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Dysfunction of macro- and microvessels is a major cause of morbidity and mortality in patients with cardio-renovascular diseases
such as atherosclerosis, hypertension, and diabetes. Renal failure and impairment of renal function due to vasoconstriction
of the glomerular arteriole in diabetic nephropathy leads to renal volume retention and increase in plasma homocysteine
level. Homocysteine, which is a nonprotein amino acid, at elevated levels is an independent cardio-renovascular risk factor.
Homocysteine induces oxidative injury of vascular endothelial cells, involved in matrix remodeling through modulation of the
matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) axis, and increased formation and accumulation of
extracellular matrix protein, such as collagen. In heart this leads to increased endothelial-myocyte uncoupling resulting in diastolic
dysfunction and hypertension. In the kidney, increased matrix accumulation in the glomerulus causes glomerulosclerosis resulting
in hypofiltration, increased renal volume retention, and hypertension. PPARγ agonist reduces tissue homocysteine levels and is
reported to ameliorate homocysteine-induced deleterious vascular effects in diabetes. This review, in light of current information,
focuses on the beneficial effects of PPARγ agonist in homocysteine-associated hypertension and vascular remodeling in diabetes.

1. Introduction

The peroxisome proliferator-activated receptors (PPAR) are
members of the nuclear receptor family of ligand-activated
transcription factors that regulate gene expression [1, 2].
PPAR heterodimerizes with retinoid X receptor (RXR) and
the ligand-activated PPAR binds to a specific DNA binding
site, termed the PPAR response element (PPRE) [3, 4]
to become transcriptionally active. There are three PPAR
subtypes—PPARα, PPARδ (also known as PPARβ), and
PPARγ, which regulate gene expression in a variety of
process, including lipid and glucose metabolism, atheroscle-
rotic plaque formation, cellular differentiation, angiogen-
esis, inflammation, hypertension, and heart failure [5–7].
Although three subtypes of PPAR share many aspects of
biology, each of the isoforms has specific tissue distribution,
ligand selectivity, and unique biological effects [8]. PPARα
is highly expressed in the liver, and mainly regulates lipid
uptake and fatty acid catabolism. The vascular endothelial

cells play a major role in regulating vascular tone, and
although endothelial cells expresses PPARα [9], the role of
PPARα and its agonist on blood pressure is still uncertain
and controversial [7]. PPARβ/δ is the most widely expressed
isoform that is expressed at low levels in almost all tissues.
Studies in animal models have shown that although PPARδ
does not have role in changing blood pressure, it does have
antiatherogenic effect [10]. PPARγ is expressed at the highest
levels in adipose tissue, where it regulates numerous genes
and improves insulin sensitivity, increases fatty acid uptake,
and decreases lipolysis. It was first described as an anti-
inflammatory agent, however, the expression of PPARγ in
vascular endothelial cells and vascular smooth muscle cells
raises the possibility of its involvement in the regulation of
vascular tone and blood pressure [11].

Glitazones are a class of drugs primarily used to treat
type 2 diabetes and related diseases. Glitazones bind to
PPAR, specifically PPARγ, and activate the receptor, which
in turn increases the insulin sensitivity and are clinically
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used to control hyperglycemia in type 2 diabetes. It is
known that 65% of diabetic patients also suffer from
hypertension and treatment with glitazone was also noted to
lower blood pressure. Diabetic subjects also often experience
renal volume retention. This is one of the mechanisms by
which diabetic subjects accumulate homocysteine in the
body. Interestingly, clinical research suggests that at elevated
levels, homocysteine is an independent risk factor for greater
mortality in type 2 diabetic patients as compared to non-
diabetic subjects [12]. In animal models of type 2 diabetes,
glitazone (pioglitazone) is reported to reduce tissue (but not
plasma) homocysteine level resulting in decreased cardiac
remodeling, contractile dysfunction, and hypertension [13].
In this review, we discuss the beneficial effects of PPARγ
activation on vasculature through homocysteine clearance,
which leads to improvement of endothelial-dependent vas-
cular relaxation, in addition to its known hypoglycemic
activity, resulting in restoration of blood pressure in diabetic
nephropathy.

2. Renal Mechanism of Hypertension
in Diabetes

In diabetes, progressive renal failure leads to end-stage
renal disease [14]. Increased urinary albumin excretion,
decline glomerular filtration rate (GFR) and high blood
pressure are the hallmarks of diabetic nephropathy [15].
These renal functional changes during diabetes develop as
a consequence of structural abnormalities and changes in
podocytes. Impaired autoregulation of glomerular filtration
rate (GFR) in diabetic kidney raises the blood pressure
in the glomerular microcirculation [16]. Structural abnor-
malities including glomerular basement membrane thicken-
ing, mesangial expansion, extracellular matrix accumulation
leads to glomerulosclerosis and interstitial fibrosis [17]. This
raises blood pressure in the renal microcirculation and over
time, uncontrolled high blood pressure can even further
damage the blood vessels and nephrons causing renal volume
retention and sodium accumulation in diabetes. These extra
fluids and sodium linger in the bloodstream, putting extra
pressure on the walls of the blood vessels, and raises the blood
pressure.

3. Hypertension-Associated Renal
Complications in Diabetes

Sustained elevation of blood pressure amplifies diabetic
complications within the glomerulus by inducing impair-
ment of autoregulation of the microcirculation, result-
ing in an increase in intraglomerular capillary pressure
[17]. The changes of capillary pressure are paralleled by
changes in overall glomerular volume [18, 19] and cyclic
changes in glomerular volume lead to recurrent episodes
of stretch and relaxation of all the glomerular component,
including mesangial cells [19] and podocytes [20]. In vitro
experimental evidences suggest that cyclic stretch/relaxation
episodes in mesangial cells lead to production of extracellular
components such as collagen [21], increases expression of

profibrotic transforming growth factor-β1 (TGF-β1) [22],
enhances the expression of the cytokine monocyte chemoat-
tractant protein-1 (MCP-1) [23] and the cell adhesion
molecule intercellular cell adhesion molecule-1 (ICAM-1)
[24]. These molecules mediate and/or amplify renal damage
[17]. In addition, accumulation of plasma homocysteine in
diabetic nephropathy further contributes to renal damage
and hypertension-associated renal complications [25, 26].

4. Renal Insufficiency, Homocysteine
Accumulation, and Hypertension

Homocysteine is a nonprotein amino acid and metabolite
of methionine. Homocysteine can be recycled into methio-
nine; however, dysregulated methionine metabolism leads
to accumulation of plasma homocysteine levels termed as
hyperhomocysteinemia (HHcy). HHcy is an independent
vascular risk factor and plasma homocysteine increases dur-
ing renal insufficiency [27, 28]. There are four ways by which
homocysteine can accumulate in the plasma. These are (1) a
methionine-rich diet, such as meat, (2) deficiency of vitamin
B12/folate, (3) deficiency of CBS activity (heterozygous or
homozygous, CBS+/− or CBS−/−) and vitamin B6, and
(4) renal insufficiency causing volume retention (Figure 1).
Herein, we discuss how renal insufficiency and impaired
glomerular filtration can cause accumulation of plasma
homocysteine, which may contribute to hypertension.

Elevated level of plasma homocysteine has always been
associated with patients exhibiting chronic kidney diseases,
especially end-stage renal disease (ESRD) and the prevalence
of HHcy is strongly associated with decreased glomerular
filtration rate (GFR) [29]. Although the precise mechanism
by which GFR is related to plasma homocysteine concen-
tration is not well established, the association of plasma
homocysteine and GFR has been shown to be linear [30, 31],
with increase in plasma homocysteine level corresponding
to a greater decline of GFR [32]. Thus, the association
between hyperhomocysteinemia and renal failure may be
causal where renal dysfunction increases plasma homocys-
teine level. There are two different hypotheses proposed for
homocysteine accumulation during renal dysfunction [29].
These are (1) homocysteine clearance is disturbed in the
failing kidney; (2) extrarenal homocysteine metabolism is
impaired during renal failure. These are discussed below.

4.1. Homocysteine Metabolism and the Failing Kidney. The
kidney is capable of filtering homocysteine, as it does for
other amino acids. However, the amount of filtered homo-
cysteine found in urine is minimal (6 μmol/day, which is
1%), suggesting that most of the (99%) filtered homocysteine
is reabsorbed by the kidney. The location of this uptake is
reported to be on the basolateral tubule cell surface [33].
The kidney contains both transulfuration (cystathionine β-
synthase and cystathionase) and remethylation (methionine
synthase) enzymes in human [29, 33] and rats [34], which
indicate that theoretically both enzymatic pathways can
be used. The in vitro and in vivo studies in rat however
suggest that homocysteine is primarily metabolized by
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Figure 1: Schematic of homocysteine accumulation in the body.

transulfuration pathway (Figure 1) to form cystathionine,
which is further split into cysteine and α-ketobutyrate [35,
36]. It is hypothesized that the kidney compensates the
changes in GFR by up- or downregulating the biochemical
pathways of homocysteine metabolism, thereby keeping the
constant amount of homocysteine in the urine of normal
healthy subjects [30]. As renal function declines during
ESRD, plasma homocysteine level increases and the vast
majority of dialysis patients experience mild-to-moderate
hyperhomocysteinemia [37]. Studies have demonstrated
inverse relationship between homocysteine and renal func-
tion [30, 33], and powerful indirect evidence suggests that
elevated plasma homocysteine levels in renal disease are
intimately associated with kidney function [33].

4.2. Renal Failure and Extrarenal Homocysteine Metabolism.
Studies using a stable isotope method of whole body
sulphur amino acid metabolism in ESRD patients and
healthy subjects conducted by the research group led by
van Guldener et al. [38–40], report that total remethylation
and transmethylation flux were decreased in ESRD patients
without any change in transulfuration rate as compared to
control subjects. Based on their findings, they suggested
two possible mechanisms that could explain elevated plasma
homocysteine level in ESRD. These are (1) a defect in
the sulfur amino acid metabolism that would lead to
accumulation of homocysteine, and/or (2) a defect in
homocysteine remethylation, which eventually increases the
level of homocysteine. In any or both the cases homocysteine
will be accumulated in the body due to impaired metabolism

5. Homocysteine and Hypertension

The concerns are “is hyperhomocysteinemia associated with
hypertension; if so, is this relationship causal; and if that
is the case, does PPARγ activation prevent this change?” At
present, it does not appear that there is sufficient affirmative
literature on these topics. However, the hypothesis that

homocysteine may play a role in the pathogenesis of essential
hypertension is based on the fact that homocysteine induces
arteriolar constriction, renal dysfunction and increased
sodium reabsorption, and increases arterial stiffness [41, 42].
Also, elevated homocysteine is known to increase oxidative
stress that causes oxidative injury to the vascular endothe-
lium, diminishes vasodilation by nitric oxide, stimulates the
proliferation of vascular smooth muscle cells, and alters the
elastic properties of the vascular wall [43]. All these are
associated with the rise in hypertension. Thus, homocysteine
may contribute to blood pressure elevation.

6. Diabetic Nephropathy and Homocysteine
Clearance: The Role of PPARγ

Diabetes mellitus, a chronic metabolic disorder, is associated
with increased risk of cardio-renovascular diseases such as
arterial disease, stroke, and nephropathy [44, 45]. Diabetic
nephropathy (DN) is a leading cause of morbidity and
mortality in hyperglycemic patients and the most common
single condition found in end-stage renal disease (ESRD)
[46]. The majority of diabetic patients with renal fail-
ure suffer from glomerulopathy which is characterized by
glomerulosclerosis, increased thickness of the glomerular
basement membrane, glomerular hypertrophy, mesangial
cell expansion, podocytic loss, and tubulointerstitial fibrosis
leading to progressive reduction of glomerular filtration rate
(GFR) [46, 47]. Chronic diabetes reduces PPARγ mRNA
level in the glomeruli [48] and in the pathogenesis of DN
downregulated PPAR expression is associated with matrix
accumulation, such as collagen IV and glomerulonephritis
[49–52]. Activation of PPARγ regulates gene expressions
that promote insulin sensitization and glucose metabolism
[53]. In addition, several studies have demonstrated the
efficacy of PPAR agonists to inhibit the progression of
glomerulosclerosis [54] and have suggested that PPAR
ligands have a direct beneficial renal effect. For example, in
experiments on diabetic rats with nephropathy, treatment
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with PPARγ agonist reduced the occurrence of albuminuria
and prevented the development of glomerulosclerosis and
glomerular hypertrophy (Figure 2) by suppressing TGF-β,
VEGF, PAI-1, collagen IV, and ICAM-1 [55, 56]. We have
reported that PPARγ agonist ciglitazone improved GFR
and glomerular architecture in diabetic nephropathy, in
part, by normalizing tissue levels of homocysteine in the
glomerulus [25]. Impairment of renal function, as evidenced
by reduced GFR was noticed due to vasoconstriction of
glomerular arteriole (Figure 3), which resulted renal volume
retention and increased plasma homocysteine levels [57].
Elevated plasma homocysteine, in turn, caused chronic and
impaired renal filtration and was also reported as a risk
factor for diabetic nephropathy [58, 59]. Activation of PPAR
induced insulin sensitivity in type 2 diabetes and promoted
tissue uptake of homocysteine; these resulted in lowering
of plasma homocysteine levels [57, 60]. Contrary to this
mechanism in type 1 diabetes the plasma homocysteine
level did not change, although increased glomerular tissue
level of homocysteine became normal with CZ treatment
[25]. We suggested that this change of tissue homocysteine
level was probably because of improvement of diabetic
nephropathy that normalized renal volume retention and
accelerated the clearance of glomerular tissue homocysteine.
This finding was in accordance with the clinical trials
where PPAR agonists ameliorated endothelial dysfunction
in hyperhomocysteinemia (HHcy) with no effect on plasma
homocysteine level [61].

7. Homocysteine, Matrix Remodeling, and
Hypertension: The Role of PPARγ

Extracellular matrix (ECM) plays an important role in
maintenance of tissue architecture and normal physiological
function. Remodeling of extracellular matrix (ECM) is a
dynamic process and excessive ECM deposition is a patho-
physiological phenomenon of diseased condition that could
lead to hypertension [62–64]. A number of enzymes engage
in the regulation of ECM turnover. Among these are MMPs
and their natural inhibitor, TIMPs. MMPs are members
of a family of Zn2+- and Ca2+-dependent endopeptidases,
which are essential for tissue remodeling in both physiologic
and pathophysiologic conditions. MMP enzymes in the
normal physiologic condition reside in the latent form and
are activated by various physiological threats [60]. Among
MMPs, MMP-2, and MMP-9 are gelatinases that degrade
collagen IV and are essential in maintaining the integrity of
the glomerular basement membrane. Because the turnover
of collagen is faster that gelatin, oxidatively modified collagen
deposits in the tissue causing fibrosis. In diabetic nephropa-
thy activities of MMPs and TIMPs mostly regulate ECM
degradation [65]. Type IV collagenases, MMP-2 and -9, have
been studied extensively in various glomerular diseases with
conflicting results [57, 65–67]. We have shown previously
that increases in glomerular homocysteine and activation
of MMP-2 are associated with glomerulosclerosis [57]. It
was, however, unclear how MMPs and TIMPs are involved
in glomerulosclerosis and whether PPAR, in part, regulates

these enzymes that modulate glomerular dysfunction in DN.
Recently, we reported that both MMP-2 and -9 activities
were increased significantly in diabetic kidney [25], and this
result was in accordance with the similar findings reported
by independent laboratories, including our own [57, 63,
68, 69]. We also showed that expression of TIMP-1 was
upregulated in the glomeruli of diabetic mice [25], which
was in agreement with the previously reported study by Eddy
et al. [70] where progressive renal fibrosis was characterized
by upregulation of TIMP-1 expression. At the onset of
diabetes, the kidney grows larger, but it eventually shrinks
with reduced GFR, proceeding to sclerosis and renal failure.
We have reported that subnormal GFR was noticed at the
latter stage of alloxan-induced diabetes in mice, and increase
in renovalcular resistance was accompanied by collapse of
preglomerular arteriole and the glomerulus [25]. This was in
part due to MMP/TIMP imbalance and the accumulation of
ECM matrix. PPAR agonist CZ treatment normalized these
matrix proteins in diabetic kidney through activating PPARγ
and homocysteine clearance; thus, resulted in restoration
of renal architecture, normal glomerular function, and
vascular resistance of the renal arteriole [25]. A proposed
mechanism of homocysteine associated matrix accumulation
and hypertension has been depicted in Figure 4.

8. Homocysteine Handling in the Heart:
The Role of PPARγ

Until recently, it was our main concern to control systolic
blood pressure and to keep this pressure as close as pos-
sible to normal level to minimize hypertension-associated
morbidity and mortality. Recent studies however, have
shifted our attention to diastolic hypertension which can
be as harmful as systolic hypertension. A constant elevated
diastolic pressure increases the risk of heart damage, brain
damage, and kidney problems as well. One of the causes
of diastolic hypertension is diastolic dysfunction, which
demonstrates hypertrophy of the cardiomyocytes, increased
interstitial collagen deposition and/or infiltration of the
myocardium leading to endothelial-myocyte uncoupling. It
is estimated that, although the majority of cardiac muscle
is myocyte, sixteen percent of the myocardial mass is
capillaries and the inner lining of the capillaries are made up
endothelium [71]. The capillary endothelium is embedded
in the cardiac muscle, and plays an important role in
myocardial diastolic relaxation, in addition to those which
myocytes contribute. Nitric oxide (NO) from the endocardial
endothelium alters the contractile and relaxant properties
of the heart [72]. A gradient of NO concentration, that
is, high in endocardium and low in mid myocardium, has
been documented [72], which suggests that there is more
capillary endothelium in the endocardium than in epi-
or mid-myocardium. Since capillary endothelial cells are
embedded in the muscle, the contribution of endothelium
to cardiac relaxation is the least studied. We have studied
LV tissue function using a cardiac ring preparation in a
tissue myobath and assessed the effects of hyperhomocys-
teinemia on myocardial endothelium-dependent relaxation
[73]. In alloxan-induced diabetic mouse heart, our study
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Figure 2: Glomerular hypertrophy and collapse in diabetes were ameliorated by ciglitazone. Histological kidney section were stained
with Masson-Trichrome stain and visualized under dissecting microscope. Note that glomerular hypertrophy was observed at
one week of alloxan (a single dose of 65 mg/kg body wt intraperitoneally) treatment. At 10 weeks glomerulus was collapsed.
Ciglitazone treatment after 10 weeks of alloxan treatment reversed glomerular deformation towards normal (magnification,
x200).

demonstrated both plasma and myocardial tissue level of
homocysteine increased. However, the tissue level of homo-
cysteine was reduced by PPARγ agonist (CZ)-treated diabetic
mice without any alteration of plasma homocysteine level
[73]. The decreased myocardial tissue level of homocysteine
in diabetic heart treated with PPARγ agonist was found to
improve myocardial relaxation in vitro in both an endothe-
lium dependent and independent way [73]. Endothelium
dependent cardiac relaxation was measured by acetylcholine
and bradykinin, where acetylcholine works through the
endothelium-dependent NO generation, and bradykinin
works on blood vessels through nitric oxide and endothelial-
derived hyperpolarizing factor. Both factors have shown that
endothelium dependent relaxation was impaired in diabetic
cardiac rings [73]. Interestingly, endothelium independent
vascular relaxation induced by sodium nitropruside also
reduced cardiac relaxation in vitro in cardiac rings prepared
from diabetic heart. This suggests that traveling of NO to
the capillary smooth muscle cells was somehow impaired.
This we referred to as endothelial-myocyte uncoupling,
which did not allow nitropruside-generated NO to travel
through the disrupted matrix between endothelium and
myocyte. Thus, we have observed attenuated relaxation.
However, treatment of diabetic mice with PPARγ agonist
CZ, normalized the relaxation of cardiac rings, suggesting
the attributed role of CZ in endothelial-myocyte recoupling
in diabetes [73]. This study demonstrated that tissue lev-
els of homocysteine contributed endocardial endothelium

function and PPARγ activation promoted tissue clearance
of homocysteine thereby improving endothelium depen-
dent cardiac relaxation. On the other hand endothelium
independent relaxation was improved in part by recoupling
of endothelium and myocyte [73]. A possible mechanism
of endothelium-myocyte uncoupling and hypertension in
diabetes-associated hyperhomocysteinemic condition has
been depicted in Figure 4.

9. Homocysteine, Protein Modification, and
Hypertension: The Role of PPARγ

Although the homocysteine is linked to blood pressure,
a direct cause and effect relationship of hyperhomocys-
teinemia and hypertension has not been established. The
mechanisms that could explain this relationship include
homocysteine-induced arteriolar constriction, renal dys-
function, increased sodium absorption, increased arterial
stiffness, and endothelial damage [74]. Other possible mech-
anisms that may be involved are (1) formation of homo-
cysteine thiolactone and (2) protein homocysteinylation.
At elevated levels homocysteine converts to homocysteine-
thiolactone as a result of an error-editing function of
some aminoacyl-tRNA synthetases, and the detailed mech-
anisms are described elsewhere [75–77]. Homocysteine-
thiolactone is a reactive metabolite that causes protein N-
homocysteinylation through the formation of amide bonds
with protein lysine residues [77], which alters or impairs
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Figure 3: Increased media-lumen ratio of preglomerular arteriole and tubule of diabetic mice were normalized with ciglitazone treatment.
Kidney sections of 0 wk (a), 10 wk of alloxan treatment (b), and 10 wk of alloxan treatment followed by another 6 wk of CZ treatment
(c) were stained with Masson-Trichrome. (d) Preglomerular arterioles of these stained sections were identified under a microscope, and
medial/lumen ratio was calculated by a digital micrometer and plotted (data presented± SE, n = 6 animals/group; ∗P < .01 compared with
0 wk; ∗∗P < .05 compared with 10 wk). The results indicated that medial/lumen ratio was increased dramatically due to thickening of the
media and narrowing of the lumen after 10 wk of alloxan treatment. Interestingly, ciglitazone treatment almost normalized the media/lumen
ratio indicating the involvement of PPARγ in this process.

the protein’s function [76]. N-linked protein Hcy (N-
Hcy-protein) has been reported to be elevated in hyper-
homocysteinemia [78–81], and has been documented to
accumulate in atherosclerotic lesions in mice [82]. Protein
homocysteinylation damages protein, manifests multimer-
ization, and precipitates extensively modified proteins [76],
which can cause cardiovascular diseases. For example, CBS-
deficient patients have significantly high levels of plasma pro-
thrombotic N-Hcy-fibrinogen [81], which leads to abnormal
resistance of fibrin clots to lyses and contributes to increased
risk of thrombosis. Thus, although presently the hypothesis
that elevated homocysteine causes hypertension still remains
unproven, the contributing role of hyperhomocysteinemia
in the renovascular diseases, such as diabetic nephropathy
to elevate blood pressure can not be ignored as substantial
indirect evidence linked to hypertension during these disease
processes.

Genetic variations have been demonstrated to play an
important role in determining plasma homocysteine levels.
For example, sequence variation of methylenetetrahydrofo-
late reductase (MTHFR) gene has been shown to influence
circulating homocysteine level [83], and sequence variation

of amino acid 222 from alanine to valine (p.A222V)
has been reported to elevate circulating concentrations of
homocysteine [84]. The PPARγ produces a number of
isoforms which control a variety of pathways including
lipid metabolism, insulin sensitivity, and inflammation [85].
Therefore, these transcription factors may play a significant
role in controlling the enzymes critical for homocysteine
production or metabolism. Interestingly, studies in animal
models and patients have shown PPARγ ligation to reduce
circulating homocysteine concentration [86, 87]. Thus, the
findings that the pharmacological PPARγ ligands are able
to reduce circulating homocysteine concentrations fit well
with a role of PPARγ in modulating homocysteine turnover
[86, 87]. We have demonstrated that activation of PPARγ
in diabetic subjects reduced tissue homocysteine level and
normalized systolic blood pressure [73]. Thus, it may be pos-
sible that PPARγ activation reduces hypertension through
reduction of homocysteine, at least in part. However, as
direct link of hyperhomocysteinemia and hypertension is still
not established, the issue of whether or not the reduction
of homocysteine level through PPARγ activation reduces
blood pressure remains debatable and controversial. Future
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sion in diabetes. Diabetes causes renal microvascular constriction
and deposition of extracellular matrix in the glomerular base-
ment membrane. This causes glomerulosclerosis and impaired
glomerular function (GFR). Renal hypofiltration increases plasma
homocysteine level, which further cause oxidative stress and
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matrix barrier and impairs left ventricular diastolic dysfunction.
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studies are needed to establish a direct cause and effect
relationship between hyperhomocysteinemia and hyper-
tension, if any. Nonetheless, it is time to speculate that
hyperhomocysteinemia contributes to elevate blood pressure
in the pathogenesis of renal disease, for example, diabetic
nephropathy, and PPARγ is an effective target molecule to
regulate hypertension, at least in part, through the reduc-
tion of homocysteine, where renal insufficiency upregulates
homocysteine.

10. Hydrogen Sulfide, Inflammation, and
Hypertension: The Role of Homocysteine

Hydrogen sulfide (H2S) has been known for the decades
as a noxious gaseous molecule with an intoxicating effect
on the brain and central nervous system. Recent findings,
however, reported that it is an effective molecule to regulate
blood pressure [88, 89]. Endogenously, H2S is generated in
the mammalian tissue from L-cysteine, and homocysteine
is the precursor of L-cysteine. Physiologically, homocysteine
is metabolized by three transulfuration pathway enzymes,
cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE)
and 3-mercaptopyruvate sulfurtransferase (3MST). At ele-
vated levels, homocysteine has been shown to reduce activity
of CSE, thereby reducing the production of H2S [90]. Studies
from independent laboratories reported that, at low levels,

H2S defends organs from several pathophysiological con-
ditions, such as oxidative stress, ischemia-reperfusion, and
hypertension [88, 91, 92]. Interestingly, results from in vitro
studies suggest that at low levels H2S decreases hydrogen
peroxide (H2O2), peroxynitrite (ONOO–), and superoxide
anion (O2

•–) generation induced by homocysteine in a cell
culture model [93].

It is known that rise in blood pressure causes chronic
inflammation of the endothelium which is, in turn, respon-
sible for further endothelial damage and worsening blood
pressure. On the other hand, several metabolic disorders
such as dyslipidemia, hyperhomocysteinemia, diabetes, and
obesity cause inflammation followed by a subsequent rise
of blood pressure. Inflammatory disease such as atheroscle-
rosis is a major complication of hypertension [94], and
plays a critical role in hypertensive renal disease, whereas
treatment of renal inflammation by melatonin has been
shown to ameliorate hypertension [95]. Several studies have
documented that homocysteine may directly or indirectly
promote synthesis of several proinflammatory cytokines in
the arterial wall and in the circulating cells. In particular, the
expression of MCP-1 has been shown to increase in cultured
human endothelial cell [96], smooth muscle cells [97], and
in monocytes treated with homocysteine [98–100]. Addi-
tionally, homocysteine-thiolactone has recently been demon-
strated to be more toxic than homocysteine, and possesses
stronger proinflammatory properties [101]. Furthermore,
homocysteine-thiolactone impairs insulin signaling, and
thereby inhibits insulin-mediated glycogen synthesis [102].
We have reported that although PPARγ activation did not
have any effect on plasma homocysteine level, it promoted
clearance of tissue homocysteine, in addition to its known
action of increasing insulin sensitivity. Thus, the activation
of PPARγ in diabetic nephropathy modulates inflammatory
reaction, at least in three different mechanisms: (1) increases
insulin sensitivity and reduces plasma glucose level, there-
fore reduces inflammation; (2) promotes tissue clearance
of homocysteine level and thus, reduces oxidative stress
and inflammation; (3) normalizes CSE enzymatic activity,
thereby raises the possibility of endogenous H2S generation,
which has been documented as an anti-inflammatory and
antihypertensive gaseous molecule at physiological levels [88,
103]. The possible pathways of these mechanisms are shown
in Figure 5.

11. Recent Clinical Trials and
the Homocysteine Paradox

It is well established through decades with many large
prospective studies that hyperhomocysteinemia predicts
increased risk of vascular events including stroke, venous
thromboembolism, and death [104, 105]. Many interven-
tional trials paradoxically, however, failed to demonstrate any
clinical benefit from homocysteine-lowering therapy [106–
110]. The possible reasons are explained elsewhere [111].
Briefly, hyperhomocysteinemia is a clinically important risk
factor at extremely high levels. All of the recent clinical trials
of homocysteine-lowering therapy have been performed in
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Figure 5: Schematic of PPARγ-mediated reduction in inflamma-
tory reaction and hypertension in diabetic nephropathy. Diabetes
causes increase in homocysteine level and subsequent inhibi-
tion of hydrogen sulfide production in the body through the
inhibition of cystathionine γ-lyase (CSE), an enzyme required
for homocysteine metabolism. This leads to oxidative stress and
causes hypertension. Homocysteine and diabetes induce chronic
inflammation, which lead to atherosclerosis and hypertension.
PPARγ induction clears tissue homocysteine, in addition to
regulating hyperglycemia, thereby reduces oxidative stress and
hypertension.

subjects with relatively mild hyperhomocysteinemia [111].
The negative outcome of these trails may indicate that mild
hyperhomocysteinemia is not a causative risk factor rather it
is a marker of other vascular diseases and is associated with
increased vascular risk. It is also possible that homocysteine
lowering therapy may produce some adverse effect that mask
the clinical benefit of lower homocysteine [108]. Also, the
trials were conducted after the implementation of policies
that mandate the addition of folic acid to white flour, cereals,
and related products in the United States. This resulted in
lower homocysteine concentration among US populations
[112, 113]. Moreover, in none of the trials measurement
of tissue homocysteine levels was considered. Although
folic acid treatment lowered plasma homocysteine levels,
it may have promoted tissue uptake of homocysteine, a
similar effect where insulin reduced plasma homocysteine,
but increased tissue homocysteine level [60]. This increased
tissue homocysteine level mimicked the clinical benefit of
homocysteine lowering effect of folic acid on cardiovascular
events. Interestingly, a recent report suggests that in type 2
diabetic patients, metformin reduces both folate and vitamin
B12, and increases homocysteine. Conversely, rosiglitazone
decreases homocysteine level in the same time period. The
clinical significance of these observations is not clear and
remains to be investigated [87]. Some larger trials with longer
homocysteine-lowering therapy are ongoing and we should
wait until the outcomes of these trials finally settle the debate.
Nevertheless, the kidney plays a major role in homocysteine
metabolism and plasma homocysteine increases as renal
function declines.

12. Concluding Remarks and Perspectives

Diabetes is the most common single factor of cardiovas-
cular and renal damage in patients with diabetes mellitus.
Diabetes causes tissue accumulation of homocysteine both
in cardiac and glomerular tissue. This increased tissue
content of homocysteine exacerbates cardiovasculopathy
and nephropathy in diabetes, in addition to the detri-
mental effect of diabetes. PPARγ agonists may be ben-
eficial in preventing vasculopathies in cardiac and renal
tissues associated with increased homocysteine content
in diabetic subjects. Moreover, PPARγ ligand seems to
be promising in preventing hypertension associated with
increased homocysteine level in diabetes. Although at
present it is premature to conclude homocysteine causes
hypertension, there is substantial indirect evidence which
supports homocysteine-associated rise in blood pressure.
Further studies are needed to elucidate the contributing
role of homocysteine to regulate blood pressure, and precise
mechanism of hypertension modulation associated with
hyperhomocysteinemia by PPARγ induction warrants spe-
cial attention.
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