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Caveolae and lipid sorting: Shaping the cellular
response to stress
Robert G. Parton1,2, Michael M. Kozlov3, and Nicholas Ariotti1,4,5

Caveolae are an abundant and characteristic surface feature of many vertebrate cells. The uniform shape of caveolae is
characterized by a bulb with consistent curvature connected to the plasma membrane (PM) by a neck region with opposing
curvature. Caveolae act in mechanoprotection by flattening in response to increased membrane tension, and their
disassembly influences the lipid organization of the PM. Here, we review evidence for caveolae as a specialized lipid domain
and speculate on mechanisms that link changes in caveolar shape and/or protein composition to alterations in specific lipid
species. We propose that high membrane curvature in specific regions of caveolae can enrich specific lipid species, with
consequent changes in their localization upon caveolar flattening. In addition, we suggest how changes in the association of
lipid-binding caveolar proteins upon flattening of caveolae could allow release of specific lipids into the bulk PM. We speculate
that the caveolae-lipid system has evolved to function as a general stress-sensing and stress-protective membrane domain.

Introduction
Caveolae are small, 60–80-nm, pits of the plasma membrane
(PM) generated by membrane proteins, termed caveolins, and
cytoplasmic proteins termed cavins (Echarri and Del Pozo, 2012;
Hansen and Nichols, 2010; Parton and del Pozo, 2013; Parton and
Simons, 2007). Despite being first observed more than six dec-
ades ago, an overarching function of these abundant PM mi-
crodomains has continued to elude cell biologists. Caveolae
have been proposed to function in a wide range of cellular
processes, including endocytosis (Boucrot et al., 2011;
Pelkmans and Zerial, 2005), transcytosis (Ghitescu et al.,
1986), lipid homeostasis (Harder and Simons, 1997), choles-
terol homeostasis (Frank et al., 2006; Fu et al., 2004; Ikonen
and Parton, 2000), regulation of cellular signaling (Couet
et al., 1997; Garcı́a-Cardeña et al., 1997), regulation of mem-
brane composition and organization (Ariotti et al., 2014;
Chaudhary et al., 2014), and mechanoprotection (Gervásio
et al., 2011; Sens and Turner, 2006; Sinha et al., 2011). The
latter is thought to involve the flattening of caveolae in re-
sponse to increased membrane tension (Lee and Schmid-
Schönbein, 1995; Sinha et al., 2011). In cells with abundant
caveolae, this can protect the cell against damage upon cell
stretching by providing a reservoir of membrane (Cheng et al.,
2015; Lo et al., 2015; Seemann et al., 2017; Sinha et al., 2011;
Yeow et al., 2017).

Caveolar architecture: Shape is crucial for function
Caveolae were initially characterized and differentiated from
other invaginations of PM by EM. Under conventional EM fix-
ation and embedding protocols, caveolae lack a discernible
protein coat, unlike the better-understood clathrin-coated pits
(CCPs; Simionescu et al., 1972, 1975). Despite similarities in
general morphology, detailed comparisons of caveolae and
CCPs offer insights into the unique roles these different PM-
connected structures play in the cell. Comprising 1–2% of the
PM, CCPs function in receptor-mediated endocytosis (Doherty
and McMahon, 2009). CCPs demonstrate a range of curved
membrane shapes that start as flat 2D lattice arrangements and
mature into 3D pits with sequentially increasing bending that
eventually bud from the PM to become intracellular vesicles
(Doherty and McMahon, 2009; Heuser, 1980). Caveolae, in
contrast, can occupy up to 50% of the surface of some mam-
malian cells (Lo et al., 2015; Thorn et al., 2003). The very
characteristic and extremely uniform shape of caveolae (Fig. 1)
resembles an omega in a side-oriented 2D EM image, and im-
portantly, caveolae do not generally show the range of inter-
mediate shapes described for CCPs (Avinoam et al., 2015). This
structure is driven by the coordinated action of the caveolin
integral membrane proteins together with the cavin peripheral
membrane proteins, which both associate with the caveolar bulb
(Ariotti et al., 2015a; Gambin et al., 2013; Ludwig et al., 2013;
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Rothberg et al., 1992). These proteins work together with EH
domain–containing protein 2 (EHD2), a large ATPase localized at
the caveolar neck (Ariotti et al., 2015a; Morén et al., 2012;
Stoeber et al., 2012) that shapes membranes in an ATP-
dependent manner (Hoernke et al., 2017; Melo et al., 2017).
Even in model membrane systems, caveolins and cavins can
drive membrane deformation in the absence of other pro-
teins (Kovtun et al., 2014; Uytterhoeven et al., 2015; Walser
et al., 2012). Caveolae also adopt a higher-level organization:
complex and convoluted arrangements of interconnected
structures comprising multiple caveolar units, described as
caveolar clusters or rosettes, which have been likened to a
bunch of grapes (Fig. 1 C; Lo et al., 2015; Stan, 2005).
Prominent in skeletal muscle cells, these striking structures
have a large membrane area packaged into a small cyto-
plasmic volume. Recent work suggests that caveolar rosette
formation is driven by an interaction between the caveolar
bulbs mediated by membrane bending deformation and is
supported by weak membrane tension (Golani et al., 2019).
Increased membrane tension preferentially flattens out
caveolar rosettes, enabling a large change in cell volume as a
cell expands (Golani et al., 2019; Lo et al., 2015). Even in
rosettes or these extended networks, the basic morphologi-
cal unit remains the same; a bulb-shaped structure with a
neck connecting those structures to the bulk PM or other
caveolae. Altogether, these unique and highly conserved

morphological features of caveolae are likely crucial for their
function.

Caveolae: A specialized lipid domain
Caveolae have long been considered stabilized cholesterol-
dependent lipid microdomains with specialized functions
in signal transduction and lipid regulation (Ikonen and
Parton, 2000; Parton and Simons, 1995; Rothberg et al.,
1992). Caveolin-1 (Cav-1) is a cholesterol-binding protein
(Murata et al., 1995) with a cholesterol recognition/interaction
amino acid consensus motif (Epand et al., 2005) that signifi-
cantly enriches cholesterol within the caveolar domain; up to
22,000 cholesterol molecules per caveolae have been estimated
(Ortegren et al., 2004). Moreover, cholesterol homeostasis is
intimately linked to Cav-1 and caveolae, as cholesterol distribu-
tion within the Golgi complex and PM is highly dependent on
Cav-1/caveolae expression (Hayer et al., 2010; Pol et al., 2005).
The importance of cholesterol in caveola structure is highlighted
by the loss of caveolar shape upon depletion of PM cholesterol
with extracellular addition of nystatin or methyl-β-cyclodextrin
(Breen et al., 2012; Rothberg et al., 1992; Westermann et al.,
2005). The substitution of cholesterol for a precursor, desmos-
terol, also results in an increase in caveolar structural hetero-
geneity (Jansen et al., 2008). The precise composition of both the
headgroups and acyl chains of other lipids in the membrane of
caveolae is still not completely clear. Detergent-free lipidomic

Figure 1. The structure of caveolae. (A) Scheme showing a caveola and the principle membrane curvatures of the caveolar domain. Curvature is described in
two perpendicular directions. The bulb of the caveola is positive in both directions (x and y), but the neck shows negative and positive curvature, as indicated.
(B) Electron micrograph showing the bulblike morphology of caveolae. Bar, 100 nm. (C) Higher-order rosette organization of caveolae in a cultured adipocyte.
Bar, 100 nm. (D) The protein composition of caveolae. (E) The neck domain accounts for the overall mean negative curvature of the caveolar domain.
Highlighted are the lipids of the inner leaflet of the PM. Blue, cone-shaped lipids. (F) Average dimensions of neck and bulb domains from endothelial caveolae
preserved by high-pressure freezing and freeze substitution published previously (Richter et al., 2008). Curvature calculations were based on these dimensions.
Diagram, including bilayer thickness, is to scale.

Parton et al. Journal of Cell Biology 2 of 13

Caveolae, lipids, and stress https://doi.org/10.1083/jcb.201905071

https://doi.org/10.1083/jcb.201905071


analyses have shown that sphingomyelin, glycosphingolipids,
and gangliosides, components of the extracellular leaflet of the
bilayer, are enriched within caveolae (Ortegren et al., 2004).
Extracellular addition of glycosphingolipids and cholesterol
stimulates caveolar endocytosis (Le Lay et al., 2006; Sharma
et al., 2003, 2004, 2005), and cells lacking Cav-1 show aber-
rant trafficking of excess glycosphingolipids and cholesterol
(Shvets et al., 2015). In the cytoplasmic leaflet of caveolae,
phosphatidylserine (PtdSer) and phosphoinositide 4,5-bi-
sphosphate (PtdIns(4,5)P2) may be enriched (Fairn et al., 2011;
Fujita et al., 2009). Functionally, PtdSer has a critical role in
regulating caveola stability/formation, as depletion of PtdSer
reduces caveolae detectable by EM (Hirama et al., 2017a).

While caveola formation and dynamics appear to be depen-
dent on specific lipid species, caveolae have conversely been
implicated in the regulation of PM lipid organization (Parton,
2018). Loss of caveolae, or their flattening in response to in-
creased membrane tension, affects the lipid-based organization
of the bulk PM, as revealed by changes in organization of distinct
lipid-anchored Ras species (Ariotti et al., 2014). This has dra-
matic effects on specific lipid-based signal transduction pro-
cesses. For example, K-ras activity is enhanced but H-ras
signaling is reduced (Ariotti et al., 2014). Nanoscale clustering of
PtdSer in the bulk PM was also significantly affected when
caveolae were rapidly disassembled, showing effects on lipid
organization that extended over the entire PM.

How is the lipid composition of caveolae established, and how
does this translate into effects on bulk PM lipid organization as
caveolae flatten?Wewill consider twomodels. The first involves
the tight curvature of the caveolar membrane driving concen-
tration of lipids of specific effective molecular shape. The second
involves the lipid-binding ability of the caveolar constituents
and the impact of modulation of the membrane-binding activity
of these components on lipid organization (see text box). These
models are not mutually exclusive but will be considered in turn.

Caveolar curvature and lipid sorting
The extent of membrane curving is quantitatively characterized
by a geometrical notion of curvatures (e.g., Spivak, 1970). The
membrane surface is described at every point by curvatures of
two circular arcs representing the surface cross sections in two
particular mutually perpendicular directions (Fig. 1 A). The
curvatures of these arcs are referred to as the principle curva-
tures. The physics behind themembrane shape is determined by
the sum and the product of the two principle curvatures called

the mean and Gaussian curvatures (Helfrich, 1973). In the fol-
lowing, for brevity, we refer to the mean curvature as simply the
curvature.

Eukaryotic membranes comprise hundreds of different lipid
species that differ in their headgroups and acyl chains. Most
importantly for this discussion, lipid species also differ in their
effective molecular shape, being classified as (a) cylindrical
(where the area of the polar head group projection to the
membrane plane is roughly equal to that of the hydrophobic
chain, such as phosphatidylcholine); (b) cone-shaped (where the
acyl chains occupy a substantially greater in-plane area than the
head group, such as DAG or dioleoylphosphatidylethanolamine);
or (c) inverted cone–shaped (whereby the polar headgroup
occupies a considerably larger in-plane area than the acyl chain,
e.g., lysophosphatidic acid [LPA] or lysophosphatidylcholine).
Cone- or inverted cone–shaped lipids can facilitate the for-
mation of membrane curvature (Zimmerberg and Kozlov,
2006; McMahon and Boucrot, 2015); enrichment of the cyto-
plasmic membrane leaflet in cone-shaped lipids favors negative
curvature (here defined as bulging out away from the cytoplasm
as used previously; McMahon and Gallop, 2005; Fig. 1 A); a
preferential distribution of the inverted cone–shaped lipids into
the cytoplasmic leaflet favors positive curvature (bulging into
the cytoplasm).

Caveolae possess regions of positive and negative mean
curvature. Positive mean curvature characterizes the bulb sub-
domain (Fig. 1 A). The neck subdomain has a saddle-like shape,
which is convex in one principle direction and concave in the
second. The resulting positive and negative principle curvatures
compete, but typically, their sum (representing the mean cur-
vature of the neck) is negative (see below; Fig. 1). The neck
negative curvature is favored by the lateral tension usually ex-
isting in the PM (Golani et al., 2019). This curvature distribution
along the caveolar surface would favor the enrichment of spe-
cific cone- and inverted cone–shaped lipids in the cytoplasmic
leaflets of the neck and bulb subdomains, respectively (Fig. 1).
This would also need to be balanced by specific lipids in the
extracellular leaflet, although we will restrict our considerations
to the cytoplasmic leaflet here.

The extent of specific lipid enrichment in the caveolar do-
mains can be estimated by assuming that lipid molecules redis-
tribute along the cytoplasmicmonolayer according tominimization
of the membrane bending energy. Thermodynamic consider-
ation of lipid molecule partitioning between membrane regions
of different curvatures, taking into account a competition be-
tween the curvature energy and the translational entropy of
lipid molecules, predicted that the ratio between the concen-
tration of a specific lipid in the curved membrane region, φc,
and that in the plane of the flat PM, φf, can be estimated using
the relationship

ϕc

ϕf
� exp

�
κa
kBT

JJS

�
,

where kBT is the product of the Boltzmann constant and the
absolute temperature, κ ≈ 10kBT is the bendingmodulus of a lipid
monolayer, J is the membrane mean curvature, JS is the effective
molecular curvature of the lipid under consideration, and a ∼0.7

Key concepts and hypotheses

Caveolae form a highly curved membrane domain that can transform into a
flat membrane under different experimental conditions.

Membrane shape can enrich specific lipids within distinct highly
curved subdomains of caveolae; flattening of caveolae would eliminate this
shape-induced concentration of lipids and release them into the bulk
membrane.

Lipid-binding peripheral membrane proteins densely coat the cyto-
plasmic face of caveolae; flattening of caveolae can change their interaction
with caveolar lipids.

Caveolae have evolved to respond to a range of cellular stresses; lipid
sorting might be a crucial aspect of this response.
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nm2 is the area per lipid molecule in the membrane plane.
Conventionally, JS is defined as positive for the inverted cone–
shaped lipids and negative for the cone-shaped lipids (e.g.,
Zimmerberg and Kozlov, 2006).

Based on this relationship, the concentration of the inverted
cone–shaped molecules of LPA within the cytoplasmic leaflet of
the bulb region can be predicted. When processed by high-
pressure freezing and low-temperature freeze substitution, the
radius of the bulb domain of caveolae is ∼26–27 nm (Richter
et al., 2008), so the bulb mean curvature is J ∼0.075 nm−1. It
has also been shown that caveolins (Ariotti et al., 2015b; Walser
et al., 2012) and cavins (Stoeber et al., 2016) can impart a po-
lygonal structure on the caveolar membrane, suggesting higher
membrane curvature along the polygon edges and around the
vertices, but for the purpose of our semiquantitative discussions,
we will assume a uniformly curved structure. LPA is charac-
terized by an effective molecular curvature of JS ∼0.5 nm−1

(Kooijman et al., 2005). Using the above relationship, the LPA
concentration in the bulb can be calculated to exceed by 25–30%
that in flat membrane regions (note that LPA and DAG, below,
are used simply as model lipids for these analyses; enrichment in
caveolae is not implied).

This shape-driven mechanismmight also be important in the
neck region of caveolae, which is highly curved (cross-sectional
radius 13 nm; Richter et al., 2008; Fig. 1). The negative principle
curvature in the narrowest region of the neck is approximately
−1/13.2 nm−1 and exceeds the positive curvature contribution in
this region of ∼1/26.2 nm−1 (Fig. 1 F). This suggests that, as
mentioned above, the overall mean curvature of the neck region
is negative, J, approximately −0.038 nm−1. Therefore, we hy-
pothesize that the cytoplasmic leaflet of the neck region would
be enriched in cone-shaped lipids. An estimation for a repre-
sentative common cone-shaped lipid, DAG, which is character-
ized by an effective molecular curvature of JS ∼−0.91 nm−1,
predicts an ∼30% enrichment of DAG in the neck region com-
pared with the flat membrane. This is consistent with work in
model systems showing only a slight enrichment of specific lipid
species in lipid tubules of relevant diameters pulled out of flat
membranes (Sorre et al., 2009) and with the limited curvature
preference of specific lipid species observed by using a
fluorescence-based method with unilamellar lipid vesicles
(Kamal et al., 2009).

The effectiveness of lipid redistribution into the curved re-
gions of caveolae is expected to greatly exceed the above esti-
mates if the lipid molecules undergo even a slight segregation in
the membrane plane, i.e., by forming lipid raft–like nano-
domains (Callan-Jones et al., 2011; Tian and Baumgart, 2009).
This might be a reason that PtdSer distribution is tightly linked
to cholesterol (Cho et al., 2012; Maekawa and Fairn, 2015), which
can promote domain formation. In fact, recent work has shown
curvature-dependent sorting of specific PtdSer species in a
model cellular system (Liang et al., 2019). While proteins could
potentially contribute to this sorting, that study demonstrated
that the acyl composition of the lipids that shared the same
headgroup was essential for curvature-dependent segregation in
the membrane plane of a lipid-anchored GTPase K-ras (Liang et al.,
2019). The headgroup charge can also potentially contribute to this

effect, as shown for PtdSer (Hirama et al., 2017b). While the
biophysical understanding of this effect is rudimentary, it
strengthens the idea that highly curvedmembrane domains can
sort lipids. Most importantly, the suggested and estimated re-
cruitment of specific lipids to the bulb and neck regions would
be solely based on the geometrical aspects of the unique cav-
eolar domain: shape would drive lipid composition.

This lipid-shape model proposes that simple biophysical
principles would provide a mechanism for a regulated concen-
tration of specific lipids in caveolae. Could this have relevance
for their function? Flattening of caveolae would release specific
lipids that are usually concentrated at the neck and the bulb of
the caveolae into the bulk membrane. Thus, the shape of cave-
olae (flattened or deeply invaginated) would dictate lipid com-
position. A shape change generated, for example, by lateral
tension imposed on the membrane by external, cytoskeletal, or
osmotic forces that induce caveolar flattening (Ariotti et al.,
2014; Sinha et al., 2011) would result in alterations to the PM
lipid environment.

The shape of caveolae relative to the lamellar organization of
the PM allows for further interesting predictions regarding the
effect of caveolar flattening. Given that the interleaflet area
difference is proportional to the membrane mean curvature
averaged over the membrane surface, and given that, assuming
that caveolae represent 50% of the membrane area, a caveola
radius is 26.5 nm (Fig. 1 F) and the area of the caveola bulb
considerably exceeds that of the neck (Fig. 1), we estimate that
the area of the cytoplasmic membrane leaflet exceeds that of the
extracellular leaflet by ∼15–20%. Therefore, as caveolae are
flattened by imposed lateral tension, this area differencemust be
eliminated by lipid flux directed from the cytoplasmic to the
extracellular membrane leaflets and/or by release of protein
domains inserted into the cytoplasmic side of the membrane.
Thus, the membrane would be able to compensate for these area
differences only if every fifth molecule of the cytoplasmic
monolayer was to flip. The most probable candidates for fast
flipping would be lipid molecules with small polar heads such as
cholesterol, as they cross the hydrophobic moiety of the mem-
brane in a relatively short time (Bennett and Tieleman, 2012;
Ingólfsson et al., 2014). This would mean that loss of caveolae
could potentially generate a temporary and considerable deple-
tion of the cytoplasmic leaflet of these components, and a con-
comitant enrichment of these lipids in the extracellularmonolayer.

Caveolar proteins and lipid sorting
The lipid-shape model would likely generate only a moderate
concentration of specific lipids at the necks and bulbs of cave-
olae. Here we consider the role of proteins in recruiting lipids to
caveolae and how this can lead to a regulated redistribution of
lipids as caveolae disassemble. The major proteins we will dis-
cuss are the cavins, but it is important to note that in model
systems, caveolins also show a lipid-concentrating ability
(Epand et al., 2005; Wanaski et al., 2003). Importantly for this
discussion, as peripheral membrane proteins, cavins, unlike
caveolins, can dissociate from the cytoplasmic surface of cave-
olae in response to stresses (McMahon et al., 2019; Sinha et al.,
2011), and so lipid interactions can be regulated. Cavins bind
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PtdIns(4,5)P2 via a basic domain in their first helical region,
HR1 (Kovtun et al., 2014). Based on the number of basic amino
acids, we envisage that cavins have relatively low affinity for
PtdIns(4,5)P2, compared with, for example, the myristoylated
alanine-rich C-kinase substrate (MARCKS) protein (McLaughlin
andMurray, 2005; McLaughlin et al., 2002). This is sufficient for
in vitro binding to PtdIns(4,5)P2-containing liposomes but,
in vivo, is insufficient for membrane association and driving
caveola formation (Kovtun et al., 2014). However, the cavin
proteins form large oligomeric complexes, potentially bringing
multiple PtdIns(4,5)P2-binding domains into close proximity in
the cytoplasmic leaflet of the caveolar domain. An interesting
comparison can be made with BAR domain proteins that, like
cavins, bind PtdIns(4,5)P2, oligomerize, and induce tubule for-
mation in vitro (Picas et al., 2014). In both cases, the multiple
basic patches within the hetero- and homo-oligomeric com-
plexes, each of low affinity for PtdIns(4,5)P2, cooperatewith each
other to bind to the membrane surface as long as the geometry of
the membrane conforms to that of the protein complex. We
speculate that the curved surface of the caveolae is essential for
this lipid-driven interaction. If so, then a change in this geometry
could change PtdIns(4,5)P2 association. In fact, there is evidence
for this model. Flattening of caveolae due to increases in mem-
brane tension causes lysine residues within the PtdIns(4,5)P2-
binding basic patch of the HR1 of cavin to become ubiquitinated
(Tillu et al., 2015). The modified protein presumably has less
affinity for the membrane, preventing rebinding, and ubiquiti-
nation triggers degradation. This mechanism maintains low
levels of cytosolic cavin proteins (Tillu et al., 2015). But most
importantly, these results suggest that one effect of increased
membrane tension is to dissociate cavin1 from its interacting
PtdIns(4,5)P2-binding sites. For such a model, PtdIns(4,5)P2
binding to cavin1 must be of relatively low avidity. Consistent
with this, the putative PtdIns(4,5)P2-binding sites of cavin1,
while mediating in vitro association with PtdIns(4,5)P2-con-
taining liposomes, are not essential for association with caveolae
in cells (Kovtun et al., 2014).

In addition to PtdIns(4,5)P2 binding, cavin1 has another
proposed lipid-binding site at the start of the second helical
region, HR2. This region, termed the UC1 domain, comprises 11
amino acid (undecad) repeats and binds PtdSer (Tillu et al., 2018).
In contrast to the PtdIns(4,5)P2-binding region in the HR1 region
(Kovtun et al., 2014), the UC1 domain plays a structural role; loss of
PtdSer binding decreases membrane affinity, and progressive loss
of multiple domains causes increased susceptibility to disassembly
(Tillu et al., 2018), providing an interesting mechanism by which
lipid binding can modulate caveolar stability.

What is the function of lipid binding of caveolar proteins?
First, as proposed earlier, the PtdIns(4,5)P2-binding domain acts
as a sensor of the protein–membrane association; PtdIns(4,5)P2
binding prevents protein ubiquitination, but loss of PtdIns(4,5)
P2 binding allows ubiquitination and degradation (Tillu et al.,
2015). Second, and relevant to the current discussion, we spec-
ulate that the lipid-binding activity of the caveolar proteins can
contribute to the unique lipid composition of caveolae. The cy-
toplasmic face of the caveolar bulb is densely covered in cavin
molecules, with an estimated 50 cavin1 molecules associated

with a single caveola (Gambin et al., 2013). Estimating the sur-
face area of the caveola bulb to be ∼6,000 nm2, a 1:1 ratio of
cavin to PtdIns(4,5)P2 would equate to a concentration in cav-
eolae of cavin1-associated PtdIns(4,5)P2 of >8,000 molecules per
µm2. Note that for BAR domain proteins such as Bin1 and for
other phosphatidylinositol-binding proteins, PtdIns(4,5)P2 clus-
tering is induced owing to nonspecific electrostatic protein–lipid
interactions increasing the stoichiometry of PtdIns(4,5)P2 asso-
ciation dramatically (Picas et al., 2014). PM PtdIns(4,5)P2 levels
have been estimated to be in the range of 4,000 per µm2 (but see
Hilgemann [2007] for higher estimates of PtdIns(4,5)P2 levels;
20,000 to 60,000 per µm2), and so this mechanism could recruit
a considerable pool of PtdIns(4,5)P2 into caveolae. The caveolar
proteins EHD2 and dynamin are also PtdIns(4,5)P2-binding
proteins, as are the other cavin family members (Daumke et al.,
2007; Kovtun et al., 2015). An additional point worthy of mention
is that the most abundant form of PtdIns(4,5)P2 in mammalian
cells is polyunsaturated, with an arachidonic acid in the n2 po-
sition (McLaughlin et al., 2002). This would not be expected to
favor concentration in the cholesterol-enriched membrane raft
domain of caveolae, in which saturated lipids are thought to
predominate (McLaughlin et al., 2002). The cavin interaction
might be crucial for overcoming this barrier and recruiting the
PtdIns(4,5)P2 to an unfavorable environment.

What does the protein-driven recruitment of specific lipids
mean for function? The fact that disassembly of caveolae, in-
duced by cycles of PM stretch and relaxation, can cause in-
creased accessibility of the PtdIns(4,5)P2-binding domain of
cavin1 to the cellular ubiquitination machinery (Tillu et al.,
2015) suggests that PtdIns(4,5)P2 must be freed from cavin1 in-
teractions. This can release or modify the PM pool of PtdIns(4,5)
P2. In a cell with 50% of its surface occupied by caveolae, this can
release (or uncluster) a considerable pool of PtdIns(4,5)P2 and,
presumably, can also release PtdSer. This model is analogous to
that proposed for the MARCKS protein, in which calcium re-
leases MARCKS and mobilizes PtdIns(4,5)P2 pools to regulate
processes such as cortical actin dynamics (Laux et al., 2000;
McLaughlin et al., 2002). This mechanism would link disas-
sembly of caveolae, caused by changes in membrane tension or
other stimuli, to a change in the accessibility of PtdIns(4,5)P2
and PtdSer. This protein-driven mechanism for lipid concen-
tration could work together with the curvature-induced con-
centration of specific lipids at the neck of caveolae, with both
mechanisms contributing to release of lipids into the bulk
membranewhen caveolae disassemble. How this then equates to
the reported effects of caveolae disassembly, such as reorgani-
zation of the nanoscale clustering of specific lipids and lipid-
anchored proteins in the bulk membrane, must await further
experimentation aimed at understanding the local and global
impact of the proposed changes in lipid organization.

Caveolae and stress signaling
These considerations suggest that caveolae represent a special-
ized lipid domain poised to disassemble, releasing specific lipids
into the bulk membrane, in response to mechanical stimuli (see
text box). We further speculate on the implications of this model
for other caveolar functions. Of particular interest here are the
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number of stress conditions linked to disassembly of caveolae.
While caveolae have been shown to protect cells against in-
creased membrane tension, a remarkably extensive literature
has linked caveolae to other stress conditions, including shear,
UV, chemical, oxidative, heat, and gravitational stresses (Shi
et al., 2015; Wang et al., 2015b; McMahon et al., 2019; Table 1
summarizes the widespread literature linking caveolae/caveolin
to stress response/protection). Indirect evidence for an evolu-
tionary conservation of this role is provided by analysis of the
genome of the oyster Crassostrea gigas. A remarkable 24 distinct
caveolin genes have been identified in the oyster (compared
with three mammalian caveolin genes and two in the primitive
nematode, Caenorhabditis elegans; Zhang et al., 2012). This ex-
pansion of caveolin genes in the oyster genome is similar to that
of known stress-response gene families such as heat shock
proteins and chaperones, potentially reflecting adaptation to the
harsh environment of the intertidal zone in which the oyster
must survive (Zhang et al., 2012). Caveolae have not been identi-
fied, as yet, within the oyster, which like other invertebrates lacks
cavin proteins. However, caveolins from other invertebrates
including the honey bee, Apis mellifera, and the sea squirt,
Ciona, can induce membrane curvature in model systems (Jung
et al., 2018; Kirkham et al., 2008), and evidence now exists for
caveola-like invaginations in C. elegans (Roitenberg et al., 2018)
and Ciona (Bhattachan et al., 2020) embryos.

In view of the wide range of stimuli that are linked to cave-
olae and the apparent evolutionary conservation of stress sig-
naling, we speculate that these two proposed models might be
relevant to the effects of these stimuli on caveolae and resultant
effects on lipids. In vertebrate cells, increased membrane ten-
sion can induce Cav-1 tyrosine phosphorylation, cavin dissoci-
ation (with concomitant ubiquitination of cavin1; Tillu et al.,
2015), caveolar flattening (Sinha et al., 2011), and membrane
lipid alterations (Ariotti et al., 2014). Interestingly, many other
stress conditions may have similar effects. For example,
UV treatment also causes loss of caveolae, Cav-1 tyrosine

phosphorylation, and cavin dissociation (McMahon et al.,
2019). This raises the possibility that caveolar disassembly
might be a general sensing mechanism for cells to respond to
various stressful stimuli. In the case of increased membrane
tension, the change in curvature could lead to a change in the
interaction of the cavins with the membrane, resulting in broad
changes to lipid organization that could have wide-ranging im-
plications for the clustering of other signaling proteins not directly
enriched within the caveola domain (Fig. 2). We speculate that the
change in curvature at the neck of the caveolae could also po-
tentially decrease sorting of lipids based on shape, as discussed.

We further hypothesize that in invertebrates, caveolins alone
could sculpt the membrane and drive lipid enrichment. This
would provide a mechanism for their release, as caveolae flatten
in response to membrane tension. Conversely, in the lipid-shape
model, specific lipid enrichment in caveolar nanodomains would
also be important for maintaining caveola shape. Perturbation of
specific lipids, for example by lipid peroxidation under con-
ditions of oxidative stress, would then perturb caveola structure,
analogous to the effects of UV treatment on caveolae shown in
mammalian systems (McMahon et al., 2019).

Perspectives
This model makes a number of predictions and raises many
questions, which require experimental verification. First, are
distinct lipid species enriched in the different subdomains of
caveolae? This is a challenge, as purification of caveolae with the
neck subdomain intact would be difficult. However, modern
methods of lipid analysis and lipid localization are approaching
the required resolution/sensitivity to make these distinctions in
cells (Contreras et al., 2012; Owen et al., 2012; Huang et al., 2015;
Zhou et al., 2015b). Enrichment of specific acidic lipids such as
phosphatidylglycerol and lysophosphatidylglycerol, and an in-
crease in long-chain unsaturated fatty acids, was observed in a
model bacterial system for caveola formation compared with the
lipidome of the prokaryotic host (Walser et al., 2012). While this

Table 1. Caveolae and stress

Type of stress References

Osmotic/
stretch

Trouet et al., 1999, 2001; Kang et al., 2000; Sanguinetti et al., 2003; Ullrich et al., 2006; Sinha et al., 2011; Joshi et al., 2012; Ariotti et al., 2014;
Guo et al., 2015; Lo et al., 2015; Mougeolle et al., 2015; Gilbert et al., 2016; Dewulf et al., 2019; Hetmanski et al., 2019

Shear Rizzo et al., 1998a, 1998b; Isshiki et al., 2002; Sun et al., 2002; Boyd et al., 2003; Lungu et al., 2004; Frank and Lisanti, 2006; Shin et al., 2006;
Yu et al., 2006; Radel et al., 2007; Albinsson et al., 2008; Milovanova et al., 2008; Müller-Marschhausen et al., 2008; Tian et al., 2010;
Yamamoto et al., 2011; Chai et al., 2013; Figueroa et al., 2013; Zeng and Tarbell, 2014; Gilbert et al., 2016; Tran et al., 2016; Yang et al., 2016

Oxidative Garćıa-Cardeña et al., 1996; Aoki et al., 1999; Peterson et al., 1999; Volonté et al., 2001; Volonte et al., 2002, 2009, 2013, 2015; Sanguinetti
et al., 2003; Cao et al., 2004; Karaa et al., 2005; Dai et al., 2006; Dasari et al., 2006; Khan et al., 2006; Reddy et al., 2006; Hayashi et al., 2007;
Chrétien et al., 2008; Jin et al., 2008; Milovanova et al., 2008; Percy et al., 2008; Wang et al., 2008; Volonte and Galbiati, 2009, 2011;
Luanpitpong et al., 2010; Tian et al., 2010; Bosch et al., 2011; Martinez-Outschoorn et al., 2011; Yuan et al., 2011; Yun et al., 2011; Gortan
Cappellari et al., 2013; Takeuchi et al., 2013; Chen et al., 2014; Mao et al., 2014; Mougeolle et al., 2015; Paneni et al., 2015; Sun et al., 2016;
Jung et al., 2018

Ultraviolet Volonté et al., 2001; Volonte et al., 2002; Wang et al., 2005; McMahon et al., 2019

Chemical Bélanger et al., 2004; Cai and Chen, 2004; Pang et al., 2004; Shatz and Liscovitch, 2004, 2008; Martinez-Outschoorn et al., 2011; Wang et al.,
2014, 2015b; Shi et al., 2015

Heat Kang et al., 2000; Chaudhary et al., 2014; Volonté et al., 2001

Gravitational Spisni et al., 2003, 2006; Riwaldt et al., 2015; Wang et al., 2015a; Zhou et al., 2015a; Shi et al., 2016
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method does not allow for analysis of the lipid composition of
the neck subdomain, as expression of caveolin in this system
results in constitutive cincture and internalization of complete
vesicles, it provides evidence for specific lipid sequestration in a
bulblike subdomain, as also shown by earlier studies of purified
caveolae from mammalian cells (Ortegren et al., 2004).

Second, it is important to understand the role of specific lipid
species in caveola structure and function (Ortegren et al., 2004).
Polyunsaturated phospholipids have been shown to modulate
caveola formation and structure (Andreone et al., 2017; Ma et al.,
2004). Reactive oxygen species are produced in UV or oxidative
stress conditions. Could the oxidation of these unsaturated
phospholipids play a role in the caveolar response to these
stressors? It is notable that another complex membrane system,
cubic membranes, protect against oxidative stress (Deng and
Almsherqi, 2015). Like caveolar rosettes, cubic membranes
contain a high density of curved membranes within a small
volume, favoring enrichment in specific small lipid species; but
unlike caveolae, cubic membranes are only rarely observed in

mammalian cells, and these lipids would be enriched symmet-
rically within the two membrane leaflets. Cubic membranes are
enriched in plasmalogens containing vinyl ether bonds. The
increased susceptibility of these bonds to oxidation has been
proposed to protect the membrane from lipid peroxidation
(Sindelar et al., 1999), and plasmalogen oxidation might also
favor a transition away from cubic membranes (Deng and
Almsherqi, 2015; Deng et al., 2002, 2009).

Third, the flattening of caveolae in mammalian cells is as-
sociated with caveolin phosphorylation (Joshi et al., 2008) and
cavin release (Sinha et al., 2011). Do other cellular stresses,
which also trigger caveolin phosphorylation (Aoki et al., 1999;
Spisni et al., 2006; Takeuchi et al., 2013; Volonté et al., 2001),
stimulate similar loss of cavins and flattening of caveolae? A
recent study found that UV light does have effects similar to
increased membrane tension in causing caveolar disassembly
and cavin release into the cytosol (McMahon et al., 2019).

Finally, we need to test the proposed lipid redistribution
upon flattening of caveolae. Although it has been shown that

Figure 2. Model of lipid release from caveolae in response to cell stress. Schematic of the release of the cavin coat and enriched lipids from caveolae in
response to cell stress. Our model proposes that caveolae, signaling proteins clustered on the PM outside of caveolae, and the lipids that make up the PM are in
a “baseline/normal” state. However, upon exposure of the cell to an external stressor, such as an increase in membrane tension, caveolae are disassembled
(Sinha et al., 2011); we hypothesize that this is a consequence of the release of the cavin coat complex and loss of the stability of the caveolar microdomain
(McMahon et al., 2019; Sinha et al., 2011), which in turn releases the lipids enriched within the curved caveolar domain (Ariotti et al., 2014). Destabilization and
release of caveolar lipids into the bulk membrane can indirectly affect protein clustering by modulation of the lipid nanoenvironment (as shown for PtdSer and
Ras proteins) to modulate cellular signaling cascades (Ariotti et al., 2014). Finally, we hypothesize that this process may help cells respond to challenges from a
wide array of cellular stressors (Table 1).
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caveolar flattening can be associated with changes in lipid
nanoclustering in the bulk PM (Ariotti et al., 2014), we do not yet
know if/how this can be linked to the postulated release of lipids
from caveolae based on a transition in caveolar shape andwhether
lipid redistribution can impact on the bulk PM organization.
Moreover, we lack insight into how a caveolae-to-lamellar tran-
sition at the PM could impact lipid flip-flop dynamics, and if this is
the case, which lipids moderate this transition.

In summary, we speculate that caveolae have evolved to
produce metastable structures with unique architecture. It is
this architecture that works togetherwith themultitude of lipids
within the membrane of a eukaryotic cell to generate a device
that can respond to a multitude of different stimuli.
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