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Abstract

High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application.
In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks.
These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed
to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation.
An original discriminative distance vector was first formulated by combining both geometry and orientation distances
derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously
optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an
iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be
available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to
demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our
approach was compared with three classical metrics in the graph based semi-supervised learning framework.
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Introduction

The emerging diffusion tensor imaging (DTI) has been

increasingly applied to study the structure and function of the

human brain [1,2]. This noninvasive imaging modality can

capture the tissue microstructure by measuring the diffusion

information of water molecules [3,4]. The wealthy information is

able to differentiate complex anatomical structures, which are

difficult to be distinguished by conventional imaging modalities

[5]. Thereby, DTI has recently drew more interest in the

segmentation of several tissues [6] and white matter tracts [7,8].

High quality segmentation is of key importance in biomedical

research and clinical application [9,10]. It is crucial to develop an

efficient and effective method for accurate segmentation of

interested structures in DTI.

The performance of image segmentation critically depends on

the choice of an appropriate distance measure. A number of

metrics have been developed to differentiate diffusion tensors,

including Euclidean [11], J-divergence [12] and geodesic metrics

[13,14]. They provide an overall distance with unknown or fixed

contribution of geometry and orientation distances. However, the

two types of distances are not always equally relevant for

segmentation of different tissues. For instance, tensors belonging

to the corpus callosum and the cingulum, have similar geometry

shapes but completely different orientations [15]. Therefore, the

traditional metrics, which give fixed weights of geometry and

orientation distances, may result in a relatively low discrimination

capability.

In recent years, a large amount of efforts have been spent on

constructing discriminative metrics by selecting relevant features

for different segmentation applications. Fusion of the geometrical

distances was able to obtain accurate segmentation of white

matter, grey matter and cerebrospinal fluid in the human brain

[16,17]. The orientation distance has been utilized to facilitate

automatic identification of different nucleus in the thalamus of

human brain [6,18]. Recently, Luis-Garc’ıa et al. [15] and Gahm

et al. [19] proposed to construct a novel distance metric by

manually weighting the geometry and orientation distances. The

manual tuning of weights obtained accurate results in the white

matter structures segmentation from the human brain [15] and the

tissues extraction from the human cardiac [19]. Sufficient prior

knowledge is required to guide the distance selection for different

segmentation tasks. Tuning parameters should be performed on a

large number of datasets. Moreover, the parameters gained from

datasets in one group may not be optimal for another one due to

difference in subject anatomies and imaging parameters. Instead of

predefining a distance function, it is more appealing to automat-
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ically learn a distance metric for each specific DTI segmentation

task.

Distance metric learning has attracted considerable amount of

interest in the research of machine learning [20,21], image

processing [22] and pattern recognition [23,24]. It has been

successfully applied to obtain discriminative metrics for several

applications, such as image retrieval [25,26] and classification

[27]. The target is to learn an appropriate distance measure from

the supervisory data. Thereafter, the examples from the same class

are close to each other, and while examples from different classes

are set to a large distance [28]. Inspired by this idea, distance

metric learning can be extended to differentiate diffusion tensors.

To the best of our knowledge, we for the first time propose to

utilize distance metric learning to train an adaptive metric between

diffusion tensors for DTI segmentation. We hope that more

discriminative distances could be achieved to obtain correct and

accurate segmentation results.

In this study, we proposed to learn an adaptive distance metric

in a graph based semi-supervised learning model for DTI

segmentation. Our aim was to learn a nonlinear mapping of an

original distance to maintain the label of voxels by their distances

from the supervisor information. An original distance vector was

first formulated by combining both geometry and orientation

distances derived from diffusion tensors. The distance metric and

labels of voxels were then optimized in a graph based semi-

supervised learning model. Finally, the optimization task was

efficiently solved by an iterative gradient descent approach. With

our proposed approach, an adaptive metric could be created for

each specific segmentation task to achieve a correct and accurate

segmentation result. We validated the proposed method on both

synthetic and real brain DTI datasets from nine subjects. The

performance of our approach was compared with three classical

metrics in the graph based semi-supervised learning framework.

Materials and Methods

Synthetic Dataset
A specific synthetic dataset was created to validate the proposed

segmentation approach. The synthetic tensor field was a 15615

lattice, and the region of interest was different from the

background in the geometry properties. The synthetic diffusion

tensors are visualized as ellipses, as shown in figure 1(a). Each

ellipse is constructed using eigenvectors of the tensor as axes and

the color represents the principal orientation.

Noisy tensor fields were generated by adding noise to the clean

synthetic tensor field. We utilized Stejkal-Tanner equation to

generate 12 clean diffusion weighted images (DWI) with b values

of 1000 s/mm2 and one baseline image with b values of 0 s/mm2.

Rician noise was then simulated on each DWI with signal to noise

(SNR) of 10, 15 and 20 [29,30]. The noisy synthetic tensor fields

were finally estimated at the three noise levels.

Subjects and DTI Acquisition
Written informed consent forms were obtained from nine

healthy subjects recruited from a local tertiary teaching hospital.

Ethical approval was obtained from the Ethics Committee in the

Chinese University of Hong Kong. All subjects underwent a MRI

scanning in a 3 Tesla scanner with an eight-channel Sense head

coil (Achieva, Philips Medical Systems) at the Prince of Wales

Hospital at Hong Kong. For each subject, brain DTI was acquired

with a single-shot spin-echo echo-planar pulse sequence with the

following parameters, repetition time = 8667 ms, echo

time = 60 ms, field of view = 2246224 mm2, flip angle = 90o,

NEX = 1, matrix = 1126109, slice = 70, slice thickness = 2 mm,

gap = 2 mm. After reconstruction, 70 axial images were zero-

padded and interpolated to 2246224 with voxel size of

16162 mm3. In DTI data acquisition, images at b values of

1000s/mm2 were acquired along 32 directions of diffusion

gradients, and one image at b value of 0s/mm2 was acquired as

the baseline image.

Original Discriminative Distance Vector
The aim of distance metric learning is to learn a linear or

nonlinear mapping of an original distance to produce an

appropriate metric. An original discriminative distance is hence

crucial to characterize the difference between voxels. Different

from traditional scalar medical images, each voxel is assigned to a

363 symmetric positive definite diffusion tensor [31,32]. The

diffusion tensor can be decomposed into a system of three

eigenvalues and corresponding eigenvectors, which represent

tensor geometry and orientation respectively. The original

distance vector is formulated by combining both geometry and

orientation distances.

Based on the three eigenvalues, several geometrical character-

istics have been developed to capture the water diffusivity and

anisotropy properties of the diffusion tensor [33]. The most

commonly utilized properties are mean diffusivity (MD), fractional

anisotropy (FA) and volume ratio (VR) [10,34]. The definitions of

these features are given as follows

MD~
l1zl2zl3

3
,

FA~

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l1{MD)2z(l2{MD)2z(l3{MD)2

(l2
1zl2

2zl2
3)

s
,

VR~
l1l2l3

MD3

ð1Þ

where l1, l2 and l3 are the three eigenvalues. MD measures the

overall diffusivity, and FA and VR characterize the anisotropy.

They have the ability to distinguish different tissues, which have

been frequently demonstrated in DTI analysis and segmentation

tasks [16,17,35,36]. They are grouped together to form the

geometrical feature vector ageo(x)~ MD(x),FA(x),VR(x)½ �. Ele-

ments of the feature vector are then normalized to [0 1] prior to

distance calculation. The geometrical distance vector is hence

formulated as

mgeo(xi, xj)~âageo(xi){âageo(xj) ð2Þ

where xi and xj denote two voxels, âageo(x) is the normalized

geometrical feature vector.

Figure 1. Segmentation results of the synthetic dataset: (a)
user input labels, (b) segmentation results of Euclidean, J-
divergence, geodesic metrics, (c) segmentation results of our
approach. The red color bar represented the label of the interested
regions and the other two green bars are the labels of the background.
doi:10.1371/journal.pone.0092069.g001
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The eigenvector v corresponding to the largest eigenvalue of

diffusion tensor is characterized as the principal orientation. The

field of this vector can indicate the homogeneity of fiber

orientations in the white matter regions. This important feature

has been demonstrated to be able to differentiate several

anatomical structures [6,18] and white matter tracts [37].

Different from the scalar geometry distances, the orientation

distance is computed by the rotation angle between principal

eigenvectors. Since an eigenvector has an arbitrary sign, v and {v
correspond to the same orientation but the opposite direction. The

orientation distance is thus defined as the minimum rotation

between the principal eigenvectors. The orientation distance is

normalized to [0 1] as

mori(xi,xj)~arccos D
v(xi)

T v(xj)

v(xi)k k v(xj)
�� ��D

 !,
p

2
ð3Þ

The geometry distance vector and orientation distance are thus

combined together to formulate the original distance vector

m(xi, xj)~ mgeo(xi, xj),mori(xi, xj)
� �

.

Figure 2 illustrates Euclidean distances of MD, FA and principal

orientation between diffusion tensors. Each tensor is visualized as

an ellipse with eigenvectors of the corresponding diffusion tensor

as axes. The color denotes the principal orientation of the diffusion

tensor. The tensors have the same FA value with different MD

values and principal orientations. Selecting different features to

characterize the distance leads to different classifications. There-

fore, it is essential to choose a proper distance metric to

differentiate diffusion tensors for each segmentation task.

Distance Metric Learning
Selecting an appropriate metric between voxels is fundamental

to the DTI segmentation tasks. Segmentation methods by

predefined metrics require sufficient prior knowledge and tuning

parameters on a large number of datasets. To overcome these

disadvantages, distance metric learning will be introduced to

automatically learn an optimal metric for each segmentation

application.

Existing distance metric learning approaches can be classified

into categories of unsupervised, supervised and semi-supervised

learning [28]. Unsupervised learning methods learn the metric

without labels. Unfortunately, under unsupervised learning

models, the distance metric learning tasks become an ill-

conditioned problem with no well-defined optimization criteria

[38,39]. For example, one widely utilized unsupervised learning

method, named principal component analysis, simply reweighs the

features and may end up turning a relevant feature into an

irrelevant one [40].

In supervised and semi-supervised learning models, labeled

training data is available to provide supervisory information, and

typically limited number of labeled data with large quantity of

unlabeled data is considered as semi-supervised learning [20,23].

Class labels from users provide pairwise constraints to learn the

metric. An optimal metric is learned with keeping the examples

from same class close to each other, while separating the data

elements from different class [25,41]. Compared to the supervised

learning, semi-supervised learning has the capability to avoid the

over fitting problem when the labeled training data is insufficient

[21]. For the DTI segmentation application, a limited number of

voxels can be given as the labels of the foreground and background

from users. Therefore, a graph based semi-supervised learning

approach will be adopted to learn adaptive distance metrics for

DTI segmentation.

An undirected weighted graph G~fV,Eg is first constructed for

the DTI image. The vertices V of the graph are voxels of the

images, and E represents the edges between these vertices. If two

voxels xi and xj are spatial neighbors, an edge eij exists to connect

them in the graph. The weight wij of each edge is the similarity

between tensors at voxel xi and xj . In the traditional graph based

approaches for DTI segmentation [19,42,43], the weight is defined

by a Gaussian kernel function of the predefined distance as

wP
ij ~

exp {cm2
P(xi,xj)

� �
cord(xi){cord(xj)
�� ��ƒ1

0 otherwise

( ð4Þ

where c is the parameter of Gaussian function, cord(x) is the

coordinate of voxel x, mP(xi,xj) is the predefined distance metric

between voxel xi and voxel xj . Two voxels are connected with

spatial distance between their coordinates less than or equal to 1.

The commonly utilized predefined metric are the Euclidean, J-

divergence or geodesic metrics [42,43]. They are defined as

mE(xi, xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr T(xi){T(xj)
� �

T(xi){T(xj)
� �T

� 	r
ð5Þ

Figure 2. Euclidean distances of different properties between diffusion tensors, (a) mean diffusion (MD), (b) fractional anisotropy
(FA) and (c) principal orientation.
doi:10.1371/journal.pone.0092069.g002
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mJ (xi, xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
tr T(xi)

{1T(xj)zT(xi)T(xj)
{1

� �
{6

r
ð6Þ

mg(xi, xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tr log2 T(xi)

{1
2T(xj)T(xi)

{1
2

� 	� 	r
ð7Þ

where mE , mJ and mg are definitions of the Euclidean, J-

divergence or geodesic metrics. T(x) is the diffusion tensor at

location x and tr(.) is the trace of matrix. Besides, the predefined

distance can also be a linear mapping of the original distance.

However, the weights of different type of distances are manually

tuned in the work of [19]. In this paper, we for the first time focus

on the basic Mahalanobis distance metric to learn a kernel metric

to define the weight of edge as

wij~

exp {m(xi, xj)
T Am(xi,xj)

� �
cord(xi){cord(xj)
�� ��ƒ1

0 otherwise

(
ð8Þ

where A is a positive semi-definite matrix. Let W be the graph

weight matrix whose element is wij and D be a diagonal matrix

whose i-th diagonal element is dii~
P

j wij .

Labeled voxels of interested anatomical structures and back-

ground in DTI images are provided as the supervisory informa-

tion. The labels are modeled as Y~ yif g, where yi~1 if voxel at i

is marked as the interested anatomical structure, and 21 if marked

as the background surrounding structures. In traditional graph

based semi-supervised learning approaches, Gaussian kernel

function of the predefined metric as equation (4) was utilized to

compute the edges of graph. From the idea of learning local and

global consistency by Zhou et al. [44], labels of voxels represented

by h�~ h1,h2, � � � ,hn½ �Tcan be learned by minimizing the following

cost function

Q(h)~
X

(i,j)[E

wP
ij

hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !2

zm
X
yi[Y

hi{yið Þ2 ð9Þ

where mw0 is the regularization parameter. The first term of the

right-hand side denotes the smoothness restraint, which signifies

that there should be not too much change between nearby voxels.

The second term represents the fitting constraints, which implies

that the result of a good segmentation should not be changed too

much from the user initial label assignment. A positive parameter

m is introduced to control trade-off between these two terms. For

the image segmentation tasks, the labels provided by users are

generally assumed to be correct. The second term can be treated

as hard constraints. The optimization of voxels labeling can be

transferred to a minimization problem as

min Q(h) ~
X

(i,j)[E

wP
ij

hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !2

s:t: hi~yi Vyi[Y ð10Þ

The comparison experiments utilized three classical metrics,

including Euclidean, J-divergence and geodesic distances, in this

graph based semi-supervised learning method.

The aim of distance metric learning is to achieve an optimal

kernel metric A� to maintain the label information of voxels by

their distances. With such metric, the voxels in the same label are

close to each other, whereas the voxels in the different labels have

large distances. To integrate metric learning and label training, the

predefined distance is replaced by the above weight computed

from the Mahalanobis distance metric as equation (8). The

distance metric learning and label learning can be simultaneously

obtained as

min Q(h,A) ~
X

(i,j)[E

wij
hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !2

s:t: hi~yi Vyi[Y ð11Þ

with h�,A�½ �~ arg min
h,A

Q(h,A).

Numerical Solution
It is difficult to optimize h and A at the same time. Therefore,

the optimization is solved using an iterated alternative approach.

We first fix the metric A to update the class label h, and then

update the metric A by fixing the class label h.

At the class label update stage, the optimal solution h� can be

found with a fixed metric A. The minimization of equation (11)

can be written in another way as

min Q(h,A) ~
X

(i,j)[E

wij

hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !2

~hT Lh s:t: hi~yi Vyi[Y

ð12Þ

where L~I{D
{1=2 WD

{1=2 is the normalized Laplacian matrix

[45] of the constructed graph G. The minimization problem is

then turned to a quadratic programming problem. It can be

efficiently solved with the interior point method to achieve the

global optimal solution h� [46].

At the metric update stage, it is difficult to facilitate a closed

form solution to the optimization task. The gradient descent

approach is thus adopted to solve this problem. The derivative of

the function with respect to A is derived as

LQ

LA
~
X

(i,j)[E

Lwij

LA

hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !2

{2
X

(i,j)[E

wij
hiffiffiffiffiffi
dii

p {
hjffiffiffiffiffi
djj

p
 !

hi

dii
3=2

Ldii

LA
{

hj

djj
3=2

Ldjj

LA

 ! ð13Þ

The derivatives of wij and dii are computed as

Lwij

LA
~

L exp {m(xi,xj)
T Am(xi,xj)

� �� �
LA

~{wijm(xi,xj)m(xi,xj)
T

ð14Þ
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Ldii

LA
~

L
P

j wij

� 	
LA

~
X

j

Lwij

LA
ð15Þ

With the derivative and initial metric As at the s-th iteration, the

updated metric is obtained by

Asz1~As{g
LQ

LA
.As ð16Þ

where g denotes the step length and . represents the Hadamard

product. In order to preserve the positive semi-definite property of

A, the updated Asz1 is further refined using the eigenvalue

decomposition. The updated metric is decomposed as

Asz1~X TLX , where L~diag l1,l2, � � � ,lkð Þ is a diagonal matrix

of Asz1’s eigenvalues and the columns of X represents

corresponding eigenvectors. A refined matrix is achieved by

taking A
0
~X T L

0
X , where L0~diag max l1,0ð Þ,max l2,0ð Þ, � � � ,ð

max lk,0ð ÞÞ.
The optimization will be solved with the alterations between the

class label update stage and the metric update stage. The step size

will be adapted to accelerate the convergence of the iteration

process. If Q(h,Asz1)vQ(h,As), the step size will be doubled, and

otherwise the step size will be reduced with keeping Asz1~As not

changed. The convergence of our algorithm can be proved. At the

stage of the class label update, the convex optimization always

decreases the function value. As for the metric update stage, the

gradient descent approach optimizes the metric with a reduced

function value. With regard to the positive semi-definite of the

normalized Laplacian matrix L, the cost function value has a

lower bound of 0. The iterative process is thus guaranteed to

converge. The iteration stops when the difference between cost

function at the s-th and s+1-th iterations is smaller than a given

threshold e.

Assessment of Segmentation Accuracy
The accuracies of segmentation results were evaluated by the

overlap accuracies. We utilized the popular dice similarity

coefficient (DSC) for the assessment [47]. The evaluation metric

is defined as

DSC~
2|TP

2|TPzFPzFN
ð17Þ

where TP, FP and FN are the numbers of true positive, false

positive and false negative voxels.

Results

We validated the effectiveness and robustness of the proposed

approach by experiments on both synthetic datasets and real brain

DTI datasets from nine healthy subjects. In the experiments, we

set the initial kernel matrix A1 to a square diagonal matrix with

entries of 1, which give equal weights of the element in the original

distance vector. The step size g at the optimization was set to 0.01

and the threshold e for stop criteria is set to 0.1. Our method

usually stopped in less than 15 iterations. Our approach was

compared with three classical metrics, including Euclidean, J-

divergence and geodesic distances, in the graph based semi-

supervised learning framework. The parameter c was set to 10 in

these experiments using these predefined metrics. All the

experiments were run on an Intel Core2 Duo desktop with 8GB

RAM and 262.6 GHz CPU cores.

Results on Synthetic Datasets
The proposed distance learning approach for DTI segmentation

was first tested on the noise free synthetic dataset. In figure 1(a),

the three color bars stand for the labels of the user inputs. The red

color bar represents the label of the interested regions, and the

other two green bars are the labels of the background. The

proposed method was compared to three classical metrics,

including Euclidean, J-divergence and geodesic metrics.

The three classical metrics obtained the same and incorrect

segmentation results, as shown in figure 1(b), which only part of

interested regions was extracted. In contrast, segmentation using

our approach yielded the correct segmentation result, as shown in

figure 1(c). The DSC value of our method was 1.0 and the values

of other three approaches were 0.80.

The classical metrics give fixed contributions of the geometry

and orientation features. However, the interested region had the

same geometry feature but different principal orientations. This

led to large Euclidean, J-divergence and geodesic distances

between tensors in the region of interest, as shown in figure 3(a),

(b) and (c) respectively. Due to the inappropriate metrics, the

interested region could not be distinguished from the background.

The reason for same segmentation results by these three metrics is

the simple example, which has low variability of diffusion tensors

of the synthetic dataset. The proposed method learned the

relevant and irrelevant distances to construct a desired metric from

supervisory information. With our learned metric, the tensors in

the same label were close to each other, whereas the tensors in

different label had large distances, as shown in figure 3(d). As a

result, the interested region could be correctly extracted from the

background while other three predefined metrics could not.

Further evaluation was performed on noisy synthetic diffusion

tensor fields to assess the robustness. Figure 4(a) shows the noisy

tensor fields with SNR of 15 and the labels. Figure 4(b), (c), (d) and

(e) shows the segmentation results of the Euclidean, J-divergence,

geodesic metrics and our learned metric respectively. The

predefined metrics failed to recognize the regions of interest

again. It can be seen that there are differences between the results

Figure 3. Different types of distances between diffusion
tensors: (a) Euclidean metric, (b) J-divergence metric, (c)
geodesic metric, (d) our learned metric.
doi:10.1371/journal.pone.0092069.g003
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of the three predefined metrics. This may be due to the higher

variability of noisy tensor fields. Our learned distance obtained

correct and accurate segmentations of the interested regions from

the noisy diffusion tensor fields.

Figure 5 illustrates the DSC values of three predefined metrics

and our approach on the noisy diffusion tensor fields at the SNR of

10, 15 and 20. Our approach achieved DSC value of 1 on the

noisy datasets at SNR 15 and 20. There was slight decrease of

DSC value on the datasets at SNR of 10. The DSC values of

predefined metrics ranged from 0.6 to 0.8. The segmentation

results of our approach had higher DSC values than that from the

predefined metrics at the three noise levels. Segmentation results

from the geodesic metric had relatively high DSC values than J-

divergence and Euclidean metrics. These results demonstrate the

robustness of the proposed distance metric learning approach.

Results on Human Brain DTI Datasets
We further evaluated our proposed approach on the human

brain DTI datasets. Functional Magnetic Resonance Imaging of

the Brain’s Diffusion toolbox [48] was utilized to perform the

preprocessing of the DTI datasets. Distortion correction was first

performed to remove the eddy currents and motion artifacts.

Diffusion tensors were estimated using a least square method.

Geometry and orientation parameters were then calculated for

valid tensors at each voxel. Figure 6 shows three scalar maps and

the color map for principal orientations of one axial slice. The

scalar maps characterize different types of diffusion properties at

each voxel. The color map represents the principal orientations of

diffusion tensors at each voxel. Red, green and blue color refers to

the orientations of left-right, anterior-posterior and superior-

inferior.

To further evaluate the performance, we have performed the

experiments of the corpus callosum segmentation in the brain DTI

datasets. This important structure is the major fiber tract which

connects the homologous cortical areas of the left and right

hemisphere [49]. The three dimensional (3D) surface of the corpus

callosum can be delineated with the powerful DTI, while it is

difficult for the traditional MRI modalities. To reduce the

computational time, we only kept voxels in the skull in the

experiments. Since there was no ground truth of corpus callosum,

manual segmentations were provided as the ground truth for

comparisons. Manual segmentations were performed by a

research associate who had 3 years of experience in MR

measurement. The segmentation results were validated by an

expert radiologist, who had over 10 years of experience in dealing

with brain anatomy.

Figure 7 shows the experiment results of the corpus callosum

segmentation on one brain DTI dataset. The first column shows

the provided labels on the colored map at multiple views.

Initialized labels of the corpus callosum and the background were

manually defined at a few axial slices with the FA map. The

second column shows the manual segmentation results. The third,

fourth and fifth columns show the boundaries of the segmentation

results on axial, sagittal and coronal views by the Euclidean, J-

divergence and geodesic metric respectively. The last column

illustrates the boundary of the corpus callosum segmentation

Figure 4. Segmentation results on the synthetic dataset with noise: (a) the noisy dataset, (b) Euclidean metric, (c) J-divergence
metric, (d) geodesic metric, (e) our learned metric.
doi:10.1371/journal.pone.0092069.g004
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results using our approach. With the help of 3D Slicer tool [50],

we visualized the 3D surfaces of the manual segmentation (violet),

segmentation results of Euclidean (blue), J-divergence (green),

geodesic metric (yellow) and our approach (red), as shown in

figure 8. As manual segmentation for reference, our approach

yielded better segmentation results compared with the classical

metrics. The boundary of the corpus callosum is correctly

delineated with the learned metric. The classical metrics are not

enough discriminative to take over the boundary at some

locations. Figure 9 shows the 3D surfaces of the segmentation

results for DTI datasets from another eight subjects. Labels of the

interested regions and the background were defined similar to the

above experiment.

Figure 10 shows the DSC values of corpus callosum segmen-

tation using our approach and predefined metrics for each subject.

Our method achieved relatively high accuracies with DSC values

around 0.90. The DSC values of the J-divergence and geodesic

metrics were ranged from about 0.70 to 0.80, and the geodesic

metric had relatively higher DSC values. The Euclidean

approaches obtained the lowest DSC values for each subject.

Both qualitative and quantitative experiments demonstrated the

superiority of our proposed approach compared to three classical

metrics in the graph based semi-supervised learning framework.

The straightforward Euclidean distance doesn’t consider the

physical meaning of the diffusion tensor. The J-divergence metric

and geodesic metric characterize the distance between tensors

using the difference of their corresponding Gaussian distributions.

Therefore, they obtained better results than Euclidean distance.

However, the classical metrics provide fixed weights of geometry

and orientation distances, which could not well differentiate the

Figure 5. Dice similarity coefficients (DSC) of segmentation results using our approach and three predefined metrics on noisy
synthetic datasets at different noise levels.
doi:10.1371/journal.pone.0092069.g005

Figure 6. Scalar maps and orientation color maps of one axial slice from real dataset of one subject, (a) mean diffusion (MD) map,
(b) fractional anisotropy (FA) map, (c) volume ratio (VR) map, (d) a color map for representing principal orientations of diffusion
tensors.
doi:10.1371/journal.pone.0092069.g006
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corpus callosum from the background. In contrast, our approach

could learn an optimal mapping over the selected geometry and

orientation distances based on the supervisory information. Under

the learned metric, the corpus callosum can be correctly extracted

from the complex surrounding structures.

The computational time of segmentation corpus callosum for

one dataset was 5, 9 and 10 minutes for Euclidean, J-divergence,

geodesic metrics respectively. Our approach required about one

hour to learn an optimal metric for the segmentation. The

computational time of metric learning is longer than the

predefined metrics.

Discussion

The powerful DTI technique can provide wealthy diffusion

information, which can help distinguishing different anatomical

structures and white matter tracts. Plenty of studies have

developed many predefined metrics for different segmentation

tasks in the last decade [12,13,15,19,42,43,51–54]. In this study,

we presented to learn an optimal metric adaptive to the DTI

segmentation application. To the best of our knowledge, this is the

first time to learn metrics between diffusion tensors for DTI

segmentation.

Learning metrics has several advantages over predefined

metrics. An optimal distance metric can be automatically learned,

which guarantee the closet match to the true target of interest in

particular applications. In contrast, predefined metrics require

adequate professional knowledge to obtain the properties of

interested anatomical structures for different tasks. Tuning

parameters are always performed on a large number of datasets

Moreover, the parameters obtained from one group of datasets

may not be optimal for another group due to difference in subject

anatomies [55], image parameters [56], and even the scanner

types [57]. The characteristics of brain structures have been found

Figure 7. Segmentation results of the corpus callosum from brain DTI of one subject. Axial (1st row), sagittal (2nd row) and coronal (3rd
row) views are showed. The 1st column is the user labels. The 2rd column is the manual segmentation results. The 3rd, 4th and 5th columns are
results corresponding to Euclidean, J-divergence and geodesic metrics. The 6th column shows results of our proposed method.
doi:10.1371/journal.pone.0092069.g007

Figure 8. Surfaces of the corpus callosum segmentation: manual segmentation (violet), Euclidean metric (blue), J- divergence
metric (green) and geodesic metric (yellow) and our learned metric (red).
doi:10.1371/journal.pone.0092069.g008
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to be altered with normal aging [55,58]. The diffusion tensor

imaging can also be influenced by imaging parameters and MR

scanners [56,57]. By contrast, the distance metric learning is not

susceptible to those factors with our adopted approach.

In this paper, we selected several geometry and orientation

features to formulate the original discriminative distance. In our

study, a nonlinear mapping over the original distance was learned

to construct an optimal metric. Feature selection highly contrib-

utes the improvement of the segmentation performance. The three

geometry features, including MD, FA and VR, have also been

frequently used for differentiating different anatomical structures

[16,17]. The orientation feature captures the principal orientation

of the water diffusion, which has been demonstrated to be able to

distinguish several anatomical structures and white matter tracts

[6,18,37]. However, the orientation distance may have limitations

for some special applications. It may be not able to distinguish

tensors with homogeneity of orientation, and justify the branching

and crossing of white matter fibers. In future work, we will explore

to develop other types of distances to overcome these limitations.

The distance metric learning was performed in a graph based

semi-supervised learning approach. A large number of approaches

[20,21,23,25,27,28,38,45] have been developed to learn metric in

Figure 9. Surfaces of the corpus callosum segmentation results from another 8 datasets using our proposed approach.
doi:10.1371/journal.pone.0092069.g009

Figure 10. Dice similarity coefficients (DSC) of corpus callosum segmentations using our approach and three predefined metrics on
all 9 subjects.
doi:10.1371/journal.pone.0092069.g010
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machine learning and pattern recognition tasks. In future study,

other distance metric learning approaches will be investigated with

different type of segmentation methods, such as level set approach

and atlas based method [59]. In addition, the distance metric

learning will be explored to be applied in other DTI processing

and analysis, such as image visualization, registration, interpola-

tion, understanding and template construction.

One possible limitation of our approach is the relatively high

computational time compared to predefined metrics. In the

experiments, relatively longer time was required for our approach

than segmentations by the predefined metrics. More time is

required to optimize the metrics to an optimal one for an accurate

segmentation. The operations in the optimization process have

high potential to be accelerated using the advanced graphic

processing unit. Besides, the learned metrics can be propagated to

generate a good initial metric for a new dataset due to the similar

properties of segmenting the same structure. A good initial metric

could accelerate the convergence with reduced number of

iterations, which thus decreases the computational time.

Conclusion

In this paper, we have developed an effective and robust

approach to learn adaptive distance metrics for DTI segmentation

by a graph based semi-supervised learning model. An original

discriminative distance vector was formulated with combination of

geometry and orientation distances. A nonlinear mapping over the

original distance was then optimized to construct an optimal

metric with the graph based semi-supervised learning model. The

constructed optimization problem was efficiently solved with a

gradient descend approach. The performance of the proposed

approach was evaluated on both synthetic and real DTI datasets.

Experiments on nine human brain datasets were performed to

demonstrate the robustness and reproducibility. The superiority of

our approach was validated by comparing three classical metrics

in the graph based semi-supervised learning framework.
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