011; Guerreiro and Hardy, 2014;
Born, 2015). PSEN1 mutations are the most common
cause of EOFAD (~185 mutations PSEN1 mutations iden-
tified; Campion et al., 1999; Janssen et al., 2003). Only 33
APP mutations and 13 PSEN2 mutations have been iden-
tified as yet (Campion et al., 1999; Janssen et al., 2003;
Bekris et al., 2010; Guerreiro and Hardy, 2014). In EOFAD,
disease onset is typically at a younger age (<65 years of
age) and disease progression is more aggressive as com-
pared with sporadic, late-onset AD.

Seizures have been reported in many PSEN1 mutations
carriers. For example, convulsive seizures were described
in 37-568% patients with PSEN1 E280A mutation (Larner
and Doran, 2006). The S107F mutation, one of the most ag-
gressive PSEN1 mutation pedigrees, was reported to lead
to cognitive dysfunction by 26-27 years of age and tonic—-
clonic seizures in two of the three affected family members
(Snider et al., 2005). Patients with other PSEN1 mutations,
M146L (Morelli et al., 1998), M223V (Houlden et al., 2001), or
L235P (Campion et al., 1996) mutations, developed memory
impairment in their 30 s and exhibited seizures and
myoclonus.

Mutations in APP and PSEN2, the other two genes that
cause familial AD, were also associated with seizures.
Seizures were described in 31% (20 out of 64) patients in a
case series with N141] PSEN2 mutation (Jayadev et al.,
2010). Epileptic seizures were also reported in families with
other PSEN2 mutations, for instance, M239V (Marcon et al.,
2004) and T430M (Ezquerra et al., 2003) mutations. APP
mutations have also been linked with epileptic seizures, for
example, T714l (Edwards-Lee et al., 2005), T714A (Lindquist
et al., 2008), and V7171G (Kennedy et al., 1993) mutations.

Seizures are also common in patients who carry extra
copies of APP. In one study, seizures were reported in
57% of affected individuals with dementia carrying APP
duplication (Cabrejo et al., 2006). Seizures and epilepsy
are also more frequently observed in DS individuals (who
carry APP overexpression by virtue of trisomy 21 and who
universally develop AD neuropathological hallmarks and
dementia by age 40-55). In one study of 96 down syn-
drome (DS) cases, 84% were found to develop seizures
(Lai and Williams, 1989). In another study of 191 DS adults
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aged 19-69, 9.4% had epilepsy and the prevalence in-
creased with age; 46% of patients older than 50 had epi-
lepsy (McVicker et al., 1994).

Taken together, these studies suggest that familial
forms of AD characterized by abnormal AB processing
and deposition, a final common pathway in all of these ge-
netic causes of AD, are specifically associated with high
occurrence of seizures and epilepsy (Friedman et al.,
2012; Born, 2015).

Neuronal network hyperexcitability in hAPP/Af mouse
models of AD

Many ApB-based transgenic mouse models exist that
exhibit AD-like behavioral phenotype (Elder et al., 2010;
Hall and Roberson, 2012; Webster et al., 2014). Most of
the AB-based AD transgenic mouse models carry one or
more APP mutations found in EOFAD (Campion et al.,
1999). Several transgenic APP-overexpression AD mouse
models have been found to exhibit neuronal network hy-
perexcitability (epileptiform activity, behavioral seizure, or
increased seizure susceptibility) including Tg2576 (hAPP
Swedish mutation, Prp promoter; Hsiao et al., 1996;
Westmark et al., 2008, 2010; Corbett et al., 2013; Bezzina
et al., 2015; Chan et al., 2015; Duffy et al., 2015; Kam et
al., 2016; Ciccone et al., 2019), hAPP-J20 (hAPP Swedish
and Indiana mutations, PDGF-3 promoter; Palop et al.,
2007; Sanchez et al., 2012; Verret et al., 2012; Martinez-
Losa et al., 2018), APP23 (hAPP Swedish mutation, Thy-1
promoter; Lalonde et al., 2005), APP23xPS45 (hAPP
Swedish and PSEN1 mutations, Thy-1 promoter; Busche
et al., 2008, 2012), APdE9 (hAPP Swedish and PSENT1:
deltaE9 mutations, Prp promoter; Minkeviciene et al.,
2009; Ziyatdinova et al., 2011, 2015; Gurevicius et al.,
2013; Nygaard et al., 2015; Reyes-Marin and Nufez,
2017), APP/TTA (hAPP Swedish and Indiana mutations,
CamKlla promoter; Born et al., 2014), TJCRND8 (hAPP
Swedish and Indiana mutations, Prp promoter; Jolas et
al., 2002; Del Vecchio et al., 2004), 3xTg-AD (hAPP
Swedish, htau P301L, and PSEN1:M146V mutations,
Thy-1 promoter; Davis et al., 2014; Nygaard et al., 2015;
Frazzini et al., 2016; Kazim et al., 2017), and 5XFAD
(hAPP Swedish, Florida, and London mutations and two
PSEN1 (M146L, L286V) mutations, Thy-1 promoter
(Siwek et al., 2015). Recent studies suggest the existence
of a feed-forward induction loop between AB and neuro-
nal network hyperexcitability as it was shown that neural
activity modulates AB production (Cirrito et al., 2008;
Bero et al., 2011). Table 1 summarizes main findings of
studies evaluating neuronal network hyperexcitability in
AB mouse models of AD.

Neuronal network hyperexcitability in hAPP/Ap mice
at advanced stages of disease pathology and
cognitive impairment

In 2007, a landmark study was published which showed
the presence of spontaneous epileptiform discharges in
hAPP-J20 mice [harboring hAPP Swedish (KM670/
671NL) and hAPP Indiana (V717F) mutations; transgene
expression being driven by the PDGF-3 promoter; Fig.
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Table 1: Studies evaluating neuronal network excitability in hAPP/Af mouse models of AD

Author(s) and publi-
cation year

Mouse model/transgene(s)/
promoter

Age/stage of pathology

Neuronal net-

work excitabil-

ity status

Experimental paradigm/neuronal network excitability observation(s)

Studies assessing neuronal network hyperexcitability in hAPP/AB mice at advanced stages of AB plaque pathology and cognitive impairment

Palop et al. (2007)

Verret et al. (2012)

Sanchez et al. (2012)

Martinez-Losa et al.
(2018)

Minkeviciene et al.
(2009)

Ziyatdinova et al.
(2011)

Gurevicius et al.
(2013)

Ziyatdinova et al.
(2015)

Nygaard et al. (2015)

Reyes-Marin and
Nufez (2017)

hAPP-J20
(hAPP Swedish and Indiana)
PDGF-B promoter

hAPP-J20
(hAPP Swedish and Indiana)
PDGF-pB promoter

hAPP-J20
(hAPP Swedish and Indiana)
PDGF-B promoter

hAPP-J20
(hAPP Swedish and Indiana)
PDGF-B promoter

APdJE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

APdE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

APdE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

APdJE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

APdE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

APdE9
(hAPP Swedish and PSEN1:
deltaE9) Prp promoter

4-7 months, A plaques
deposition, cognitive im-
pairment, synaptic deficit

4-7 months, AB plaques
deposition, cognitive im-
pairment, synaptic deficit

4-6 months, A plaques
deposition, cognitive im-

pairment, synaptic deficit

7-8 months, AB plaques
deposition, cognitive im-
pairment, synaptic deficit

3 and 4.5 months, substantial
number AB plaques ob-
served in cortex, hippo-
campus, and amygdala

4-5 months, AB plaques in
the neocortex and

hippocampus

4 months; AB plaques in the
neocortex and
hippocampus

4-5 months, AB plaques in
the neocortex and
hippocampus

10 months, AB plaques in
the cortex and

hippocampus

4-9 months, AB plaques in
the cortex and
hippocampus

Increased

Increased

Increased

Increased

Increased

Increased

Increased

Increased

Increased

Increased

(Continued)

Experimental paradigm: in vivo chronic video EEG recordings; PTZ-induced seizure
susceptibility; in vitro mIPSCs and fEPSPs recordings.

Findings: frequent epileptiform activity including spikes and SWDs and increased
PTZ-induced seizure susceptibility in hAPP-J20 mice. Reduced LTP and PPF in
hippocampal perforant pathway in hAPP-J20 mice slices. Increased dentate gran-
ule cells mIPSCs frequency in hRAPP-J20 mice. Remodeling of inhibitory circuits
and altered NPY expression in dentate gyrus of hAPP-J20 mice.

Experimental paradigm: in vivo chronic video EEG recordings.

Findings: spontaneous epileptiform discharges observed during reduced y oscilla-
tory activity (generated by inhibitory PV cells) in hRAPP-J20 mice. Decreased levels
of the interneuron-specific and PV cell-predominant voltage-gated sodium chan-
nel subunit Na,1.1. Restoring Na, 1.1 level in hAPP-J20 mice increased inhibitory
synaptic activity and y oscillations and reduced hyperexcitability and cognitive
deficits.

Experimental paradigm: in vivo chronic video EEG recordings; fEPSPs in acute hip-
pocampal slices.

Findings: spontaneous epileptiform activity in hAPP-J20 mice. Chronic treatment
with levetiracetam reversed abnormal spiking activity, hippocampal remodeling,
behavioral abnormalities, synaptic dysfunction, and deficits in learning and mem-
ory in hAPP-J20 mice.

Experimental paradigm: in vivo EEG recordings in freely moving mice.

Findings: epileptiform spikes on cortical EEG in hAPP-J20 mice. Na,1.1-overex-
pressing, interneuron transplants enhanced reduced network hypersynchrony and
improved cognitive functions in hRAPP-J20 mice.

Experimental paradigm: in vivo video EEG recordings; patch clamp electrophysiol-
ogy; extracellular field recordings in brain slices.

Findings: unprovoked seizures in APdE9 mice. Hyperexcitability in neocortical layer
2/3 pyramidal cells in APdE9 mice on patch clamp recordings. A protofibrils in-
duced neuronal network hyperexcitability in acute brain slices.

Experimental paradigm: in vivo video EEG recordings.

Findings: spontaneous electrographic epileptiform discharges. Antiepileptic drugs
that block sodium chan-nels, including carbamazepine, phenytoin, and valproic
acid suppressed epileptiform activity in APAE9 mice with increased amyloid
pathology.

Experimental paradigm: in vivo EEG recordings from the hippocampus, cerebral cor-
tex, and thalamus during movement, quiet waking, non-rapid eye movement
sleep, and REM sleep.

Findings: cortical EEG power was higher in APAE9 mice than in WT mice over a
broad frequency range (5-100 Hz) and during all 4 behavioral states. Thalamic
EEG power was also increased but in a narrower range (10-80 Hz). While power
and 06—y modulation were preserved in the APdE9 hippocampus, REM sleep-re-
lated phase shift of -y modulation was altered.

Experimental paradigm: in vivo video EEG recordings.

Findings: spontaneous epileptiform discharges. Antiepileptic drug valproic acid re-
duced the amount of epileptiform activity, but the effect disappeared after treat-
ment discontinuation.

Experimental paradigm: in vivo video EEG recordings.

Findings: epileptiform activity in the form of SWDs in APAE9 mice. SWDs correlated
with spatial memory impairment in these mice. Brivaracetam (a chemical analog
of levetiracetam) reduced SWDs and reversed memory impairments in in APdE9
mice.

Experimental paradigm: in vivo video EEG recordings; PTZ-induced seizure suscepti-
bility.

Findings: higher incidence of epileptiform-like discharges, i.e., seizure events (interic-
tal spikes, sharp waves, or polyspikes) in APdE9 than in the controls. Also, APdE9
mice showed a lower latency to PTZ-evoked seizure events than in the control an-
imals. A correlation was also found between the frequency of epileptiform-like dis-

charges and the number of A plaques.
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Author(s) and publi- Mouse model/transgene(s)/

Neuronal net-
work excitabil-

cation year promoter Age/stage of pathology ity status Experimental paradigm/neuronal network excitability observation(s)
Busche et al. (2008) APP23xPS45 8-10 months, AB plaques Increased Experimental paradigm: in vivo two-photon Ca?* imaging of neurons in layer 2/3 of
(hAPP751 Swedish and the cortex.
PSEN1-Gly384—Ala384, Findings: clusters of hyperactive neurons were found in the vicinity of A plaques.
G384A)
Thy-1 promoter
Busche et al. (2012) APP23xPS45 6-7 months, AB plaques Increased Experimental paradigm: in vivo two-photon Ca®* imaging of CA1 pyramidal neurons
(hAPP,5; Swedish and in the hippocampus.
PSEN1-Gly384—Ala384, Findings: hyperactive neurons were found to be located exclusively in the vicinity of
G384A) Ap plaques in the hippocampus of transgenic mice.
Thy-1 promoter
Lalonde et al. (2005) APP23 24 months, AB plaques Increased Experimental paradigm: behavioral seizures evaluation.
(hAPP751 Swedish) Findings: 41% of APP23 mice exhibited tonic-clonic seizures; 24% displayed myo-
Thy-1 promoter clonic jumping.
Jolas et al. (2002) TgCRND8 5 months, AB plaques Increased Experimental paradigm: in vitro hippocampal electrophysiology recordings; evoked
(hAPPgg5 Swedish and EPSCs and IPSCs; PTZ-induced seizure threshold.
Indiana) Findings: increased synaptic excitability and increased maximum amplitude of
Prp promoter evoked mEPSCs; consistently lower dose of PTZ was required to elicit myoclonic
activity (preseizure signs) in TgCRND8 mice compared with controls.
Siwek et al. (2015) 5XFAD 16.5 months, AB plaques Increased Experimental paradigm: in vivo video EEG recordings from the cortex and the hippo-

(hAPP Swedish, Florida, and
London plus PSEN1:
M146L and L286V) Thy-1
promoter
Davis et al. (2014) 3xTg-AD
(hAPP Swedish. htau P301L,
and hPSEN1: M146V)
Thy-1.2 promoter
Nygaard et al. (2015) 3xTg-AD
(hAPP Swedish. htau P301L,
and hPSEN1: M146V)
Thy-1.2 promoter
Chan et al. (2015) Tg2576
(hAPP Swedish), Prp

promoter

throughout hippocampus
and cortex

17-18 months, AB plaques  Increased

8-10 months, AB plaques, Increased
cognitive impairment

12-14 months, ApB plaques, Increased

cognitive impairment

campus.
Findings: aberrant hyperexcitability in 5xFAD mice evidenced as ictal-like dis-
charges, such as spikes, polyspikes, and spike-waves.

Experimental paradigm: in vivo hippocampal electrophysiology recordings.
Findings: increased synaptic excitability in DG and CA1.

Experimental paradigm: in vivo video EEG recordings from the cortex.
Findings: SWDs in 3xTg-AD mice which correlated with spatial memory
impairments.

Experimental paradigm: electrical amygdala kindling with implanted electrodes and
behavioral seizures evaluation.

Findings: Tg2576 mice exhibited increased susceptibility to kindling and seizure-as-
sociated death.

Studies evaluating neuronal network hyperexcitability in hAPP/AB mice at early stages of AB pathology before plaque deposition and/or cognitive impairment

Westmark et al. Tg2576
(2008) (hAPP Swedish), Prp
promoter
Westmark et al. Tg2576
(2010) (hAPP Swedish), Prp
promoter

Corbett et al. (2013) Tg2576
(hAPP Swedish), Prp
promoter

Bezzina et al. (2015) Tg2576
(hAPP Swedish), Prp

promoter

Duffy et al. (2015) Tg2576
(hAPP Swedish), Prp

promoter

2 months, before AB plaques Increased
deposition and cognitive
impairment

3 weeks, before AB plaques Increased
deposition and cognitive

impairment

5-7 months, before AB pla-  Increased
ques deposition

1.5-2 months, before AB pla- Increased
ques deposition and cog-
nitive impairment

2-4 months, prior to AB pla- Increased
ques deposition; soluble
AB 4o and AP 4o detecta-
ble; impairment in object
location, an EC-depend-
ent cognitive task.
(Continued)

Experimental paradigm: PTZ-induced seizure susceptibility assessment.
Findings: increased susceptibility to PTZ-induced seizures in Tg2576 mice.

Experimental paradigm: audiogenic seizure susceptibility evaluation.

Findings: increased susceptibility to audiogenic seizures in Tg2576 mice as com-
pared with WT controls. The audiogenic seizure susceptibility in Tg2576 mice
could be suppressed by passive immunization with an anti-APP/AS antibody or
by blockade of mGIuR5 with the selective antagonist, MPEP.

Experimental paradigm: in vivo EEG recordings.

Findings: presence of SWDs and abnormal EEG patterns in Tg2576 mice; these mice
also exhibited longer durations of higher frequency brain activity, suggesting in-
creased synchrony.

Experimental paradigm: electrical amygdala kindling with implanted electrodes and
behavioral seizures evaluation.

Findings: Tg2576 mice exhibited increased susceptibility to kindling and seizure-as-
sociated death.

Experimental paradigm: ex vivo EC recordings.

Findings: increased excitability in EC recordings in slices from Tg2576 mice.
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Author(s) and publi-

Mouse model/transgene(s)/

Neuronal net-

work excitabil-

cation year promoter Age/stage of pathology ity status Experimental paradigm/neuronal network excitability observation(s)
Kam et al. (2016) Tg2576 5 weeks, prior to AB plaques Increased Experimental paradigm: in vivo video EEG recordings.
(hAPP Swedish), Prp deposition and cognitive Findings: synchronized large amplitude potentials resembling interictal spikes in epi-
promoter impairment lepsy were observed in Tg2576 mice.
Ciccone et al. (2019) Tg2576 3 months, before AB plaques Increased Experimental paradigm: extracellular fEPSP activity elicited by the proconvulsant
(hAPP Swedish), Prp deposition drug 4-aminopyridine (4-AP) in acute hippocampal slices from 3-month-old WT
promoter and Tg2576 slices.

Findings: significantly higher number of electrical discharges, occurring with similar
amplitude but shorter intervals, was observed in Tg2576 in comparison to WT hip-
pocampal slices after 4-AP application.

Del Vecchio et al. TgCRND8 6-8 weeks, before AB pla- Increased Experimental paradigm: PTZ-induced seizure susceptibility evaluation.
(2004) (hAPPgg5 Swedish and ques deposition Findings: increased susceptibility to PTZ-induced seizures in TgCRND8 mice.
Indiana)
Prp promoter
Fontana et al. (2017) PS2APP 3 months, before AB plaques Increased Experimental paradigm: in vivo spontaneous LFPs in DG.
(hAPP Swedish and hPSEN2: deposition and cognitive Findings: network hypersynchronicity was observed in the DG of PS2APP mice.
N1411) impairment
Thy1 (hAPP) and Prp
(hPSEN2) promoters
Busche et al. (2012) APP23xPS45 1.5 months, before AB pla- Increased Experimental paradigm: in vivo two-photon calcium imaging of the hippocampal CA1
(hAPP,5; Swedish and ques deposition and cog- neurons.
PSEN1-Gly384—Ala384, nitive impairment Findings: selective increase in hyperactive neurons in hippocampus of APP23xPS45
G384A) mice before AB plaques deposition suggesting that soluble species of A3 may
Thy-1 promoter underlie this impairment. Acute treatment with the y-secretase inhibitor LY-
411575 reduced soluble A levels and rescued the neuronal dysfunction.
Davis et al. (2014) 3xTg-AD 4-6 months, before AB pla-  Increased Experimental paradigm: in vivo hippocampal electrophysiology recordings.
(hAPP Swedish. htau P301L, ques deposition Findings: synaptic hyperexcitability in DG and CA1.
and hPSEN1: M146V)
Thy-1.2 promoter
Kazim et al. (2017) 3xTg-AD 3 weeks, before AB plaques  Increased Experimental paradigm: audiogenic seizure susceptibility; ex vivo hippocampal CA3
(hAPP Swedish. htau P301L, deposition and cognitive intracellular recordings after GABA, blockade with bicuculline.
and hPSEN1: M146V) impairment Findings: increased audiogenic seizure susceptibility and prolonged epileptiform dis-
Thy-1.2 promoter charges after bicuculline application in hippocampal CA3 intracellular recordings
in 3xTg-AD mice.
Fu et al. (2019) hAPP-J20 1 and 2 months, before AB Increased Experimental paradigm: in vivo EEG recordings.

(APP Swedish and Indiana)
PDGF-B promoter

plaques deposition and

cognitive impairment

Findings: epileptic spikes at 1 month of age with robust seizure activity at 2 months
of age.

4-AP, 4-aminopyridine; Ag, amyloid B; DG, dentate gyrus; EC, entorhinal cortex; EEG, electroencephalogram; fEPSPs, field EPSPs; hAPP, human amyloid B
precursor protein; hPSEN, human presenilin; LFPs, local field potentials; LTP. Long-term potentiation; mEPSCs, miniature EPSCs; mGIuR5, metabotropic gluta-
mate receptor 5; mIPSCs, miniature IPSCs; MPEP, 2-methyl-6-(phenylethynyl)pyridine hydrochloride; PDGF, platelet-derived growth factor; Prp, prion protein;
PTZ, phenylenetetrazole; PV, parvalbumin; REM, rapid eye movement; SWDs, spike-wave discharges; WT, wild type.

1A,B; Palop et al., 2007]. The study brought into focus the
question that AD transgenic mice may be undergoing
spontaneous intermittent episodes of generalized non-
convulsive seizures without the investigators being aware
of the phenomenon. Palop et al. (2007) continually moni-
tored neuronal activity in cortical and hippocampal
networks by video EEG recordings in four- to seven-
month-old hAPP-J20 mice, which have AB plaques in the
hippocampus and neocortex and demonstrate behavioral
and synaptic deficits. They reported the presence of fre-
quent epileptiform activity including spikes and sharp
waves, and intermittent unprovoked seizures involving
neocortex and hippocampus that were not accompanied
by tonic or clonic motor activity (Fig. 1A; Palop et al.,
2007). Additionally, increased susceptibility to phenylene-
tetrazole (PTZ)-induced seizures was observed in hAPP-
J20 mice as compared with WT controls (Fig. 18; Palop et
al., 2007). Also, epileptic activity led to compensatory in-
hibitory remodeling of the hippocampal circuitry to

March/April 2021, 8(2) ENEURO.0418-20.2020

counteract network activity imbalances (Palop et al.,
2007). GABAergic sprouting, enhanced synaptic inhibi-
tion, and synaptic plasticity deficits in the dentate gyrus
were also observed in hAPP-J20 mice (Palop et al., 2007).
It was proposed that both the recurrent seizure activity
and compensatory homeostatic responses to this seizure
activity may interfere with normal neuronal and synaptic
functions essential for learning and memory (Leonard and
McNamara, 2007; Palop et al., 2007; Palop and Mucke,
2009, 2010a,b, 2016; Noebels, 2011; Scharfman, 2012a,
b; Chin and Scharfman, 2013).

A subsequent study from the same group further con-
firmed the presence of spontaneous epileptiform activity
and network hypersynchrony on cortical EEG recordings
in four- to seven-month-old hAPP-J20 mice (Verret et al.,
2012). Primarily, the spontaneous epileptiform discharges
were observed during reduced vy oscillatory activity (im-
portant for learning and memory). As this oscillatory
rhythm is generated by inhibitory PV cells, it was
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Figure 1. Neuronal network hyperexcitability at advanced stages of pathology in hAPP/AB mouse models of AD. A, B, Aberrant
synchronous neuronal network activity, spontaneous nonconvulsive seizures, and increased susceptibility to PTZ-induced seizures
in four- to seven-month-old hAPP-J20 mice. Reproduced from Palop et al. (2007) with permission from Elsevier. A, Chronic cortical
EEG recordings performed in freely moving, untreated hAPP-J20 mice, and non-transgenic (NTG) controls. L, left; R, right; F, frontal;
T, temporal; P, parietal; O, posterior-parietal, indicate the position of recording electrodes. In contrast to NTG mice, which showed
normal EEG activity (left), hAPP-J20 mice exhibited frequent (5-50/min) generalized cortical epileptiform (interictal) spike discharges
(right). Calibration: 1 s and 400 mV. B, Mice were injected intraperitoneally with PTZ (GABAA antagonist), behavior was videore-
corded, and seizure severity was scored off-line. Compared with NTG controls, hAPP-J20 mice had shorter latencies to reach a
given seizure severity (left), greater overall seizure severity (center), and more seizure-associated deaths (right); **p < 0.01 versus
NTG by Student’s t test; #p < 0.05 by Fisher’s exact test. Quantitative data represent mean + SEM. C-F, Clusters of hyperactive
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neurons near amyloid plaques in APP23xPS45 mice. In vivo two-photon calcium imaging from layer 2/3 cortical neurons.
Reproduced with permission from Busche et al. (2008). C, D, Spontaneous Ca2" transients (D) recorded in vivo in the corresponding
neurons of the frontal cortex shown in C in a WT (top) and a APP23xPS45 (bottom) mouse. Traces in D, bottom, are color-coded to
mark neurons that were either inactive during the recording period (blue) or showed an increased frequency of Ca®* transients (red).
E, F, Histograms showing the frequency distribution of Ca®" transients in WT and APP23xPS45 mice (in both cases n=564 cells).
There is a substantial increase in the amount of silent and hyperactive neurons in APP23xPS45 mice. (Insets) Pie charts showing
the relative proportion of silent, normal, and hyperactive neurons in WT (n=10) and APP23xPS45 (n =20) mice.

hypothesized that network dysfunction in hAPP-J20 mice
might arise from impaired PV cells (Verret et al., 2012). In
fact the study found that hAPP-J20 mice and AD patients
had decreased levels of the interneuron-specific and PV
cell-predominant voltage-gated sodium channel subunit
Na,1.1 (Verret et al.,, 2012). Restoring Na,1.1 level in
hAPP-J20 mice by Na,1.1-BAC expression increased in-
hibitory synaptic activity and vy oscillations and reduced
hyperexcitability, cognitive deficits, and premature mor-
tality. Thus, it was concluded that reduced Na,1.1 levels
and PV cell dysfunction critically mediate abnormalities in
oscillatory brain rhythms, network synchrony, and memo-
ry in hAPP-J20 mice, and possibly in AD (Verret et al.,
2012). A recent study further corroborated this as Na,1.1-
overexpressing, interneuron transplants (derived from the
embryonic medial ganglionic eminence) were found to en-
hance behavior-dependent y oscillatory activity, reduce
network hypersynchrony, and improve cognitive functions
in hAPP-J20 mice (Martinez-Losa et al., 2018).

Another study in four- to six-month-old hAPP-J20 mice
provided evidence for the causal relationship between
neuronal network hyperexcitability and cognitive dysfunc-
tion (Sanchez et al., 2012). The antiepileptic drug levetira-
cetam was found to effectively reduce abnormal spike
activity detected by EEG (Sanchez et al., 2012). Chronic
treatment with levetiracetam also reversed hippocampal
remodeling, behavioral abnormalities, synaptic dysfunc-
tion, and deficits in learning and memory in hAPP-J20 mice
(Sanchez et al., 2012). These data supported the hypothesis
that aberrant network activity contributes causally to synap-
tic and cognitive deficits in A mice. Nonetheless, it is im-
perative to note here that behavioral and molecular
abnormalities recurred within 35 d after end of levetiracetam
treatment in hAPP-J20 mice (Sanchez et al., 2012), suggest-
ing that a chronic persistent treatment of network hyperex-
citability may be required to ameliorate AD-associated
cognitive dysfunction.

Previously, in six- to eight-month-old double transgenic
APP23xPS45 mice [harboring the 751 isoform of hAPP
Swedish (KM670/671NL) and PSEN1 (Gly384—Ala384,
G384A) mutations under the control of Thy-1 promoter;
cognitively impaired at this age], in vivo two-photon Ca®*
imaging in layer 2/3 cortical neurons revealed clusters of
hyperactive neurons near AgB plaques (Fig. 1C—F; Busche
et al., 2008). While the study found a decrease in neuronal
activity in 29% of layer 2/3 cortical neurons, remarkably
21% of neurons displayed an unexpected increase in the
frequency of spontaneous Ca®" transients (Busche et al.,
2008). These hyperactive neurons were found exclusively in
the vicinity of the plaques of AB-depositing APP23xPS45
mice (Busche et al., 2008). It was reported that not only did

March/April 2021, 8(2) ENEURO.0418-20.2020

hyperactive neurons fire more frequently, they also did this
in a correlated manner, thus increasing the risk for seizure-
like activity (Busche et al., 2008). The hyperactivity appeared
to be because of a relative decrease in synaptic inhibition
(Busche et al., 2008). The study suggested that an anatomic
remodeling of both excitatory and inhibitory synaptic inputs
gave rise to the observed changes in neuronal function
(Busche et al., 2008), this was in congruence with the finding
of inhibitory interneuron remodeling reported in the hippo-
campus of amyloid plaques bearing hAPP-J20 mice dem-
onstrating spontaneous epileptiform activity (Palop et al.,
2007). Another study from the same group (Busche et al.,
2012) reported the presence of hyperactive neurons near
A plaques in the hippocampus in six- to seven-month-old
APP23xPS45 mice. A marked increase in the fractions of
both silent and hyperactive neurons was observed in the
hippocampus of plaque depositing APP23xPS45 mice
(Busche et al., 2012), as previously also found in the cortex
(Busche et al., 2008). Also, the hyperactive neurons were
found to be located exclusively in the vicinity of plaques in
transgenic mice, whereas both silent and normal neurons
were distributed throughout the hippocampus (Busche et
al., 2012). A recent study from the same group employing in
vivo two-photon Ca®* imaging reported that hyperactivation
in AB mouse models is initiated by the suppression of gluta-
mate reuptake (Zott et al., 2019). The astroglial excitatory
amino-acid transporter 2 (EAAT2; also termed GLT-1 in
mice) is the predominant glutamate transporter in mamma-
lian brain, being responsible for over 90% of glutamate up-
take (Danbolt et al., 1992; Haugeto et al., 1996). AB was
found to interfere with EAAT2-mediated glutamate uptake,
thus providing a mechanism for A8 -mediated neuronal net-
work hyperexcitability in AD (Li et al., 2009; Zott et al., 2019).

We have reported that treatment with the glutamate
modulator riluzole, which has been shown to increase
EAAT2 expression (Banasr et al., 2010; Hunsberger et al.,
2015, 2016) besides other mechanisms of actions, can
prevent age-related cognitive decline through clustering
of dendritic spines (Pereira et al., 2014), strengthening
neural communication (Govindarajan et al., 2006; Larkum
and Nevian, 2008). Furthermore, we have shown that rilu-
zole rescues age and AD-gene expression profile (Pereira
et al., 2017). More recently, we have published that rilu-
zole prevents hippocampal-dependent spatial memory
decline in an early-onset and aggressive mouse model of
AD (5XFAD) and reversed many of the gene expression
changes in immune pathways (Okamoto et al., 2018), and
specifically microglia-related genes thought to be critical
mediators of AD pathophysiology (Streit, 2004; Butovsky
et al.,, 2014; Colonna and Wang, 2016), including a re-
cently identified unique population of disease-associated
microglia (DAM; Keren-Shaul et al., 2017).
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In a study of 3- and 4.5-month-old APdE9 mice [harbor-
ing hAPP Swedish (KM670/671NL) and PSEN1:deltaE9
mutations; transgene expression being driven by the Prp
promoter], neuronal hyperexcitability culminating in epilepti-
form activity in the presence of AB plaques was reported
(Minkeviciene et al., 2009). In video EEG recordings, at least
one unprovoked seizure was detected in 65% of APJEQ
mice, of which 46% had multiple seizures and 38% had a
generalized seizure, whereas none of the WT mice had seiz-
ures (Minkeviciene et al., 2009). In a subset of APAE9 mice,
seizure phenotype was associated with a loss of calbindin-
D28k immunoreactivity in dentate granular cells and ectopic
expression of neuropeptide Y (NPY) in mossy fibers
(Minkeviciene et al., 2009). In APdE9 mice, persistently de-
creased resting membrane potential in neocortical layer 2/3
pyramidal cells and dentate granule cells was observed
which could be responsible for neuronal network hyperex-
citability as identified by patch-clamp electrophysiology
(Minkeviciene et al., 2009). Bath application of Ag protofi-
brils was found to induce significant membrane depolariza-
tion of pyramidal cells and increased the activity of
excitatory cell populations as measured by extracellular field
recordings in the rodent brain slices, confirming the patho-
genic significance of AB in neuronal network hyperexcitabil-
ity (Minkeviciene et al., 2009). Another study in four-month-
old APdE9 mice further confirmed increased cortical and
thalamic excitability (Gurevicius et al., 2013). A subsequent
study demonstrated that sodium channel blocking antiepi-
leptic drugs (carbamazepine, valproic acid, or phenytoin)
could suppress epileptiform activity in APAE9 mice with in-
creased amyloid pathology (Ziyatdinova et al., 2011).
Another study later found that while valproic acid treatment
of APdE9 mice, at the stage when amyloid plaques are be-
ginning to develop and epileptiform activity is detected, re-
duced the amount of epileptiform activity, but the effect
disappeared after treatment discontinuation, and no con-
sistent long-term effects were observed (Ziyatdinova et al.,
2015). This is in congruence with the data from hAPP-J20
mice where abnormalities returned after discontinuation of
levetiracetam treatment, as mentioned earlier (Sanchez et
al., 2012). Epileptiform-like discharges, i.e., seizure-related
events consisting of interictal spikes, sharp wave discharges
or polyspikes were also observed in cortical EEG recordings
of four- to nine-month-old APdE9 mice (Reyes-Marin and
Nufiez, 2017). Also, a lower latency to PTZ-evoked seizure
events was found in APdE9 mice compared with WT con-
trols (Reyes-Marin and Nufez, 2017). Importantly, a correla-
tion between the frequency of epileptiform-like discharges
and the number of AB plaques was reported (Reyes-Marin
and Nuiez, 2017). Another study also reported the presence
of epileptiform activity in the form of spike wave discharges
in 8- to 10-month-old APdE9 mice; spike wave discharges
correlated with spatial memory impairment in these mice
(Nygaard et al., 2015). Interestingly, while antiepileptics
ethosuximide and brivaracetam (a chemical analog of leve-
tiracetam) both reduced spike-wave discharges in APdEQ
mice, brivaracetam, but not ethosuximide, reversed impair-
ments in spatial memory (Nygaard et al., 2015).

Several other studies in hAPP/AB mouse models of AD
have identified enhanced seizure susceptibility and/or
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spontaneous epileptiform activity at advanced stages of
the AB pathology and cognitive deficit. Increased seizure
activity was found in 24-month-old APP23 mice [harbor-
ing the 751 isoform of hAPP Swedish (KM670/671NL) mu-
tation under the control of Thy-1 promoter] with extensive
AR plaque pathology (Lalonde et al., 2005). Increased syn-
aptic excitability and increased maximum amplitude of
evoked miniature EPSCs (MEPSCs) was reported in the hip-
pocampus of AB plagues bearing 20-week-old TJCRND8
mice [hAPP695 with the Swedish mutation (KM670/671NL)
and Indiana mutation (V717F) under the control of the ham-
ster prion (PrP) gene promoter; thioflavin S-positive amyloid
deposits at three months; dense cored plaques and neuritic
pathology by five months; Jolas et al., 2002]. Cortical hyper-
excitability was also reported in ~72-week (16.5-month)-old
5XFAD mice [harboring three hAPP mutations: Swedish
(KM670/671NL), Florida (1716V), and London (V717]) muta-
tions and two PSEN1 (M146L, L286V) mutations under the
control of Thy-1 promoter; plaques are found throughout
the hippocampus and cortex by six months; Siwek et al.,
2015]. Employing in vivo electrophysiology, increased hip-
pocampal excitability was reported in 17- to 18-month-old
3xTg-AD mice [harboring hAPP Swedish (KM670/671NL),
hPSEN1 M146V, and htau P301L mutations under control
of Thy1.2 promoter; these mice develop AB plaques and
NFTs-like pathologies in a progressive and age-dependent
manner, starting at ~9 and ~12 months; Davis et al., 2014].
Another study in 8- to 10-month-old 3xTg-AD mice reported
the presence of spike wave discharges which correlated
with spatial memory impairment in these mice (Nygaard et
al., 2015). An increased susceptibility to kindling and sei-
zure-associated death was also reported in aged (12- to 14-
month-old) Tg2576 mice [harboring hAPP Swedish mutation
(KM670/671NL), under the control of prion protein promoter;
numerous parenchymal AB plaques are evident by 11-
13 months of age; Chan et al., 2015].

Early-onset neuronal network hyperexcitability in Af-
based mouse models of AD, much before Af plaques
and overt cognitive impairment: the role of
intraneuronal hAPP/Ap and soluble Ap

Several hAPP/AB mouse model studies have docu-
mented the presence of early-onset neuronal network hy-
perexcitability manifesting as epileptiform activity and
seizure susceptibility, much before Ag plaques deposi-
tion and overt cognitive impairment (Fig. 2). These studies
suggest the potential role of transgenic APP and intra-
neuronal AB in neuronal network hyperexcitability before
plague deposition. Early onset of hypersynchronous ac-
tivity and expression of a chronic seizures’ marker was re-
ported in Tg2576 mice (Bezzina et al., 2015). No memory
dysfunction has been reported in these mice at 1.5-
2 months, and they develop AB plaques by 11-13 months
of age (Jacobsen et al., 2006; D’Amelio et al., 2011;
Stewart et al., 2011). Spontaneous epileptiform activity
and an increased susceptibility to PTZ-induced seizures
was observed in Tg2576 mice as early as 1.5 months of
age (Fig. 2A-C; Bezzina et al., 2015). Additionally, higher
ectopic expression of NPY in the mossy fibers was found
at three months of age in these mice (Bezzina et al., 2015),
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Figure 2. Early-onset neuronal network hyperexcitability in hAPP/AB mouse models of AD. A-C, Tg2576 mice exhibit spontaneous
epileptiform activity and high susceptibility to pharmacologically induced seizures as young as 1.5 months of age. Reproduced with
permission from Bezzina et al. (2015). A, Representative EEG traces from non-transgenic (NTg; top) and Tg2576 (bottom) mice from
left and right parietal cortices. Note that only transgenic animals displayed sharp, high-voltage spikes that characterize epileptiform
activity (inset). B, Quantitative analysis of the frequency of interictal spikes (mean = SEM). Two-way ANOVA shows a significant ge-
notype effect (p =0.013) but no age effect (o =0.4091) and no interaction (p =0.3865). Numbers over the horizontal axis indicate the
number of mice used in each experimental group. C, Seizure severity score of 1.5-, 3-, and 6-month-old Tg2576 male mice and
NTg age-matched littermates. Whiskers boxes represent the interquartile distribution. Number of mice in each group is indicated
below the boxes. Tg2576 mice exhibit more severe seizures than NTg at 1.5 and 6 months of age (Dunn’s tests: p < 0.05 for Tg2576
vs NTg at 1.5 and 6 months old). Note that only transgenic animals exhibit lethal seizures. Numbers over the horizontal axis indicate
the number of mice used in each experimental group. D, Early hyperactivity of hippocampal neurons of 1.5-month-old APP23xPS45
mice (an age when no plaques are detectable). Reproduced with permission from Busche et al. (2012). Left, CA1 neurons imaged in
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vivo in a WT and a transgenic mouse, respectively. Center, Activity maps in which hue is determined by the frequency of spontane-
ous Ca?" transients, overlaid with the anatomic image (left). Right, Spontaneous Ca2" transients of the corresponding neurons
marked (left). E-G, Early-onset seizure susceptibility and epileptiform activities in three-week-old 3xTg-AD mice (much before pla-
ques and overt cognitive impairment). Reproduced with permission from Kazim et al. (2017). E, Incidence of convulsive seizures
after audiogenic stimulation was markedly higher in three-week-old 3xTg-AD mice (blue bar) compared with WT mice (red bar). The
data are presented as percent incidence with 95% confidence interval and compared using exact logistic regression stratified by lit-
ter; ***p < 0.001, compared with WT. WT (n=35) and 3xTg-AD (n=20) mice. F, Ictal-like epileptiform discharges in CA3 pyramidal
cells of hippocampal slices from three-week-old 3xTg-AD mice. Left, CA3 intracellular recording from a WT slice after bicuculline
addition (50 um). Within 20 min, bicuculline induced rhythmic, short epileptiform discharges (<1.5 s in duration) that were ongoing
for at least 1 h of continuous recording. Membrane potential at the beginning of recording: —60 mV. Right, CA3 intracellular record-
ing from a 3xTg-AD slice after bicuculline. Bicuculline first induced short synchronized epileptiform discharges that were similar to
those in WT slices. However, continuous perfusion with bicuculline induced prolonged epileptiform (ictal-like) discharges (>1.5 s) in
3xTg-AD slice. Membrane potential at the beginning of recording: —65mV. G, Positive correlation of intraneuronal human APP/AB
expression in CA3 neurons and ictal-like activity in CA3 region. Correlation analyses revealed a positive relationship between intra-
neuronal human APP/AB immunoreactivity in the CA3 neurons (analyzed by 6E10, human APP/AB) and average duration of the five
longest epileptiform discharges recorded during a 5-min period after 90 min of bicuculline application in the CA3 region of hippo-
campal slices from the same mice. Data from Saline-3xTg-AD (n=9) and 6E10-3xTg-AD (n =9) was pooled together to evaluate the
correlation. The sigmoidal curve based on nonlinear regression is also shown. H, I, Early-onset epileptic activity in one- and two-
month-old hAPP-J20 mice. Reproduced with permission from Fu et al. (2019). H, Representative EEG traces from NTg and hAPP-
J20 mice at one and two months of age, with epileptiform spikes at one month of age and a seizure at two months of age in hAPP-
J20 mice. Electrodes were in left and right frontal cortices (LFC and RFC), hippocampus (HIP), and parietal cortex (PC). Scale bars:
1mV, 10 s. I, The number of epileptic spikes per hour in NTg or hAPP-J20 mice at one, two, and four to six months of age (n=3-5

mice per genotype and age).

suggesting that chronic seizures occur at very early
stages in the course of the disease, and that their inci-
dence likely increases with age among the Tg2576 popu-
lation. Another study reported increased susceptibility to
audiogenic seizures as early as threeweeks of age in
Tg2576 mice as compared with WT controls (Westmark et
al., 2010). This early-onset audiogenic seizure susceptibil-
ity in Tg2576 mice could be suppressed by passive immu-
nization with an anti-APP/AB antibody or by blockade of
mGIuR5 with the selective antagonist, 2-methyl-6-(phe-
nylethynyl)pyridine hydrochloride (MPEP; Westmark et al.,
2010). Additionally, a study also found increased suscep-
tibility to PTZ-induced seizures in two-month-old Tg2576
mice (Westmark et al., 2008). Another study in Tg2576
mice, using video EEG recordings, reported synchron-
ized, large amplitude potentials resembling interictal
spikes in epilepsy at just five weeks of age, long before
memory impairments or AB plaques deposition, suggest-
ing epileptiform activity as a biomarker for early detection
of AD (Kam et al., 2016). Also, a study in two- to four-
month-old Tg2576 mice (before AB plaques deposition)
reported increased excitability in the EC, one of the first
regions to display neuropathology in AD (Duffy et al.,
2015).

A study in five- to seven-month-old Tg2576 mice (still
before AB plaques deposition) reported the presence of
spike wave discharges and abnormal EEG patterns; these
mice also exhibited longer durations of higher frequency
brain activity, suggesting increased synchrony (Corbett et
al., 2013). The Tg2576 mice with epileptiform activity ex-
hibited increased Na,B82 cleavage and increased total
levels of Na,1.1« (Corbett et al., 2013). Interestingly, the
magnitude of alterations in sodium channel subunits was
associated with aberrant EEG activity and impairments in
the Morris water maze task (Corbett et al., 2013). As men-
tioned earlier, in hAPP-J20 mice, decreased levels of
Na,1.1a, only in PV" interneurons, were found which led
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to impaired interneuron function and aberrant neuronal
activity that could be normalized by overexpressing
Na, 1.1« in interneurons (Verret et al., 2012). While Corbett
and colleagues (Corbett et al., 2013) found increased
rather than decreased total levels of Na,1.1 « in Tg2576
mice, the surface Na,1.1«a levels were in fact reduced
(Corbett et al., 2013). Overall, both studies reported a de-
crease in the levels of functional Nav1.1a in APP mice
cortex (Verret et al., 2012; Corbett et al., 2013).
Interestingly, Na,1.1-null mice were shown to exhibit
spontaneous seizures and a significant reduction in Na*
currents in isolated GABAergic interneurons, but not in
pyramidal cells from hippocampus, suggesting that loss
of Na,1.1 might specifically decrease inhibitory function,
thereby prompting hyperexcitability (Yu et al., 2006).
Thus, Na,1.1 hypofunction could be a possible mecha-
nism of neuronal network hyperexcitability in AD. A recent
study also found that selective overexpression of another
sodium channel subunit, Na,1.6, is responsible for the
aberrant neuronal activity observed in hippocampal slices
from three-month-old Tg2576 mice (Ciccone et al., 2019).
Furthermore, the Na, 1.6 channels were identified as a de-
terminant of the hippocampal neuronal hyperexcitability
induced by A 4, oligomers (Ciccone et al., 2019).

A study in preplaque (six- to eight-week-old) TgCRND8
mice, another hAPP/AB mouse model of AD, demon-
strated an increased sensitivity to PTZ-induced seizures
with a more severe seizure type in transgenic mice over
age-matched littermate controls (Del Vecchio et al.,
2004). A lower threshold and more severe seizure type in
TgCRND8 mice before plaque deposition suggested that
this genotype difference might be because of AB toxicity
rather than plaque formation (Del Vecchio et al., 2004). In
PS2APP mice [harboring hAPP Swedish (KM670/671NL)
and PSEN2:N141] mutations; transgene expression being
driven by the Thy1 and Prp promoter; overt AB deposition
at approximately six months, with heavy plaque load in
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the hippocampus, frontal cortex, and subiculum at
10 months; cognitive impairment at eight months], a study
employing in vivo recordings of LFP activity in the dentate
gyrus, uncovered network hypersynchronicity as early as
three months, when intracellular accumulation of Ag (and
not plaques) was observable (Fontana et al., 2017). An in
vivo two-photon calcium imaging study in the hippocam-
pal CA1 neurons in young (1.5-month-old) APP23xPS45
mice reported a selective increase in hyperactive neurons
already before the formation of plaques, suggesting that
soluble species of AB may underlie this impairment (Fig.
2D; Busche et al., 2012). Acute treatment with the y-sec-
retase inhibitor LY-411575 reduced soluble AB levels and
also rescued the neuronal dysfunction (Busche et al.,
2012). Furthermore, direct application of soluble A
could induce neuronal hyperactivity in WT mice (Busche
et al., 2012). Thus, hippocampal hyperactivity was identi-
fied as a very early functional impairment in AD transgenic
mice and soluble AB was reported to be crucial for hippo-
campal hyperactivity (Busche et al., 2012).

Previously, we detected the presence of early-onset
neuronal network hyperexcitability at three weeks of age,
much before AB plaque pathology and cognitive deficit,
in 3xTg-AD mice (Fig. 2E-G; Kazim et al., 2017). The ear-
liest cognitive deficits reported in 3xTg-AD mice are by
two to three months of age (Davis et al., 2013; Stevens
and Brown, 2015). However, most studies show cognitive
impairment in 3xTg-AD by approximately five months of
age (Oddo et al., 2003a; Billings et al., 2005). Increased
susceptibility to audiogenic seizures and epileptiform dis-
charges were observed in the hippocampal CA3 region in
three-week-old 3xTg-AD mice (Fig. 2E,F; Kazim et al.,
2017). In congruence with a previous study in Tg2576
mice (Westmark et al., 2010), passive immunization with
an anti-APP/AB antibody or blockade of mGIuR5 with
MPEP suppressed early-onset neuronal network hyperex-
citability in 3xTg-AD mice. While no amyloid plaques are
present at this age in 3xTg-AD mice, they exhibit intra-
neuronal APP/AB expression; remarkably, epileptiform
discharge duration positively correlated with intraneuronal
transgenic hAPP/AB expression in the CA3 region of the
hippocampus (Fig. 2G; Kazim et al., 2017). Another study
in four- to six-month 3xTg-AD mice, an age where there is
intraneuronal APP/AB expression but no plaques, re-
ported the presence of synaptic hyperexcitability (Davis et
al., 2014), which could be a major contributor to episodic
memory deficit observed at young age in these mice
(Davis et al., 2013). The familial AD mouse models which
carry human APP mutation(s) and display early-onset epi-
leptiform activity and seizure susceptibility have in-
creased expression of intraneuronal human APP and AB
before extracellular A deposition and amyloid plaque
formation (Oddo et al., 2003a,b; Billings et al., 2005;
Lithner et al., 2011; Stargardt et al., 2015). In human AD
brains, intraneuronal AB accumulation precedes plaque
formation (Gyure et al., 2001; Bossers et al., 2010). In AD
transgenic mice, intraneuronal AB deposition was de-
scribed to contribute to cognitive impairment before amy-
loid plague stage (Oddo et al., 2003b; Billings et al.,
2005), and aberrant network excitability may be a
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mechanism of this cognitive deficit. Similar to Ag, APP
may also be a mediator of neuronal network hyperexcit-
ability in AD patients and transgenic mice. Interestingly,
genetic suppression of transgenic APP in a human APP
mouse model of AD [tetracycline-responsive APP-trans-
genic mice (APP/TTA, where TTA stands for tetracycline-
controlled transactivator protein)] was shown to rescue
hypersynchronous network activity (Born et al., 2014). Also,
individual peptides generated from APP processing may
play a role in neuronal network hyperexcitability as hyperex-
citability and seizure susceptibility was previously reported
in mice overexpressing APP intracellular domain (AICD;
Vogt et al., 2011). However, because of the intrinsic relation-
ship of APP and A8 in familial AD mouse models, dissecting
out the differential impact of APP overexpression versus in-
traneuronal AB deposition before plaque pathology on neu-
ronal network hyperexcitability in hAPP/AB mice has been
experimentally daunting. Additionally, besides hAPP/AB,
other pathogenic factors could also play a role in early-
onset neuronal network hyperexcitability in AD. For in-
stance, a study employing electrophysiological recordings
in hippocampal primary neuronal cultures from embryonic
(E16-E18) 3xTg-AD mice reported a causative link between
the development of hyperexcitability, increased spontane-
ous synaptic activity, and the reactive oxygen species-de-
pendent appearance of conglomerates of dysfunctional
K,2.1 potassium channels (Frazzini et al., 2016).

A recent study reported epileptic spikes as early as
one month of age with robust seizure activity at two months
of age, before AB plagues deposition and overt memory
dysfunction in hAPP-J20 mice (Fig. 2H,/; Fu et al., 2019).
Interestingly, it was found that as early seizure activity ap-
pears, adult hippocampal neurogenesis initially increases at
two months of age, however with recurrent seizure activity,
a deficit in adult hippocampal neurogenesis was observed
at 3, 7, and 14 months in hAPP-J20 mice (Fu et al., 2019).
Adult hippocampal neurogenesis is known to play an essen-
tial role in learning and memory (Aimone et al., 2006, 2010;
Sahay et al., 2011). It was proposed that the seizure activity
that occurs early in disease progression in hAPP-J20 mice
aberrantly stimulates neural stem cell division and acceler-
ates depletion of the neural stem cell pool (Aimone et al.,
2006, 2010; Sahay et al., 2011). At 3-3.5months of age,
when the level of neurogenesis in hAPP-J20 mice first be-
comes markedly reduced, deficit in a spatial discrimination
memory task was found in these mice (Fu et al., 2019). This
was in agreement with the previous data which showed that
adult-born hippocampal neurons are critical for spatial dis-
crimination (Sahay et al., 2011). Remarkably, chronic treat-
ment with levetiracetam, which effectively reduces spikes
and seizures in hAPP-J20 mice (Sanchez et al., 2012), nor-
malized neurogenesis and improved spatial discrimination
memory in hAPP-J20 mice, thus providing a causal link be-
tween early-onset network hyperexcitability much before
AB plaques and cognitive deficit via recurrent epileptic ac-
tivity-induced aberrant adult hippocampal neurogenesis (Fu
et al., 2019). These data challenge the old concept that neu-
ronal network hyperexcitability is a compensatory mecha-
nism following AD-related neurodegeneration and reflect an
effort of the brain that cannot keep pace with cognitive
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Table 2: Summary of studies analyzing neuronal network excitability in tau mouse models

Author(s) and publi-

cation year

Mouse model/transgene(s)

Age/stage of pathology

Neuronal network

excitability status

Experimental paradigm/neuronal network excitability observa-

tion(s)

Rocher et al. (2010)

Hoover et al. (2010)

Crimins et al. (2011)

Crimins et al. (2012)

Menkes-Caspi et al.

(2015)

Witton et al. (2016)

Hatch et al. (2017)

Busche et al. (2019)

Van Erum et al.
(2020)

rTg4510
(htau P301L)

rTg4510

(htau P301L)

Rat hippocampal neurons trans-
fected with h7P301L

rTgd510
(htau P301L)

rTg4510
(htau P301L)

Tg4510
(htau P301L)

rTgd510
(htau P301L)

rTg4510

(htau P301L, 13-fold higher human
tau expression as compared with
endogenous tau)

pR5

(htau P301L, at lower level than
rTg4510, 0.7-fold higher human
tau as compared with endoge-
nous tau)

rTg4510
(htau P301L)
rTg21221

(htau overexpression)

tau58/4
(htau P301S)

8.5 months, NFTs and
neurodegeneration

rTg4510 cultured hippocampal neu-
rons from E18: DIV 22-30, de-
creased excitatory glutamate
receptor levels.

Rat hippocampal neurons trans-
fected with h7P301L: DIV 22-30,
increased phospho-tau

9 months, NFTs and
neurodegeneration

< 4 (1-3) mo and > 8 (9-13) mo;
soluble hyperphosphorylated tau
species at <4 months, NFTs and
neurodegeneration at >8 months

3 months, accumulation of hyper-
phosphorylated and misfolded
tau in cortex; 5 months, patho-
logic tau and NFTs in cortex

7-8 months, NFTs and
neurodegeneration

rTg4510: 1-2 months, early stage
tauopathy before overt tau hyper-
phosphorylation and synaptic im-
pairment

4-6 months, mid-stage with exten-
sive tau hyperphosphorylation
and impairment of synaptic activ-
ity and spatial memory

12-14 months, late stage with syn-
aptic loss and neurodegeneration

PR5: 15-17 months, tau pathology in
hippocampus

rTg4510: 6-12 months, tau aggrega-
tion and NFTs

3-4 months; soluble tau.

rTg21221: 6-12 months, human tau
overexpression.

3 months, htau and phospho-tau in
the frontal cortex and pons
(Continued)

Increased

Decreased

Increased

Increased

Decreased

Increased

Decreased

Decreased

Increased

Experimental paradigm: in vitro whole cell patch clamp record-
ings of layer 3 frontal cortex pyramidal neurons.

Findings: increased action potential firing rates and a signifi-
cantly depolarized resting membrane potential in transgenic
mice slices, independent of NFTs.

Experimental paradigm: in vitro hippocampal neurons electro-
physiology, mEPSCs recording.

Findings: reduced mEPSCs frequency and amplitude both in
rTg4510 cultured hippocampal neurons and rat hippocampal
cultured neurons transfected with h7P301L.

Experimental paradigm: in vitro whole cell patch clamp record-
ings of layer 3 frontal cortex pyramidal neurons.

Findings: increased spontaneous synaptic activity (increased
frequency of sEPSCs).

Experimental paradigm: in vitro whole cell patch clamp record-
ings of layer 3 frontal cortex pyramidal neurons.

Findings: increased excitability both in early and advanced tau-
opathy. Depolarized resting membrane potential, an in-
creased depolarizing sag potential and increased action
potential firing rates—all indicative of hyperexcitability.
Hyperexcitability reversed by suppression of human mutant
tau transgene.

Experimental paradigm: in vivo intracellular recordings from
frontal cortex in anesthetized mice, In vivo extracellular re-
cordings/LFPs in awake behaving mice.

Findings: reduced activity both of single neocortical pyramidal
cells and of the neocortical network including decreased fir-
ing rates and altered firing patterns.

Experimental paradigm: in vivo hippocampal CA1 electrophysi-
ology recordings, both single-unit and LFPs.

Findings: increased propensity of excitatory pyramidal neurons
in hippocampus to fire action potentials in a phase locked
manner during SWRs; inhibitory interneurons were less likely
to fire phase-locked spikes during SWRs.

Experimental paradigm: in vitro whole cell patch clamp record-
ings from hippocampal CA1 pyramidal neurons.

Findings: reduced action potential firing rate because of a de-
polarization shift in action potential generation and reduced
action potential amplitude at all ages in the CA1 pyramidal
neurons of P301L mice. pR5 mice CA1 pyramidal neurons
showed less severe action potential impairment compared
with rTg4510, including action potential depolarization shift
and reduced action potential amplitude.

Experimental paradigm: in vivo two-photon Ca?" imaging of
neurons in layer 2/3 of the cortex.

Findings: strong reduction in cortical activity as reflected by in-
creased number of silent neurons in both 6- to 12- and 3- to
4-month-old rTg4510 mice. Reduction in cortical activity in
6- to 12-month-old rTg2210 mice. Reducing tau in 3- to 4-
month-old rTg4510 mice decreased the number of silent
neurons.

Experimental paradigm: video EEG recordings; PTZ-induced

seizure susceptibility.
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Author(s) and publi-

cation year Mouse model/transgene(s)

Age/stage of pathology

Neuronal network
excitability status

Experimental paradigm/neuronal network excitability observa-
tion(s)

P301S
(htau P301S)

Marinkovi¢ et al.
(2019)

Mondragén- 3xTg-AD
Rodriguez et al.

(2018b) hPSEN1)

Ahnaou et al. (2017)  Tg tau P301L

(h tau P301L)

Angulo et al. (2017) EC-htau
(h7P301L)
EC-hAPP
(hAPP)
EC-hAPP/htau

(hAPP, h7P301L)

Maeda et al. (2016) htau-A152T

(htau P301L, hAPP Swedish,

12-15 months, NFTs throughout the

brain.

2 m, injected with tau preformed fi-
brils for NFTs seeding, evaluated
for cortical activity up to 50 d
after injections

1 month, increased phospho-tau, in-
traneuronal APP/AB, prior to cog-

nitive impairment.

3 months, injected with preformed
tau fibrils to induce tau

aggregation.

EC-htau: 2.5-3.5 months, htau and
phospho-tau accumulation in EC.

EC-hAPP: 2.5-3.5 months, soluble
AB.

4-9 months, soluble tau

(Continued)

Decreased

Decreased

Normal

Normal/

resistance to in-
duced-hyperex-
citability in EC-
htau mice

Increased

Findings: increased PTZ-induced seizure susceptibility in young
(3-month-old) tau58/4 mice as compared with age-matched
WT littermates. Young tau58/4 animals displayed more se-
vere seizures and had a reduced latency to the first seizure
compared with WTs. While, age-related differences in sus-
ceptibility could be demonstrated for both genotypes, old
tau58/4 did not exhibit a significantly higher seizure suscep-
tibility as compared with WT mice.

Experimental paradigm: in vivo two-photon Ca®* imaging of
neurons in layer 2/3 of the cortex in awake, head-fixed mice.

Findings: strong reduction in cortical activity, independent of
NFTs presence, suggesting the impairing role of soluble,
mutated tau protein species.

Experimental paradigm: in vitro whole cell patch clamp record-
ings from hippocampal CA1 pyramidal neurons; in vitro LFPs
recordings from hippocampal slices.

Findings: no difference in amplitude and frequency of action
potentials between 3xTg-AD and non-Tg CA1 pyramidal
neurons. Overall, the young 3xTg-AD mice showed less ex-
citable hippocampal network activity, likely related to abnor-
mally hyperphosphorylated tau at microtubule domain
region (MDr).

Experimental paradigm: in vivo EEG recordings. Network oscil-
lations, phase amplitude cross frequency coupling, mis-
match negativity (MMN) of event related brain potentials,
and coherence was analyzed.

Findings: weakening of ¢ oscillations, drastic impairments in
6—v oscillations phase-amplitude cross frequency coupling,
and disrupted MMN complex amplitude (all vital for memory
and learning performance) induced by tau seeding. No epi-
leptiform activity or network hyperexcitability.

Experimental paradigm: in vitro hippocampal EC/subiculum
electrophysiology recordings: single electrode evoked and
sEFPs, single neuron patch clamp, and extracellular multie-
lectrode recordings.

Findings: mutated htau induced resistance to EC-hippocampus
hyperexcitability in EC-htau mice evidenced by resistance to
increased network activity evaluated by sEFP durations after
GABA, blockade with picrotoxin. Increased neuronal excit-
ability in EC in EC-hAPP mice evidenced by higher fre-
quency of relatively prolonged sEFPs in lateral EC and
epileptiform-ictal like discharges in medial EC. While no dif-
ferences were observed in sEFPs duration and frequency in
EC/CA1/subiculum regions (using multielectrode recordings)
between EC-hAPP/htau mice and WT mice, a smaller per-
centage of slices displayed epileptiform discharges. Co-ex-
pression of hAPP and htau produced an intermediate
phenotype, mostly driven by tau

Experimental paradigm: in vivo EEG recordings in awake be-
having mice; epileptic spikes quantification both at baseline
and after injection of non-convulsive dose of PTZ.

Findings: increased epileptic spike counts both at baseline and
after PTZ injection in htau-A152T mice as compared with

non-Tg controls.
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Author(s) and publi-

cation year Mouse model/transgene(s) Age/stage of pathology

Neuronal network  Experimental paradigm/neuronal network excitability observa-

excitability status  tion(s)

Decker et al. (2016) htau-A152T 12-14 months, accumulation of hy- Increased Experimental paradigm: in vivo EEG recordings in awake be-
perphosphorylated and missorted having mice; epileptic spikes quantification both at baseline
tau, neurodegeneration, and syn- and after injection of non-convulsive dose of PTZ.
aptic loss in hippocampal CA3 re- Findings: enhanced basal synaptic transmission in CA3 region
gion. Increased phospho-tau in of the hippocampus in htau-A152T mice (increased fEPSPs
hippocampal slice cultures at DIV in mossy fiber pathway in acute slices from 12-month-old
10. mice and increased somatic field potentials in stratum pyra-

midale of area CA3 in organotypic hippocampal slices at DIV
30. Increase in picrotoxin-induced epileptiform burst fre-
quency as well as in firings per burst in organotypic slice cul-
tures expression htau-A152T mutation (both at DIV 10 and
30) which was prevented by ceftriaxone (stimulates astro-
cytic glutamate uptake via the transporter EAAT2/GLT1).

Das et al. (2018) htau-A152T 4-6 months; soluble tau Increased Experimental paradigm: in vivo EEG recordings; epileptic spikes

quantification.

Findings: increased epileptic spike counts at resting state in
htau-A152T mice as compared with non-Tg controls.
Antiepileptic drug levetiracetam treatment reduced epileptic
spike counts in htau-A152T mice.

Garcia-Cabrero etal. FTDP-17 mice 1-5, 6-14, and 15-22 months; mu- Increased Experimental paradigm: in vivo video EEG recordings and PTZ-

(2013) (htau G272V, P301L, and R406W;
Overexpression of human tau iso-
form with 2 N-terminal inserts, 4-
microtubule-binding-repeat

elements)

tant tau transgene overexpressed
at 3 m of age, activated microglia
at 4 months, reactive astrocytes
at 9 months, and phospho-tau
aggregates at 18-20 months

seizure susceptibility testing.

Findings: spontaneous epileptiform activity and epileptic seiz-
ures in 70% of FTDP-17 mice at the age of 5.5 m and there-
after.

Increased PTZ-induced seizures susceptibility at 6-14 months
of age and thereafter.

AB, amyloid B; EC, entorhinal cortex; DIV, days in vitro; EAAT2, excitatory amino acid transporter 2; EEG, electroencephalogram; fEPSPs, field EPSPs; FTDP,
frontotemporal dementia with parkinsonism; GLT1, glutamate transporter 1; hAPP, human amyloid 8 precursor protein; hPSEN, human presenilin; LFPs, local
field potentials; mEPSCs, miniature EPSCs; NFTs, neurofibrillary tangles; PTZ, phenylenetetrazole; sEFPs, spontaneous extracellular field potentials; sEPSCs,
spontaneous EPSCs; SWDs, spike-wave discharges; SWRs, sharp-wave ripples; Tg, transgenic; WT, wild type.

demands. In fact, the reverse seems to be true, namely that
hyperexcitability is an early-onset pathologic process in AD
and plays a critical role in memory dysfunction.

The Role of tau in Neuronal Network
Excitability: The Enhancement versus
Suppression Conundrum

tau, AD, and neuronal network excitability

tau is a neuronal microtubule-associated protein which
plays a key role in microtubule assembly, stabilization,
and axonal transport. In AD and other related tauopathies,
tau is abnormally hyperphosphorylated which results in
reduced binding of tau to microtubules, and subsequent
accumulation as NFTs, leading to neurodegeneration and
cognitive impairment (Grundke-Igbal et al., 1986a,b; Igbal
et al., 2016). tau pathology is known to be better corre-
lated with cognitive deficit in AD than AB pathology
(Nelson et al., 2012), and tau spread from EC to other
cortical areas via connected neuroanatomical circuitry is
a critical process in the progression of AD (de Calignon et
al.,, 2012; Liu et al., 2012). Several studies have looked
into the role of tau in neuronal network hyperexcitability in
AD (Roberson et al., 2007; Garcia-Cabrero et al., 2013;
Holth et al., 2013; Angulo et al., 2017; Hatch et al., 2017;
Mondragén-Rodriguez et al., 2018b; Busche et al., 2019);
however, the data are conflicting with the precise role re-
maining yet to be elucidated. Table 2 summarizes the
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studies evaluating neuronal network excitability in tau-
based mouse models of AD.

Tau promotes neuronal network hyperexcitability both
in early stages before NFTs and at advanced stages of
tau pathology
tau and epilepsy

tau has classically been considered to promote neuro-
nal network hyperexcitability and to have an enabling role
for epileptogenesis (Vossel et al., 2017; Sanchez et al.,
2018). Hyperphosphorylated tau deposits were reported
in epilepsy patients’ brains (Thom et al., 2011; Tai et al.,
2016). Additionally, tau hyperphosphorylation was also
demonstrated in experimental rodent models of epilepsy
(Crespo-Biel et al., 2007; Tian et al., 2010). Interestingly,
hyperphosphorylated tau in patients with refractory TLE
was reported to correlate with accelerated cognitive de-
cline (Tai et al., 2016). A recent study in clinically normal
older adults using tau PET scan found that temporal lobe
tau accumulation was associated with hippocampal hy-
peractivity (demonstrated by increased fMRI activity;
Huijbers et al., 2019). Similarly, another recent study
using task-related fMRI in combination with measures of
tau pathology in CSF reported that higher CSF tau levels
were related to hippocampal hyperactivity and object
mnemonic discrimination in older adults (Berron et al.,
2019). Also, accelerated kindling epileptogenesis was ob-
served in rTg4510 mutant human tau mice (with 13-fold
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tau overexpression) but not in tau knock-out mice (Liu et
al., 2017). Furthermore, genetic deletion of tau was also
shown to attenuate neuronal network hyperexcitability in
mouse and Drosophila models of hyperexcitability (Holth
et al., 2013). Also, genetic reduction of tau in a mouse
model of Dravet syndrome, a severe childhood epilepsy
caused by mutations in the human SCN1A gene encoding
the voltage-gated sodium channel subunit Na,1.1, was re-
ported to reduce the frequency of spontaneous and febrile
seizures and premature mortality, to decrease epileptic in-
terictal spikes in vivo and drug-induced epileptic activity in
brain slices ex vivo, and to ameliorate learning and memory
deficits (Gheyara et al., 2014). These data further suggested
that cognitive deficit could be directly or indirectly linked to
tau-dependent epileptic activity. Taken together these data
hint toward a proepileptic role of tau. Recent studies have
also shown, in turn, that network hyperexcitability enhances
tau propagation and tau pathology (Pooler et al., 2013; Wu
et al., 2016). Accordingly, modeling chronic TLE in 3xTg-AD
mice (harboring mutant human APP, presenilin and tau pro-
teins) was reported to enhance tau phosphorylation in the
temporal lobe structures (Yan et al., 2012). This may poten-
tially be a vicious cycle where early tau deposition enhances
neuronal network excitability which in turn further increases
tau release and propagation.

High-frequency oscillations or SWRs, epilepsy, and tau

High-frequency neuronal oscillations (HFOs; 100-250 Hz)
in the hippocampus, known as SWRs, synchronize the firing
behavior of groups of neurons and are thought to play an
important role in driving Hebbian synaptic plasticity and
memory consolidation (Buzsaki et al., 1992; Sadowski et al.,
2011). Hippocampal SWRs drive the synchronous co-acti-
vation of local populations of pyramidal neurons and inter-
neurons (Csicsvari et al., 1999; Klausberger and Somogyi,
2008). Hippocampal SWRs were suggested to be a cogni-
tive biomarker for episodic memory and planning. High-fre-
quency SWRs with spectral frequencies in the range of 250-
600 Hz, called fast ripples, have been described in the brains
of epileptic patients and rodents (Worrell et al., 2004; Bragin
et al., 2010). In animal models of TLE, fast ripples occur in
the dentate gyrus, CA1, and CA3 areas of hippocampus,
subiculum, and EC in rats that exhibit recurrent spontane-
ous seizures (Bragin et al., 1999). A recent study reported
that early hippocampal SWR abnormality predicts later
learning and memory impairments in an AD mouse model
(Jones et al., 2019).

Previously, disrupted hippocampal SWR associated
spike dynamics (frequency and temporal structures) were
reported in a tau-based transgenic mouse model of de-
mentia, i.e., rTg4510 transgenic mice that express aggre-
gating human tau P301L [a frontotemporal lobe dementia
(FTD) mutation] and display NFTs but no A3 pathology
(Witton et al., 2016). On in vivo electrophysiological re-
cordings in the hippocampus of seven- to eight-month-
old rTg4510 mice, an age when NFTs are rampant and
neurodegeneration is well established in these mice
(Ramsden et al., 2005), it was found that excitatory py-
ramidal neurons were more likely to fire action potentials
in a phase locked manner during SWRs; conversely, in-
hibitory interneurons were less likely to fire phase locked
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spikes during SWRs (Witton et al., 2016). These data
indicated a reduced inhibitory control of hippocampal net-
work events and pointed toward a hyperexcitability-
based mechanism which may underlie the cognitive
impairments in this model of dementia (Witton et al., 2016).

Tau reduction decreases neuronal network hyperexcitability
in AB mice and reduces seizure susceptibility in WT mice

Table 3 summarizes the studies evaluating the effect of
tau reduction on neuronal network excitability in Ag and
WT mice. Previously, genetic reduction of endogenous
tau was reported to reduce interictal spiking and sponta-
neous seizures besides ameliorating cognitive deficit
without affecting AB pathology in the J20 (hAPP) mouse
model of AD (Roberson et al., 2007). In fact, tau reduction
also slowed the onset of PTZ-induced seizures and low-
ered the susceptibility to kainate-induced seizures in WT
mice without hAPP (Roberson et al., 2007), suggesting a
role for endogenous tau in enhancing neuronal network
excitability. Another study in aged tau knock-out mice,
further corroborated decreased PTZ-induced seizure sus-
ceptibility (Li et al., 2014).

Antisense oligonucleotides-mediated reduction of en-
dogenous tau throughout the entire CNS (brain and spinal
cord tissue, interstitial fluid, and CSF) of WT mice was
found to reduce seizure susceptibility in two chemically-
induced seizure models; mice with reduced tau protein
had less severe seizures than control mice (DeVos et al.,
2013). In fact, total tau protein levels and seizure severity
were highly correlated, such that those mice with the
most severe seizures also had the highest levels of tau
(DeVos et al., 2013). This finding was more important
given the fact that in this study tau reduction was
achieved in adult mice through antisense oligonucleotides
as compared with genetic ablation of tau where a devel-
opmental compensation may account for the protection
against seizures (DeVos et al.,, 2013). It was also later
shown that the antisense oligonucleotide-mediated tau
reduction prevented hippocampal volume loss and neuro-
nal death, extended mouse survival, and reduced patho-
logic tau seeding in P301S mouse model of tauopathies
(DeVos et al., 2017).

Further confirming the role of tau in mediating AB-in-
duced hyperexcitability, another study found that tau re-
duction prevented spontaneous epileptiform activity in
multiple lines of hAPP mice (Roberson et al., 2011). tau re-
duction was also found to reduce the severity of sponta-
neous and chemically-induced seizures in mice
overexpressing AB (Roberson et al., 2011). Additionally,
whole-cell current recordings from acute hippocampal sli-
ces of hAPP mice with tau exhibited increased spontane-
ous and evoked excitatory currents, reduced inhibitory
currents, and NMDAR dysfunction (Roberson et al.,
2011). tau reduction increased inhibitory currents and
normalized excitation/inhibition (E/I) balance and
NMDAR-mediated currents in hAPP mice (Roberson et
al., 2011).

tau protein was also reported to be mediating AB-in-
duced axonal transport deficits and synaptic long-term
potentiation (LTP) alterations in hAPP mice, both of which
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Table 3: Summary of studies analyzing the effect of tau reduction on network excitability in A mice and in WT mice
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Author(s) and

publication Mouse model/ Baseline neuronal network Experimental paradigm and tau reduction strategy/effect of tau

year transgene(s) Age/stage of pathology excitability status reduction on neuronal network excitability

Roberson et al. hAPPJ20/tau™*, hAPP/tau™’": 4-7 months, AB pla-  Increased in hAPP/tau*/* Experimental paradigm: in vivo PTZ-induced and kainate-induced
(2007) hAPPJ20/tau+/—, ques, neurodegeneration seizure susceptibility evaluation. tau reduction achieved through

Roberson et al.
(2011)

DeVos et al.
(2013)

Lietal. (2014)

Ittner et al.
(2010)

hAPPJ20/tau™",
tau™", tau+/—,
tau™'".hAPP(J20):
hAPPg,0, hAPP| g,
PDFG promoter

hAPPJ20/tau™’",
hAPPJ20/tau+/—,
hAPPJ20/tau™",
hAPPJ9/tau™*’*,
hAPPJ9/tau™~

tau™’", tau .

WT (C57BL/6J),

tau™’

tau™’", tau+/—,
tau™’".
(all on C57BI/6J

background)

APP23 (APPg,, Thy1 pro-
moter),

Atau74 (amino acids 256—
441 removed from the
longest human tau iso-
form, htau40),
tau™’", Atau74.tau™’",
APP23. Atau74,
APP23. tau™",

APP23. Atau74.tau™’~

7-14 months for in vivo EEG detec-
tion of frequency of epileptiform
spikes: AB plaques, neurodegen-
eration.

5-8 months for in vivo PTZ-induced
seizure susceptibility evaluation:
Ap plaques, neurodegeneration

3-5 months, no pathology

24 months, no pathology, age-ap-

propriate cognitive function

APP23: 2-3 months, no plaques.

Atau74: 2-3 months, tau missorting,
normal endogenous tau but negli-
gible phospho-tau

Increased in hAPPJ20/tau*/*
and hAPPJ9/tau™’* mice

Normal

Normal

Increased in APP23 mice

crossing hAPPJ20 line with tau knock-out (tau™"").

Findings: tau reduction increased resistance to both PTZ-and kai-
nate-induced seizures. Seizures were less severe in hAPP/tau™/~
and hAPP/tau™" mice than in hAPP/tau*/* mice. Seizures were

'~ mice than in tau™*/"*

also less severe in tau mice. The onset of
seizure was also delayed by tau reduction. tau reduction also
ameliorated learning and memory deficits in hAPPJ20 mice.

Experimental paradigm: in vivo PTZ-induced seizure susceptibility
evaluation. /n vivo EEG detection of frequency of epileptiform
spikes in freely moving mice. In vitro epileptiform discharges in
area CA1 of the hippocampus after bicuculline administration in
acute slices. tau reduction achieved via crossing hAPPJ20 or
hAPPJQ line with tau knock-out (tau™") mice.

Findings: tau reduction decreased PTZ-induced seizure severity and
frequency of generalized epileptiform spikes in hRAPPJ20 mice.
tau reduction also prevented bicuculline-induced epileptiform
bursting in acute hippocampal slices from WT (tau~") and
hAPPJ20 mice.

Experimental paradigm: in vivo EEG recordings, baseline and after
picrotoxin administered via reverse microdialysis. In vivo PTZ-in-
duced seizure susceptibility evaluation. tau reduction was
achieved via ASOs.

Findings: reduction in normalized spike frequency after picrotoxin

administration in ASO-treated WT mice and tau ™’

~ as compared
with controls. Total tau protein levels in the hippocampus of mice
highly correlated with normalized spike frequency. PTZ-induced
seizure severity was significantly reduced in ASO-treated WT
mice. Seizure severity and tau protein levels correlated well in all
tested mice.

Experimental paradigm: in vivo PTZ-induced seizure susceptibility
evaluation. tau reduction achieved via genetic homozygous or
heterozygous knock-out.

Findings: PTZ-induced seizure severity was significantly reduced in

/-

tau knock-out aged mice. Also, aged tau™/~ and tau™~ mice had

** mice.

longer seizure latencies than tau
Experimental paradigm: in vivo PTZ-induced seizure susceptibility
evaluation. tau reduction achieved via crossing APP23 line with

" mice.

Atau74 or tau
Findings: seizure severity was significantly reduced in Atau74,

tau™/~, and Atau74. tau '~ compared with the WT, while the la-
tency to develop severe convulsion was increased. APP23 mice
presented with a reduced convulsion latency and showed the
most severe seizure response. However, when APP expression
was combined with Atau expression or tau deficiency, this signifi-
cantly decreased seizure severity, reduced fatality, and increased

convulsion latency. The double mutant Atau74.tau™"

~ prevented
severe seizures better than Atau74 or tau™/~alone, on both WT

and APP23 backgrounds.

AB, amyloid B; ASOs, antisense oligonucleotides; EEG, electroencephalogram; hAPP, human amyloid 8 precursor protein; PDGF, platelet-derived growth fac-
tor; PTZ, phenylenetetrazole; WT, wild type.

were rescued by tau knock-out (Vossel et al., 2010;
Shipton et al., 2011). tau-dependent depletion of K,4.2 (a
dendritic potassium channel important for regulating den-
dritic excitability and synaptic plasticity) and dendritic hy-
perexcitability in the CA1 region of the hippocampus were
also observed in an AD mouse model overexpressing A3
(Hall et al., 2015). Additionally, a dendritic function of tau
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in AB-dependent excitotoxicity via postsynaptic targeting
of the Src kinase Fyn, a substrate of which is the NMDAR,
was previously shown (lttner et al., 2010). Missorting of
tau in transgenic mice expressing truncated tau (Atau)
and absence of tau in tau™’~ mice were both found to dis-
rupt postsynaptic targeting of Fyn, and reduce PTZ-in-
duced seizure susceptibility in mice (Ittner et al., 2010).
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Notably, in APP23 mice, when APP expression was com-
bined with Atau expression or tau deficiency, this signifi-
cantly decreased seizure severity, reduced fatality, and
increased convulsion latency (lttner et al., 2010). An
NMDAR/PSD-95/tau/Fyn complex was shown to mediate
ApB-dependent neuronal network hyperexcitability (Ittner
et al., 2010, 2016; lttner and Gotz, 2011). Overall, these
data demonstrated that tau protein is an important media-
tor of AB-induced neuronal network hyperexcitability.
Expression of ApoE4, an AD risk factor allele, is associ-
ated with neuronal network hyperexcitability in mice
(Hunter et al., 2012). ApoE4 mice were shown to exhibit
GABAergic inhibitory interneuron loss accompanied by
cognitive impairments associated with abnormally hyper-
phosphorylated tau, and this pheontype was rescued by
tau reduction (Li et al., 2009; Andrews-Zwilling et al.,
2010). These data further suggest a role for tau in ApoE4
mediated neuronal network hyperexcitability in AD.

Neuronal network hyperexcitability in mouse models of
tauopathies

Besides AD, abnormal forms of hyperphosphorylated
tau also accumulate in other tauopathies such as FTD,
corticobasal degeneration (CBD), and progressive supra-
nuclear palsy (PSP). The tauopathy mouse models, partic-
ularly those carrying FTD mutations, provide a unique
opportunity to study AD-like tau pathology (Goedert et al.,
2012). Autosomal dominant FTD with parkinsonism linked
to chromosome 17 (FTDP-17) is a tauopathy character-
ized by the presence of abnormally hyperphosphorylated
tau deposits in the absence of AB pathology (Foster et al.,
1997). Previously, hyperexcitability and epileptic seizures
were reported in FTDP-17 mouse model, a transgenic
mouse line over-expressing a human tau isoform with 2
N-terminal inserts, 4-microtubule-binding-repeat ele-
ments and with the three FTDP-17-linked mutations
G272V, P301L, and R406W (Fig. 3A-G; Garcia-Cabrero et
al., 2013). Mutant tau transgene was profusely expressed
as early as three months of age in these mice, two months
before the appearance of spontaneous epileptic activity
(Garcia-Cabrero et al., 2013). Thus, human FTDP-17 mutant
tau expression in the absence of AB pathology in this model
was sufficient to lead to physiological dysfunction which re-
sulted in the epileptic activity and seizures (Garcia-Cabrero
et al., 2013). Recently, another FTD-causing tau mutation
(V337M) was reported to impair activity-dependent plasticity
of the cytoskeleton in the axon initial segment (AIS), and ex-
tracellular recordings by multielectrode arrays (MEASs) re-
vealed that the V337M tau mutation in human neurons led
to an abnormal increase in neuronal activity in response to
chronic depolarization (Sohn et al., 2019).

Previously, employing in vitro intracellular recordings,
neuronal network hyperexcitability was reported in
rTg4510 human tau transgenic mice (Rocher et al., 2010;
Crimins et al., 2011, 2012). It was reported, using whole
cell patch clamp recordings, that mutated tau led to in-
creased action potential firing rate in layer three frontal
cortical pyramidal neurons in 8.5-month-old rTg4510
mice slices, independent of NFTs formation (Rocher et al.,
2010). Another study further corroborated this data,
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demonstrating increased frequency of spontaneous
EPSCs (sEPSCs) in layer three pyramidal neurons of fron-
tal cortical slices of nine-month-old rTg4510 mice, and
proposing increased excitability as a compensatory ho-
meostatic response by surviving neurons to neurodegen-
eration in tauopathies (Fig. 3H,/; Crimins et al., 2011).
Interestingly, a subsequent study by the same group
found neuronal hyperexcitability in layer three pyramidal
neurons of frontal cortical slices in both early (less than
four months of age) and late (more than eight months of
age) stages of tauopathy in rTg4510 mice (Crimins et al.,
2012). The measures of hyperexcitability found in layer
three cortical neurons at both early and late stages of
tauopathy in rTg4510 mice included depolarized resting
membrane potential, an increased depolarizing sag po-
tential and increased action potential firing rate (Crimins
et al., 2012)

A previous study found that the A152T-variant of
human tau (htau-A152T), known to increase the risk for
both AD and non-AD tauopathies (Coppola et al., 2012),
when expressed in transgenic mice neurons led to not
only age-dependent cognitive decline, neurodegenera-
tion, and gliosis, but also caused intermittent epileptic
spike activity detectable by EEG (Maeda et al., 2016). The
epileptic spikes were more abundant in htau-A152T mice
and less abundant in htau-WT mice (carrying human tau
overexpression) as compared with non-transgenic controls
(Maeda et al., 2016). An earlier in vitro study employing
acute hippocampal slice and hippocampal slice cultures
found enhanced basal synaptic transmission and an in-
crease in picrotoxin-induced epileptiform burst frequency
as well as in action potential firing per burst in the CA3 re-
gion of the hippocampus in htau-A152T mice (Decker et al.,
2016). Increased extracellular glutamate was also observed
in hippocampal slice cultures form htau-A152T mice; the in-
creased picrotoxin-induced epileptiform activity in htau-
A152T slice cultures was prevented by ceftriaxone which
stimulates astrocytic glutamate uptake via the transporter
EAAT2/GLT1 (Decker et al., 2016). In another study, the
htau-A152T expression in mice brain was also found to in-
crease the power of brain oscillations in the 0.5- to 6-Hz
range (8 -6) more than the increase induced by only htau ex-
pression when compared with non-transgenic controls (Das
et al., 2018). These data suggest the possibility that tau-
mediated neuronal network hyperexcitability may not only
be dependent on its expression level but also on its se-
quence. Remarkably, genetic ablation of endogenous tau
in Mapt ™~ mice reduced the power of these brain oscilla-
tions when compared with WT controls (Das et al., 2018).
Additionally, suppression of htau-A152T production in
doxycycline-regulatable transgenic mice reversed their
abnormal network activity (Das et al., 2018). Also, treat-
ment of htau-A152T mice with the antiepileptic drug leve-
tiracetam persistently reversed their brain dysrhythmia
and network hypersynchronization (Das et al., 2018).

A recent study examined PTZ-induced seizure suscep-
tibility in tau58/4 mice expressing the human 4R/0ON tau
isoform that contains the point mutation of proline-to-ser-
ine in codon 301 (P301S) of the MAPT gene (Fig. 3J; Van
Erum et al.,, 2020). Overexpression of human tau is
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Figure 3. Neuronal network hyperexcitability in tau mouse models. A-G, Hyperexcitability and epileptic seizures in a mouse model
of a tauopathy (FTDP-17). Reproduced from Garcia-Cabrero et al. (2013) with permission from Elsevier. A, Intracranial recording of
background activity (6-7 Hz) in control mice. B, Spindle-shaped polyspike discharge at 8-10Hz, during an initial tonic phase (thin
arrow indicates the beginning) and a short clonic phase (open arrow signals the beginning) in a FTDP-17 mouse. C, Spontaneous in-
terictal epileptic activity in FTDP-17 mice corresponding to (c1) single spike, (c2) polyspike, (c3) slow wave, and (c4, c5) polyspike-
wave discharges. D, Nonconvulsive spontaneous seizure with EEG correlates corresponding to rhythmic, spindle-shaped dis-
charges. E, Spontaneous generalized tonic—clonic seizure in a FTDP-17 mouse manifested in the EEG record as generalized low-
frequency (3-6 Hz) poyspike-wave discharge, 36 s in length. Figure shows the records from monopolar electrodes placed over the
left frontal cortex with the reference electrodes implanted posterior to A. F, G, Analysis of seizure latency and length of PTZ-induced
generalized seizures in FTDP-17 mice. Mice at three different age spans (1-5, 6-14, and 15-22 months) were injected with a convul-
sive dose of PTZ (50 mg/kg). F, The time interval between drug administration and development of generalized tonic—clonic seizures
and (G) the seizure length were measured. Data are presented as mean = SEM. Student’s t test was performed for statistical evalu-
ation; *p < 0.05, *p < 0.01, **p <0.001 (n=15-24). H, I, Increased spontaneous synaptic activity in whole-cell patch clamp record-
ings of layer 3 frontal cortex pyramidal neurons of rTg4510 (hTau P301L) mice. Reproduced with permission from Crimins et al.
(2011). Increased frequency of sEPSCs in TG (rTg4510) cells. H, Representative SEPSCs from non-transgenic (NT) and TG cells. I,
Bar graphs of mean frequency sEPSCs in NT and TG cells. J, Increased PTZ-induced seizure susceptibility in three-month-old
Tau58/4 (htau P301S) mice. Young HET (Tau58/4) mice had higher mean severity scores than WT littermates. Reproduced with per-
mission from Van Erum et al. (2020).

present in these mice from birth in heterozygous ani-  cortex (Van Erum et al., 2020). The study found an in-

mals. In the cerebrum, hyperphosphorylated tau arises
at the level of the pons and frontal cortices at three
months of age. NFTs formation is observed at the age
of six months, and at 12 months; NFTs are diffusely
present in the frontal cortex and the pons and also ap-
pear in the cerebellum, midbrain, and parietal cerebral
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creased PTZ-induced seizure susceptibility in young
(three months old; Fig. 3J), but not in old (12- to 15-
month-old) tau58/4 mice. Young tau58/4 animals dis-
played more severe seizures and had a reduced latency
to the first seizure compared with WT littermates (Van
Erum et al., 2020). Also, age-related differences in
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susceptibility could be demonstrated for both geno-
types (Van Erum et al., 2020).

Tau suppresses neuronal network excitability even
before development of NFTs: evidence for the counter
argument
In vivo and in vitro electrophysiological evidence of tau-
mediated suppression of neuronal activity in mouse mod-
els of tauopathies

Interestingly, in stark contrast to the data supporting
the notion that tau promotes neuronal network hyperex-
citability in AD, some recent studies demonstrate that tau
may actually suppress it. A recent study employing in vivo
two-photon Ca®* imaging of large populations of neurons
in layer 2/3 of the neocortex showed that while Ag pro-
motes neuronal network hyperactivity, tau in fact sup-
presses the activity (Fig. 4A-F; Busche et al., 2019). The
study found neuronal hyperactivity in 6- to 12-month-old
plaque-bearing APP/PS1 mice, and a strong reduction of
cortical activity levels in age-matched rTg4510 transgenic
mice that express aggregating human tau P301L (expres-
sion level of human tau 13-fold higher than that of endog-
enous tau) and display NFTs but no AB pathology
(Busche et al., 2019). Interestingly, tau aggregation was
not necessary for neuronal silencing as suppression of
cortical activity was found in neurons devoid of NFTs
(Busche et al., 2019). Furthermore, marked reduction of
neuronal activity was found in neurons of rTg21221 mice
that overproduce non-aggregating WT human tau at com-
parable levels to rTg4510 mice but lack NFTs (Busche et
al., 2019). These data suggested that impairment of neu-
rons could occur with tau overexpression independent of
tau aggregation and NFTs formation. This was further vali-
dated by reduction in cortical activity in young age
rTg4510 mice (Busche et al., 2019). Soluble, non-aggre-
gated tau was found to be sufficient for neuronal silenc-
ing, and NFTs were not required (Busche et al., 2019).
Interestingly, on evaluation of AB and tau together, neuro-
nal hyperactivity was not only completely abolished in the
crossed APP/PS1-rTg4510 and APP/PS1-rTg21221
mice, but there was also a strong reduction in cortical ac-
tivity levels, both in old and young mice (Busche et al.,
2019). These data suggested that tau blocks AB-depend-
ent hyperactivity, leading to silencing of circuits when
both AB and tau are present together in the cortex. While
these findings are contradictory to other data showing
neuronal network hyperactivity in both young and aged
3xTg-AD mice which harbor both AB and tau along with
PS1 (Davis et al., 2014; Kazim et al., 2017), they are sup-
ported by another study in young 3xTg-AD mice which re-
ported a decrease in neuronal activity in these mice
(Mondragén-Rodriguez et al., 2018), this will be discussed
in more detail later in the present review (see below,
Phosphorylation of tau reduces hippocampal excitability).
Remarkably, while suppressing tau transgene expression
resulted in reversal of suppression of neural activity in tau
mice, it was less effective in rescuing neuronal network
impairments in crossed mice containing both Ag and tau
(Busche et al., 2019), suggesting a complex interaction of
ApB and tau in neural activity.
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Another recent study has reported similar results, i.e.,
reduced activity of neuronal circuits in a P301S mouse
model of tauopathies (Fig. 4G,H; Marinkovic et al., 2019).
By using chronic in vivo two-photon calcium imaging in
awake mice, a strong reduction of calcium transient fre-
quency in layer 2/3 cortical neurons of P301S mice, inde-
pendent of NFTs presence, was found (Marinkovic¢ et al.,
2019). Interestingly, reduced neuronal activity in P301S
mice did not change with time and pathology progression
(Marinkovic et al., 2019). Thus, it was concluded that it is
soluble, mutated tau protein species, not NFTs, that sup-
press neuronal activity (Busche et al., 2019; Marinkovic¢ et
al., 2019).

A previous study employing in vivo intracellular and ex-
tracellular electrophysiological recordings found that
pathologic tau reduced the neocortical activity in rTg4510
mice before significant neurodegeneration and at an age
where not all neurons in these mice express pathologic
tau (Menkes-Caspi et al., 2015). The changes induced by
pathologic tau included slower neuronal oscillations and
reduced firing rates, and reduction in reliability of synaptic
transmission in the transgenic neocortex (Menkes-Caspi
et al., 2015). While the study did not differentiate between
the effect of soluble tau and NFTs in suppressing network
excitability, it was suggested that pathologic tau may in
fact affect neuronal activity at levels below those detecta-
ble with routine immunocytochemical and perfusion
methods (Menkes-Caspi et al., 2015). It is interesting to
note here that these data are in contrast to other studies
employing in vitro intracellular recordings in the same
mice mentioned before (Rocher et al., 2010; Crimins et al.,
2011, 2012). These differences could potentially be be-
cause of the inherent differences between preparations
and recording techniques (Menkes-Caspi et al., 2015);
however, further investigation is needed to clarify this dis-
crepancy (we will discuss this in detail in Phosphorylation
of tau reduces hippocampal excitability; and Perspectives
on the Similar versus Divergent Roles of Ag and tau in
Neuronal Network Hyperexcitability in AD: Which One
Has a Dominant Effect, AB or tau?).

In congruence with the findings of Menkes-Caspi and
colleagues (Menkes-Caspi et al., 2015), another in vitro
electrophysiological study reported tau-induced suppres-
sion of neuronal activity (Angulo et al., 2017). The study
evaluated neuronal activity in mutant htau mice, mutant
hAPP mice, and combined mutant htau and hAPP mice in
the EC, one of the first regions in the brain to be affected
by the AD pathology (mainly the tau pathology; Angulo et
al., 2017). It was found that mutant EC-hAPP mice exhib-
ited a significant increase in the duration of spontaneous
extracellular field potentials (sEFPs) in EC (Angulo et al.,
2017). Interestingly, pyramidal neurons of the subiculum
in EC-hAPP mice, which are monosynaptically excited by
EC layer Il neurons, showed mEPSCs with reduced am-
plitude, suggesting that the increased excitation observed
in EC induced a compensatory negative feedback in sub-
icular projection neurons, a process known as synaptic
homeostasis, explained by EC interneuron pruning based
on computational modeling (Angulo et al., 2017). The
physiological changes produced in EC by the expression
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Figure 4. In vivo evidence of suppression of neuronal activity in tau mouse models. A-F, Neuronal silencing in rTg4510 mice as
compared with neuronal hyperactivity in APP/PS1 mice. Reproduced with permission from Busche et al. (2019). A-C, top, In vivo
two-photon fluorescence images of GCaMP6f-expressing (green) layer 2/3 neurons in the parietal cortex and corresponding activity
maps from WT controls (A), APP/PS1 (B), and rTg4510 (C) mice. In APP/PS1 mice, plaques were labeled with methoxy-X04 (blue);
in the activity maps, neurons were color-coded as a function of their mean Ca®" transient activity. Scale bars: 10 um. Bottom, spon-
taneous Ca?" transients of neurons indicated in the top panel. D, Mean neuronal frequencies for controls (1.69 = 0.05 transients per
minute), APP/PS1 (3.42 + 0.20 transients per minute), and rTg4510 (0.66 + 0.07 transients per minute); F 1g=171.2, p=1.93-
x 107 "2 All post hoc multiple comparisons between genotypes were highly significant: p =5.42 x 1072 for controls versus APP/PS1,
p=1.38 x 107 for controls versus rTg4510, and p=1.01 x 10~ 2 for APP/PS1 versus rTg4510. E, Fractions of hyperactive neurons.
Controls: 2.91 = 0.35%, APP/PS1: 19.11 = 1.50%, rTg4510: 0.93 + 0.35%; Fp 15=176.2, p=1.51 x 1072, pPost hoc multiple com-
parisons were p=2.84 x 10~ '" for controls versus APP/PS1, p=1.64 x 10~ "2 for APP/PS1 versus rTg4510 and not significant,
p =0.1045, for controls versus rTg4510. F, Fractions of silent neurons. Controls: 15.05 = 1.87%, APP/PS1: 9.20 = 2.36%, rTg4510:
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53.48 + 3.24%; F(5,1g=77.18, p=1.48 x 10~°. Post hoc multiple comparisons were p =2.02 x 108 for controls versus rTg4510 and
p=1.08 x 1078 for APP/PS1 versus rTg4510 and not significant, p =0.3972, for controls versus APP/PS1. Each solid circle repre-
sents an individual animal (controls, n=7; APP/PS1, n=5; rTg4510, n=9), and all error bars reflect the mean = SEM; the differences
between genotypes were assessed by one-way ANOVA followed by Tukey’s multiple comparisons test, “***p < 0.0001. NS, not sig-
nificant. G, H, Neuronal activity is reduced in P301S mice independently of presence of NFTs. Reproduced with permission from
Marinkovic¢ et al. (2019). G, left, Representative in vivo recordings from WT vehicle and P301S tau-PFFs (tau preformed fibrils-in-
jected) mice. AAV1 transduced neurons are labeled with mRuby2 (red) and GCaMP6s (green). NFTs are labeled with FSB (white).
Images are made by averaging 450 time-series frames acquired in vivo at 410Hz with two-photon lasers tuned to 940nm for
CGaMP6s/mRuby2 and to 750 nm for FSB. Scale bar:50 mm. Right, Traces (blue) extracted from annotated regions of interest
(black) during quiet and active (gray shade) behavioral states classified based on changes in whisking movement (gray trace in the
bottom). Note that traces 2 and 4 in P301S tau-PFFs group are from NFT-bearing neurons. Black bars mark detected calcium tran-
sients. H, Mean frequency of calcium transients during quiet and active states of all neurons detectable in three or more time points.
WT vehicle (black), WT tau-PFFs (cyan), P301S vehicle (green), all P301S tau-PFFs: all neurons are denoted as magenta circles,
with NFT-free as magenta squares and NFT-bearing as magenta triangles. Data points represent individual mice, n=5-7 mice per
group; black lines represent mean value = SEM; **p <0.001, ***p < 0.0001, WT versus P301S (two-way ANOVA, genotype factor,

not significant; Student’s t test).

of mutant tau protein (P301L) manifested as resistance to
GABA, receptor antagonist-induced hypersynchrony
(Angulo et al., 2017). However, the human tau mutation,
by itself, did not produce any significant spontaneous ac-
tivity changes in EC-hippocampus circuits. Remarkably,
mice exhibiting both AB and tau pathologies displayed an
intermediate and subtler phenotype, which was predomi-
nantly driven by tau pathology. These data suggested di-
vergent roles of AB and tau in neuronal excitability with
ApB promoting hyperexcitability and tau suppressing ex-
citability and tau exerting a dominant effect in the pres-
ence of both pathologies. These data are in congruence
with a recent in vivo study discussed earlier (Busche et al.,
2019).

Phosphorylation of tau reduces hippocampal excitability
Phosphorylation of tau has been considered the most
critical posttranslational modification in taupathies and neu-
rodegenerative diseases (Busche and Hyman, 2020). tau
protein contains 85 potential tyrosine (Y), threonine (T), and
serine (S) phosphorylation sites. A comprehensive analysis
of phosphorylation sites of tau protein has revealed >40
phosphorylation sites in AD (Morishima-Kawashima et al.,
1995; Hanger et al., 2007). Accumulating evidence indicate
that different phosphorylation sites result in changes in syn-
aptic function, axonal initial segment, which ultimately pre-
cipitates to abnormal neuronal excitability and network
dysfunction (lttner et al., 2016; Mondragén-Rodriguez et al.,
2018b; Hill et al., 2019). A study employing patch-clamp
electrophysiology of hippocampal CA1 neurons in two tau
pathology mouse models, the rTg4510 strain and a second
model, pR5, that also expresses P301L mutant tau, although
at much lower levels, showed that hyperphosphorylated tau
before neurodegeneration induced a more depolarized
threshold for action potential initiation and reduced firing in
hippocampal CA1 neurons, an effect that was rescued by the
suppression of transgenic tau (Hatch et al., 2017). The au-
thors found that this reduction in neuronal excitability resulted
from the relocation of the AIS down the axon in a tau phos-
phorylation-dependent manner, which was microtubule de-
pendent. Interestingly, the authors found that the shift of AIS
is correlated with phosphorylation of tau at pThr231/pSer235
and pSer262/pSer356, but not pSer396/pSer404, indicating
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that the sites of phosphorylation is critical for mediating re-
duction of hyperexcitability (Hatch et al., 2017).

A more recent study by Lennart and his colleagues
demonstrated, by using P301L pR5 mouse model, that
hyperphosphorylation of tau resulted in increase in stubby
spines and filopodia, reduction of total dendritic length of
hippocampal pyramidal neurons. The authors also found
that the neuronal atrophy resulted in a significant reduc-
tion of LTP in CA1, depolarized threshold for action po-
tential initiation, and an increased current of inward
rectifying potassium channels (Muller-Thomsen et al.,
2020). As results, hyperphosphorylation of tau lead to de-
creased excitability of CA1 neurons.

While these data are in contrast to other in vitro studies
reporting hyperexcitability in rTg4510 mice (Rocher et al.,
2010; Crimins et al., 2011, 2012), it must be noted that
those previous studies analyzed excitability in cortical py-
ramidal neurons as compared with this study which eval-
uated CA1 hippocampal neurons. These observations
also raise the possibility that neuronal dysfunction result-
ing from tau hyperphosphorylation may occur in a brain
region-specific manner. Nonetheless, as mentioned be-
fore, recent in vivo studies have also found reduced excit-
ability in the neocortex of rTg4510 mice (Menkes-Caspi et
al., 2015; Busche et al., 2019).

Previously, also in rTg4510 mice, it was found that tau
was aberrantly targeted to dendritic spines by the P301L
mutation, before overt neurodegeneration and synaptic
loss (Hoover et al., 2010). It was reported that phosphoryl-
ation controlled tau mislocalization to dendritic spines,
and once mislocalized to spines, tau suppressed excita-
tory synaptic transmission and caused loss of surface
AMPA receptors in spines (Hoover et al., 2010). These
findings were reported both in rTg4510 mice cultured
cortical neurons and in rat hippocampal neurons with
transfected htau-P301L mutation (Hoover et al., 2010).

Remarkably, a protective role of site-specific phospho-
rylation of tau against AB excitotoxicity was recently re-
ported (lttner et al., 2016), challenging the dogma that tau
phosphorylation only mediates toxic processes in AD.
p38 mitogen-activated protein kinase (p38MAPK) is
known to phosphorylate tau (Goedert et al., 1997; Feijoo
et al., 2005; Cuenda and Rousseau, 2007). Although
p38MAPK was reported to contribute to NMDAR-
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mediated toxicity (Mucke and Selkoe, 2012), and its inhi-
bition improved AB-induced LTP deficits (Wang et al.,
2004), paradoxically, hyperexcitability in APP transgenic
mice increased with inhibition of p38MAPK (lttner et al.,
2014). Among different p38MAKSs, p38MAPKy was found
to localize to dendritic spines and postsynaptic densities
(PSDs) of neurons (Ittner et al., 2016). Depletion of postsy-
naptic p38MAPKy exacerbated neuronal network hyper-
excitability in APP23 transgenic mice (lttner et al., 2016).
Furthermore, it was reported that p38MAPK y-mediated
phosphorylation of tau at threonine 205 (Thr205) dis-
rupted NR/PSD-95/tau/Fyn complexes, and reduced AB-
dependent neuronal network hyperexcitability (Ittner et
al., 2016). These data (Ittner et al., 2016), along with earlier
data from the same group (Ittner et al., 2010), suggest
that while tau may promote neuronal network hyperexcit-
ability, the phosphorylation of tau in fact suppresses ex-
citability and protects against excitotoxicity.

Another recent study also showed reduction in hippo-
campal excitability by phosphorylation of tau protein
(Mondragén-Rodriguez et al., 2018b). The study found
that pyramidal neurons in the hippocampus from young
3xTg-AD mice (one-month-old, without any cognitive def-
icit) accumulated hyperphosphorylated tau at the micro-
tubule domain region (MDr) and exhibited reduced
neuronal network excitability and seizure susceptibility.
Further analysis showed that phosphorylation site at
Ser396 was responsible for changes in network excitabil-
ity in these mice (Mondragén-Rodriguez et al., 2018).
Previously, the same group reported that tau phosphoryl-
ation at MDr sites could serve as a regulatory mechanism
to prevent overexcitation (Mondragén-Rodriguez et al.,
2012). Interestingly, the study also found alterations (in-
crease) in network oscillatory activity at 6 band frequency
in young 3xTg-AD mice (Mondragén-Rodriguez et al.,
2018). Previously, changes in hippocampal 6 activity
were correlated with the cognitive impairment observed
during neurodegeneration (Cayzac et al., 2015).
Specifically, slowing of hippocampal activity has been
correlated with cognitive decline in early onset AD (Engels
et al., 2016). It was postulated that the increase in 6 activ-
ity observed at a young age in 3xTg-AD mice before any
cognitive deficit and neurodegeneration could be an early
compensatory response, and may contribute to early net-
work dysfunction in these mice and AD (Mondragén-
Rodriguez et al., 2018). Nonetheless, as 3xTg-AD mice
also harbor APP and PS1 mutations in addition to a tau
mutation, it is difficult to ascertain whether this increase in
0 oscillations was a result of tau and its phosphorylation
or APP/AB overexpression. In fact, a recent study
showed early weakening of 6 oscillations and drastic im-
pairments in 6—vy oscillations phase-amplitude cross fre-
quency coupling induced by tau seedings in a P301L
human mutant tau mouse model (Ahnaou et al., 2017).
Interestingly, the study failed to find any epileptiform ac-
tivity or network hyperexcitability in these mice with tau
aggregates induced by seeding, and argued toward a
causal relationship between the early disruption in func-
tional networks (but not neuronal network hyperexcitabil-
ity) and tau aggregation (Ahnaou et al., 2017). Along
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similar lines, two recent studies showed that inducing vy
oscillations via sensory stimulation (y entrainment using
sensory stimulus or GENUS) not only benefited cognition
but also ameliorated AB and tau pathologies in 5XFAD
and P301S mouse models of AD, respectively (Adaikkan
etal., 2019; Martorell et al., 2019).

Perspectives on the Similar versus
Divergent Roles of Af and tau in
Neuronal Network Hyperexcitability in AD:
Which One Has a Dominant Effect, A or
tau?

The presence of neuronal network hyperexcitability in
human MCI/AD patients and animal models of the disease
is well documented (Palop et al., 2007; Crimins et al.,
2011, 2012; Bakker et al., 2012, 2015; Vossel et al., 2013,
2016, 2017; Davis et al., 2014; Bezzina et al., 2015; Kazim
et al., 2017). While routine scalp EEG recordings cannot
always accurately detect epileptiform activity originating
from the mesiotemporal region (including the hippocam-
pal formation; Clemens et al., 2003; Nilsson et al., 2009)
and carries low yield of identifying network hyperexcitabil-
ity in AD (Horvéth et al., 2016), neuronal hyperactivity, si-
lent seizures, and spikes have been reported in the MCI
patients’ hippocampus using techniques with better de-
tection properties such as fMRI (Bakker et al., 2012, 2015)
and foramen ovale electrode (Lam et al., 2017). As dis-
cussed in detail in this review, while the causal relation-
ship between AB and network hyperexcitability remains
to be established in human AD patients, the role of AB
(even before the formation of plaques, i.e., intraneuronal
hAPP/AB and soluble AB) in promoting neuronal network
hyperexcitability has been consistently reported in animal
model studies (Palop et al., 2007; Busche et al., 2008,
2012; Minkeviciene et al., 2009; Palop and Mucke, 2010a,
b; Sanchez et al., 2012; Verret et al., 2012; Born et al.,
2014; Bezzina et al., 2015; Kazim et al., 2017). However,
the role of tau in network excitability in AD remains yet to
be precisely delineated as different animal model studies
reported divergent effects (Roberson et al., 2007; Crimins
et al., 2011, 2012; Roberson et al., 2011; Garcia-Cabrero
et al.,, 2013; Menkes-Caspi et al.,, 2015; Angulo et al.,
2017; Mondragoén-Rodriguez et al., 2018b; Busche et al.,
2019; Van Erum et al., 2020). Nonetheless, recent human
studies have reported a correlation between temporal
lobe tau accumulation, CSF tau levels and hippocampal
hyperactivity (Berron et al., 2019; Huijbers et al., 2019),
suggesting a proepileptic effect of tau. Importantly, as in
human AD brain, the Ag and tau pathologies co-exist and
potentially both contribute to neurodegeneration, a highly
relevant question that remains to be answered is how the
two histopathological hallmarks interact to affect the neu-
ronal network activity in AD brains, and which one has a
dominant effect, AB or tau?

With subclinical epileptiform activity and network hy-
peractivity demonstrated in human MCI/AD patients
(Bakker et al., 2012, 2015; Vossel et al., 2013, 2016; Lam
et al., 2017), it seems plausible that either AB and tau co-
operate to lead to neuronal network hyperexcitability (Fig.
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A Hypothesis # 1: AR and tau cooperate to
lead to neuronal network hyperexcitability
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5A, hypothesis #1) or the neuronal network hyperexcit-
ability promoting effect of AB dominates over the sup-
pressing effect of tau (Fig. 5B, hypothesis #2; if tau
suppresses neuronal network activity as suggested by
recent animal model studies; Hatch et al.,, 2017;
Mondragén-Rodriguez et al., 2018b; Busche et al., 2019;
Marinkovi¢ et al., 2019). In support of both the first and
second hypotheses, few studies in AD transgenic mice
harboring both Ag and tau (3xTg-AD) have reported hy-
perexcitability in these mice both at early and late stages
of the pathology (Davis et al., 2014; Kazim et al., 2017). In
agreement with the first hypothesis, tau reduction in
hAPP mice has been reported to decrease neuronal net-
work excitability (Roberson et al., 2007; lttner et al., 2010;
Roberson et al., 2011).

Alternatively, another line of evidence suggests that tau
may be the dominant protein over A3, and that it causes
overall suppression of neuronal hyperexcitability. This
was demonstrated by Busche and colleagues, who used
in vivo calcium imaging of cortical neurons from APP/

continued

tau on neuronal network excitability in AD. A, Hypothesis #1,
ApB and tau cooperate to lead to neuronal network hyperexcit-
ability in AD. At early stages of AD, AB is more abundant in the
neocortex whereas tau is localized to EC. Both AB and tau at
early AD stages promote neuronal network hyperexcitability
which not only contributes to cognitive impairments but also re-
ciprocally increases AB deposition and tau release and spread
to other cortical areas across connected neuroanatomical cir-
cuitry. Also, at advanced AD stages, both Ag and tau promote
neuronal network hyperexcitability, thus leading to cognitive
deficit. Furthermore, AB-induced and tau-induced neuronal and
synaptic loss, gliosis, and impaired synaptic plasticity (de-
creased LTP and increased LTD) contribute to neuronal network
hyperexcitability and to cognitive deficits, effects also at play in
scenarios illustrated in B, C. B, Hypothesis #2, AB enhances
neuronal network hyperexcitability whereas tau suppresses ex-
citability; the overall phenotype is hyperexcitability as AB effect
dominates over tau effect. AB at early AD stages promotes
neuronal network hyperexcitability which not only contributes to
cognitive impairments but also increases AB deposition and
tau release and spread to other cortical areas across connected
neuroanatomical circuitry. However, tau at early AD stages sup-
presses neuronal activity, thus leading to silencing of neuronal
networks which could also contribute to AD-related network
dysfunction and cognitive deficit. Also, at advanced AD stages,
AB enhances and tau suppresses neuronal network excitability,
both leading to cognitive deficits. This could also be the case in
AD patients with higher AB deposits than NFTs in their brains.
C, Hypothesis #3, tau suppresses neuronal network excitability,
whereas AB enhances it; the overall phenotype is suppressed
excitability as tau suppressive effect dominates over AB en-
hancing effect. Tau both at early and advanced AD stages sup-
presses neuronal excitability thus leading to silencing of
neuronal networks contributing to AD cognitive deficits.
Contrarily, AB both at early and advanced AD stages promotes
neuronal network hyperexcitability however this is dominated
by tau suppressive effect. However, this hypothesis cannot ex-
plain the tau spread from EC to other cortical areas as in-
creased neuronal activity has been identified to promote
propagation of tau. Nonetheless, there could be other media-
tors of tau spread besides neuronal network hyperexcitability.
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PS1-rTg4510 and APP/PS1-rTg21221 mice (Busche et
al., 2019).

Neuropathological autopsy studies and more recently
neuroimaging (PET scan) studies have shown plaques
and NFTs deposition in AD brains differ both spatially and
temporally from each other (Arnold et al., 1991; Braak and
Braak, 1991, 1995, 1996; Schdll et al., 2016). In AD brains,
the AB plaques first form in the neocortex and other corti-
cal areas and then spread inward to deeper brain regions,
whereas NFTs first form in the EC within the hippocampal
formation and limbic areas, and from there they spread
outward to the neocortex and other cortical areas (Arnold
et al., 1991; Braak and Braak, 1991, 1995, 1996; Schdll et
al., 2016). Neuronal activity was reported to enhance tau
release and propagation (Pooler et al., 2013; Wu et al,,
2016). Accumulating evidence supports the notion that
the spread of tau from EC and limbic regions to other neo-
cortical areas coincides with the appearance of cognitive
impairment in AD (Wang et al., 2016; Bejanin et al., 2017;
Pontecorvo et al., 2017; Jagust, 2018). Despite being a
neuropathological hallmark of AD, AB correlates weakly
with neurodegeneration; rather, it is tau that is associated
with brain atrophy and hypometabolism, which, in turn,
are related to cognition (Nelson et al., 2012; Bejanin et al.,
2017; Jagust, 2018). It thus remains possible that in
human AD brains, AB-induced neuronal network hyper-
excitability enhances propagation of tau from EC to AB-
bearing neocortex which leads to emergence of cognitive
deficit.

While several studies over the past two decades have
demonstrated that the interaction between AB and tau
leads to increased pathology (G6tz et al., 2001; Lewis et
al., 2001; Hurtado et al., 2010; Wang et al., 2016; Bennett
et al., 2017; Pontecorvo et al., 2017; Jacobs et al., 2018),
the physiological consequences of this interaction on
neuronal network excitability in AD is a matter of debate.
As discussed before, there is strong experimental evi-
dence for neuronal network hyperexcitability enhancing
the effects of both AB and tau. In this context, how can
we explain the neuronal activity suppressing effect of tau
demonstrated in recent animal model studies? As dis-
cussed by Busche et al. (2019), studies have also showed
a progressive reduction in whole-brain activity in AD pa-
tients (Silverman et al.,, 2001; Alexander et al., 2002;
Greicius et al.,, 2004) and regional cerebral blood flow
(Bradley et al., 2002) as well as an EEG slowing (Jelic et
al., 1997), all of which could be explained by a dominant
neuronal activity suppressive effect of tau. Furthermore,
the dominant role of tau along with the well-reported data
that tau correlates with cognitive decline better than A
(Nelson et al., 2012) could also explain the failure of a
number of AB-based AD clinical trials. Nonetheless, as
mentioned before, subclinical epileptiform activity and
neuronal network hyperactivity have been well docu-
mented in human MCI/AD patients (Bakker et al., 2012,
2015; Vossel et al., 2013, 2016; Lam et al., 2017). As neu-
ronal network hyperexcitability is more clearly linked to
A (Palop and Mucke, 2010a,b, 2016; Zott et al., 2018), it
is possible that epileptiform activity (as detected by EEG)
is more prominent in AD patients who have comparatively
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higher AB than tau levels, or are at early stages of the dis-
ease when A is present in the cortex but tau is limited to
EC and limbic areas. Also, in this context, it must be men-
tioned here that the predominant subconvulsive epilepti-
form activity phenotype observed in mice carrying hAPP
mutation(s), could primarily be because of transgenic mu-
tant APP, as suggested by some studies (Born et al.,
2014; Kazim et al., 2017).

It is prudent to mention here that there a few other fac-
tors that need to be taken into consideration when evalu-
ating the conflicting data from animal models regarding
the roles of AB and tau in neuronal network hyperexcit-
ability in AD. First, it is important to consider at what level
of the brain organization hierarchy (neuronal, synaptic, cir-
cuit, or network) the evaluation was performed. The sin-
gle-neuron data may differ from a neuronal population
circuit or network data. A good example of differential ef-
fects at different levels of organization is synaptic depres-
sion versus aberrant excitatory network activity induced
by AB (Palop and Mucke, 2010a,b). In AD experimental
models, pathogenic AB reduces glutamatergic transmis-
sion and enhances LTD at the synaptic level (Hsia et al.,
1999; Kamenetz et al., 2003; Hsieh et al., 2006; Palop et
al., 2007) whereas at the network level, AB causes dys-
rhythmias, including neuronal synchronization, epilepti-
form activity, and seizures (Palop et al., 2007; Busche et
al., 2008). Both synaptic depression and aberrant network
synchronization probably interfere with activity-depend-
ent synaptic regulation, essential for learning and memory
(Palop and Mucke, 2010a,b). Similarly, tau causes synap-
tic loss (Forner et al., 2017) and impairs LTP (Fa et al.,
2016; Puzzo et al., 2017) at the synapse level which would
lead to slowed neuronal activity, whereas at the network
level both increase and decrease of network activity have
been reported in tau mouse models of AD (as discussed
before in this review). Second, the extent and exact sites
of tau phosphorylation may have to be taken into account
to determine whether its overall effect opposes or contrib-
utes to the neuronal network hyperexcitability. A third im-
portant factor to consider when interpreting neuronal
network hyperexcitability in AD studies is to take into ac-
count the role of other pathophysiological features of AD
such as neuronal loss, gliosis, and E/I imbalance in en-
hancing hyperexcitability (Miranda and Brucki, 2014;
Busche and Konnerth, 2016; Zott et al., 2018; Vico Varela
etal., 2019).

Future Directions and Concluding
Remarks

Neuronal network hyperexcitability has been identified
as an important component of AD pathophysiology and
potentially contributes to cognitive deficit in AD. Evidence
for AB promoting neuronal network hyperexcitability in
AD, demonstrated by both in vitro and in vivo models,
strongly suggest network hyperexcitability role of AB.
However, the role tau, either by itself or in combination
with AB, on network excitability in AD need to be more
carefully elucidated. To this end, there has been a significant
effort to create humanized animal models of tau and A,
which have become invaluable tools to recapitulate tau
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pathology in AD. Many recent studies use these models,
where tau extracted from brains of AD patients is injected
into the brains of humanized tau mice. Such studies, com-
bined with in vivo and in vitro electrophysiology, should pro-
vide insight into potential role of tau in network excitability.
Furthermore, we discussed that an incongruity among stud-
ies addressing the role of tau in enhancement versus sup-
pression of neuronal network excitability come from brain
region and cell type specificity; studies for network en-
hancement use cortical neurons, while studies for network
suppression come from hippocampal neurons (lttner et al.,
2010, 2016; Crimins et al., 2012, 2013; Kopeikina et al.,
2013; Mondragon-Rodriguez et al., 2018b). It is entirely pos-
sible that the impact of tau on network excitability is brain re-
gion dependent; in vivo experiments with multiple tau
injections at different brain regions, paired with in vivo cal-
cium imaging and electrophysiology may provide insight
into region-specific effect of tau on network excitability. This
area of investigation may provide the necessary knowledge
to develop more effective and refined strategies for preven-
tion, diagnosis, and management of AD and related
dementias.
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