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1 | INTRODUCTION

Ran Wei' | BinLiang’ | Jianrong Dai’

Abstract

Purpose: The record of daily quality control (QC) items shows machine per-
formance patterns and potentially provides warning messages for preventive
actions. This study developed a neural network model that could predict the
record and trend of data variations quantitively.

Methods and materials: The record of 24 QC items for a radiotherapy machine
was investigated in our institute. The QC records were collected daily for 3 years.
The stacked long short-term memory (LSTM) model was used to develop the
neural network model. A total of 867 records were collected to predict the record
for the next 5 days. To compare the stacked LSTM, the autoregressive inte-
grated moving average model (ARIMA) was developed on the same data set.
The accuracy of the model was quantified by the mean absolute error (MAE),
root-mean-square error (RMSE), and coefficient of determination (R?). To vali-
date the robustness of the model, the record of four QC items was collected for
another radiotherapy machine, which was input into the stacked LSTM model
without changing any hyperparameters and ARIMA model.

Results: The mean MAE, RMSE, and R? with 24 QC items were 0.013, 0.020,
and 0.853 in LSTM, while 0.021, 0.030, and 0.618 in ARIMA, respectively. The
results showed that the stacked LSTM outperforms the ARIMA. Moreover, the
mean MAE, RMSE, and R? with four QC items were 0.102, 0.151,and 0.770 in
LSTM, while 0.162, 0.375, and 0.550 in ARIMA, respectively.

Conclusions: In this study, the stacked LSTM model can accurately predict the
record and trend of QC items. Moreover, the stacked LSTM model is robust when
applied to another radiotherapy machine. Predicting future performance record
will foresee possible machine failure, allowing early machine maintenance and
reducing unscheduled machine downtime.
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These sequential sets of the record of daily QC items
measured over successive days can be considered

Linear accelerators (Linacs) undergo daily quality con-
trol (QC) items to ensure that radiation treatments are
delivered safely and accurately, and that they meet the
quality and safety criteria of AAPM TG 142." Daily
QC items are normally performed by the radiotherapist
using a conventional QC instrument or phantom.

time series. Therefore, in the context of time-series
predictive modeling, the question of predicting the
future record and trend has been raised.? Traditionally,
statistical modeling techniques like to autoregres-
sive integrated moving average model (ARIMA)® and
their variations (autoregressive model (AR), moving
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average model (MA), autoregressive moving average
model (ARMA)),*=6 only capture the linear elements of
the time series and may not be sufficient for the daily
QC record. Nonlinear time series are best analyzed
using recurrent neural network (RNN). However, RNN
is difficult to deal with long time series.” Therefore, the
long short-term memory (LSTM) network is proposed
to tackle the forgetting problem? a type of RNN. LSTM
has shown good performance in various fields (finance,
public transportation, astronomy, environmental science,
and medicine).” In the previous studies of the predictive
model development about daily QC in Linac, Li et al?
used artificial neural networks (ANNs), and ARMA on
5-year daily beam QC record, which showed ANN had
better prediction performance than ARMA. Puyati et al.°
used statistical process control and ARIMA to forecast
QC. However, there is no good performance to predict
QC record and trend in Linac, and time lags exist in the
predictive model.

The daily QC record is used to track the Linac’s long-
term stability when processing large quantities of record.
With these records, medical physicists could calibrate
the baseline and monitor the Linac’s state to predict
variation cycles and take preventive actions. To under-
stand the underlying structure and functions that pro-
duce the observed QC tests, an appropriate modeling
tool is needed to extract and analyze the longitudinal
record of daily QC items and predict future trends.

In this study, a generalized LSTM model was devel-
oped to predict the record and trend of daily QC items
for two radiotherapy machines. Additionally, this study
emphasized on discovering the common behaviors of
the Linac performance so that physicists can be more
confident in predicting the machine’s future behavior
and taking action in a planned way before the tolerance
level is reached. Finally, to compare and provide con-
text for our results, we also developed a prediction model
with ARIMA on the same data set.

2 | METHODS AND MATERIALS

2.1 | Data acquisition
The Varian Edge Linacs (Varian Medical Systems, Inc.,
Palo Alto, CA) was installed and commissioned in our
institute in May 2017. The machine performance check
(MPC) is equipped for daily QC tests on the Edge Linac.
MPC is a fully integrated KV and MV image-based tool
to examine and evaluate the machine’s performance.'”
On every workday, MPC process ran about 5 min by
radiation technician. Twenty-four QC items for 6 MV X-
ray were run, including isocenter, collimation, gantry, and
couch tests. The QC tests are highly automated, and the
user only should set up the IsoCal phantom and bracket
on the treatment couch, then beam on for the predeter-
mined energy. MPC application has been evaluated as

a Linac daily QC tool by some investigators.'®'# In this
study, the records of 24 QC items based on MPC were
collected at our institution using Varian Edge for more
than 3 years, from August 2017 to October 2020. A total
of 867 data were collected to predict the record for the
next 5 days.

2.2 | Data preprocessing

Preprocessing data are a significant step before build-
ing a model. In this study, performing data preprocess-
ing included cleaning, interpolation, normalization, and
data split. The duplicate data were deleted at the start-
ing point. Cubic interpolation was used to double the
amount of data to improve the prediction accuracy. The
data were normalized for the model, ranging from —1 to
1. The data were divided into three sets: 70% for train-
ing, 15% for validation, and 15% for testing. The training
set and the validation set were used to train the model
with different hyperparameter combinations (see Sec-
tion 2.3.2). The testing set was used to assess the per-
formance of the model with the optimal hyperparameter
combination.

2.3 | Building LSTM network

2.3.1 | LSTM network

LSTM is very powerful in solving sequence prediction
problems because it can store previous information,'®
which is essential to predict the future record and trend
of daily QC items. Through the standard recurrent layer,
self-loops, and the internal unique gate structure, the
LSTM network effectively improves the forgetting and
gradient vanishing problem existing in the traditional
RNN2 Besides, LSTM can learn to make a one-shot
multi-step prediction useful for predicting the time series.
An LSTM neural network unit combines four gates: an
input gate, a cell state, a forgotten gate, and an output
gate (Figure 1).'® The forget gate is used to determine
which messages pass through the cell, then enter the
input gate, which decides how many new messages to
add to the cell state, and finally decide the output mes-
sage through the output gate."”

The original LSTM model is comprised of a sin-
gle hidden LSTM layer followed by a standard feed-
forward output layer. The stacked LSTM is an exten-
sion to this model that has multiple hidden LSTM layers
where each layer contains multiple memory cells.” The
stacked LSTM hidden layers make the model deeper,
more accurately earning the description as a deep learn-
ing technique. It is the depth of neural networks that are
attributed to the approach’s success on various chal-
lenging prediction problems.'® The stacked LSTM is
now a stable technique for challenging sequence predic-
tion problems.'® An LSTM model with many LSTM layers
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FIGURE 2 The stacked long short-term memory (LSTM)
architecture

is a stacked LSTM architecture (Figure 2)2° An LSTM
layer above provides a sequence output rather than a
single value output to the LSTM layer below. Specifically,
one output per input time step is one output time step for
all input time steps. Therefore, in this study, the stacked
LSTM was selected.

For the ARIMA, there are three critical parameters
in ARIMA: p (the past value used to predict the next
value), q (past prediction error used to predict future val-
ues), and d (order of differencing)?’?? ARIMA param-
eter optimization requires much time. Therefore, in this
study, ARIMA selected the combination (5, 1, 0).

2.3.2 | Model training

The experiment's LSTM model was built on the Keras
APl package (TensorFlow2.0) in Python 3.6 settings
(Python Software Foundation, Wilmington, DE). In this
study, networks with two LSTM layers were investigated.
The loss value was evaluated by the root-mean-square
error (RMSE). The activation functions used the rectified
linear units (Relu) function. A greedy coordinate descent
method?® was employed to find the optimal hyperparam-
eter of the model.

The length of time lags, the optimizers, the learning
rates, the number of epochs, the number of hidden units,
and the batch sizes were among the tuning parame-
ters. First, we sought to find the optimal length of time
lags when the optimizer was Adam, the learning rate
was 0.01, the number of epochs was 150, the number
of hidden units was 50, and the batch sizes were 32.
Subsequently, we determined the type of optimizer with
the optimal length of time lags. Next, the appropriate

learning rate was determined by comparing results from
various learning rates. Then, we sought to find the opti-
mal number of epochs and hidden units in turn. Lastly, to
determine the optimal batch size, a similar comparison
was performed. The batch size was adjusted to avoid
errors from memory shortage. By testing the parameter
values of different combinations, and the model suitable
for the data was finally found.

Hyperparameters selection and optimization play an
important role in obtaining superior accuracy with the
LSTM network2* The validation set's mean absolute
error (MAE) was used to evaluate the model’'s per-
formance for each parameter combination. The inves-
tigated hyperparameters and their range are listed in
Table 1.

2.3.3 | Evaluation of predictive accuracy

To evaluate the error between the predicted and
observed values in the testing set, the RMSE, MAE, and
coefficient of determination (R?) were selected.

24 | The trend lines

The trend lines were used to analyze the trend of Linac
operating status and thereby help medical physicists
decide whether to take preventive actions. The stacked
LSTM model was applied to predict the next 5-day
record of 24 QC items in this study. The trend lines were
plotted by the polynomial fit from five-step-head predic-
tive values. If the trend line exceeds the tolerance value
of the QC item, preventive measures need to be taken.

2.5 | Effectiveness evaluation

To evaluate the performance of the stacked LSTM
model, the record of daily QC items was investigated for
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TABLE 1 The summary of long short-term memory (LSTM) hyperparameters investigated in this study, and the recommended
configurations, and the impact level of each parameter

Recommended
Hyperparameters Range configuration Impact
Length of time lags (1,5,10, 15, 20, 30, 50) 15 Middle
Optimizer {Adam, RMSprop, Adagrad, Adadelta} Adam High
Learning rate (0.0001,0.001,0.01,0.1) 0.001 High
Number of epochs (50, 100, 150, 200, 250, 300) 300 Low
Number of hidden units per layer (10, 30, 50, 70, 100) 50 Middle
Batch size (8,16,32,64, 128, 256) 32 Low

another radiotherapy machine. The evaluation data set
was collected from the Novalis Tx (Varian, Palo Alto, CA)
machine between May 2020 and November 2021. A total
of 415 records were collected. On every workday, the
daily QC item was measured by the technician using the
QUICKCHECK™ebline (PTW, Freiburg, Germany) phan-
tom. The records of four QC items—output constancy,
beam symmetry along gun target direction (GT) and
left-right direction (LR), and beam quality factor (BQF)
for 6 MV X-ray—were selected. The records of these
four QC items were input into the stacked LSTM model
without changing any hyperparameters chosen for Sec-
tion 2.3.2 and ARIMA model. Then predictive accuracy
was evaluated by the RMSE, MAE, and R? between the
predicted and observed values. Finally, comparison of
predicted and observed record of four QC items based
on Quickcheck was plotted. Those aimed to observe the
accuracy of the prediction and assess the robustness of
the stacked LSTM model.

3 | RESULTS

3.1 | Hyperparameter tuning in LSTM
Figure 3 shows the MAE (in a relative unit) as a func-
tion of time lags, optimizers, learning rates, epochs, hid-
den units, and batch sizes. The optimal hyperparameter
value is summarized in Table 1. Among them, the learn-
ing rate had the greatest impact on the model. The best
performance was set to 0.001 of the learning rates, and
the worst was set to 0.1, causing up to 0.039 difference
in relative MAE. Furthermore, the type of optimizer had
the second greatest impact on the model. In compari-
son, the length of time lags and the number of hidden
units demonstrated only a modest impact on the model's
predictive performance. Finally, the number of epochs
and the batch size showed little impact on the predictive
accuracy.

3.2 | Predictive performance evaluation

Table 2 shows the performance of the stacked LSTM
model in predicting daily QC items based on MPC using

the optimal hyperparameter and ARIMA. The mean
MAE, RMSE, and R? with 24 MPC items were 0.013,
0.020, and 0.853 in LSTM, while 0.021, 0.030, and
0.618 in ARIMA, respectively. LSTM performed better
than ARIMA in 23 MPC items with the smaller MAE
value, smaller RMSE value, and higher R?, except for
gantry relative (LSTM: MAE = 0.006, RMSE = 0.007,
and R? = 0.095; ARIMA: MAE = 0.004, RMSE = 0.006,
and R? = 0.383). The best predictive performance of
LSTM was couch rotation (MAE = 0.001,RMSE = 0.004,
and R? = 0.975), but the worst was gantry relative
(MAE = 0.006, RMSE = 0.007, and R? = 0.095). Addi-
tionally, Figure 4 shows the comparison of model per-
formance in terms of the coefficient of determination
(R?). The R? value of LSTM is higher point than ARIMA
in Figure 4, except for the R? value of gantry rela-
tive. In general, the stacked LSTM outperformed the
ARIMA.

Figure 5 depicts three representative cases (beam
center shift, beam output change, and beam uniformity
change) of the observed versus the predicted curves
using the stacked LSTM model with the optimal hyper-
parameter combination in testing data.

3.3 | The trend lines

The weekly trend line for the beam is shown in Figure 6.
All predictive values were within the tolerance. The
trend was that the beam center shift drops but remains
at normal-stage levels. The trend of the beam output
change and beam uniformity change rose, located in the
normal range. This provided the opportunity to adjust the
machine.

3.4 | Validation of effectiveness

Table 3 shows the performance of the stacked LSTM
model in predicting four QC items based on Quickcheck
without changing any hyperparameters and ARIMA. The
mean MAE, RMSE, and R? with four QC items were
0.102,0.151,and 0.770 in LSTM, while 0.162,0.375 and
0.550 in ARIMA, respectively.



MA ET AL.

JOURNAL OF APPLIED CLINICAL

MEDICAL PHYSICS L2

MAE

MAE

MAE

0.08- 0.3+
0.064 T r 0.2+
0.04- w
é 0.1
0.02-
00 0.0 T
.00 T T
-0.02 T T T T T T T 0.1 T T T T
1 5 10 15 20 30 50 Adam RMSprop Adagrad Adadelta
Time lags Optimizers
(a) (b)
0.5+
0.020-
0.4+
0.3 0.015+
0.2+ w
< 0.010
s 0.010:
0.1-
0.0 0.005-
0.1 T T T T 0.000: T T T T T T
0.0001 0.001 0.01 0.1 50 100 150 200 250 300
Learning rate Epochs
(c) ()
0.10- 0.08
0.06-
0.05-
w 0.04-
g
0.02-
.00 T -
-0.05 T T T T T -0.02 T T T T T T
10 30 50 70 100 8 16 32 64 128 256
Number of hidden units Batch size
(e) ®
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TABLE 2 The accuracy of the stacked long short-term memory (LSTM) and autoregressive integrated moving average model (ARIMA)
model for 24 quality control (QC) items based on machine performance check (MPC)
MPC test MAE RMSE R2
Categories QC items LSTM ARIMA LSTM ARIMA LSTM ARIMA
Isocenter Size (mm) 0.002 0.006 0.003 0.008 0.915 0.399
MV imager projection offset (mm) 0.010 0.013 0.020 0.020 0.906 0.902
KV imager projection offset (mm) 0.013 0.015 0.018 0.024 0.915 0.859
Collimation Max offset leaves A (mm) 0.010 0.009 0.012 0.013 0.906 0.901
Max offset leaves B (mm) 0.008 0.008 0.010 0.012 0.888 0.860
Mean offset leaves A (mm) 0.007 0.009 0.010 0.013 0.912 0.849
Mean offset leaves B (mm) 0.006 0.008 0.008 0.011 0.894 0.823
Jaw X1 (mm) 0.012 0.013 0.018 0.019 0.872 0.847
Jaw X2 (mm) 0.011 0.013 0.019 0.019 0.828 0.823
Jaw Y1 (mm) 0.017 0.044 0.022 0.062 0.931 0.465
Jaw Y2 (mm) 0.017 0.043 0.022 0.057 0.935 0.557
Rotation offset (°) 0.030 0.047 0.039 0.064 0.732 0.278
Gantry Absolute (°) 0.003 0.006 0.005 0.008 0.808 0.462
Relative (°) 0.006 0.004 0.007 0.006 0.095 0.383
Couch Lateral (mm) 0.005 0.012 0.006 0.016 0.918 0.393
Longitudinal (mm) 0.004 0.010 0.006 0.014 0.947 0.658
Pitch (°) 0.001 0.002 0.002 0.003 0.875 0.514
Roll (°) 0.002 0.004 0.002 0.005 0.877 0.406
Rotation (°) 0.001 0.002 0.001 0.004 0.975 0.436
Vertical (mm) 0.008 0.016 0.011 0.021 0.870 0.520
Rotation-induced couch shift (mm) 0.008 0.017 0.011 0.024 0.909 0.565
Beam Center shift (mm) 0.014 0.027 0.021 0.037 0.874 0.611
Beam output change (%) 0.069 0.098 0.120 0.139 0.931 0.907
Uniformity change (%) 0.054 0.082 0.078 0.129 0.765 0.412
Mean 0.013 0.021 0.020 0.030 0.853 0.618

Abbreviations: MAE, mean absolute error; RMSE, root-mean-square error.

The R? value of LSTM is higher point than ARIMA
for four QC items in Figure 7. Figure 8 depicts four QC
items (output dose, Symmetry GT, Symmetry LR, and
Beam quality factor) of the observed versus the pre-
dicted curves using the stacked LSTM model without
changing any hyperparameters based on Quickcheck.

4 | DISCUSSION

This study demonstrates the need to tuning the hyperpa-
rameters using a deep LSTM model for daily QC items
to obtain good predictive results. The learning rate deter-
mines how fast your neural net “learns.” The challenge of
using a learning rate is that their hyperparameters must
be defined in advance, and they depend heavily on the
type of model and problem. Adaptive gradient descent
algorithms (Adagrad, Adadelta, RMSprop, Adam) pro-
vide a heuristic approach without requiring expen-
sive work to manually tuning hyperparameters for the

learning rate?® According to the MAE value (Figure 3),
Adam and learning rate setting to 0.001 was recom-
mended to use in the stacked LSTM model. Besides,
when adjusting the different lengths of time lags, the
LSTM predictive effect will be delayed (Figure 9). R?
value of the beam center shift is 0.603 (the lengths of
time lag = 1), while R? value of the beam center shift
is 0.874 (the lengths of time lag = 15). Lag observa-
tions for a univariate time series can be used as time
lags for an LSTM model, which can improve forecast
performance.

This is the first study to implement a stacked LSTM
model for daily QC record prediction to the best of
our knowledge. It is one of the first few attempts to
develop and evaluate a single generic stacked LSTM
model. The stacked LSTM model allowed connections
through time and provided a way to feed the hidden lay-
ers from previous steps (long-term and short-term) as
additional inputs to the next stage, in contrast to ear-
lier studies that only focused on studying the power
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TABLE 3 The accuracy of the stacked long short-term memory (LSTM) and autoregressive integrated moving average model (ARIMA)

model for four quality control (QC) items based on Quickcheck

Quickcheck MAE RMSE R2

Categories QC items LSTM ARIMA LSTM ARIMA LSTM ARIMA

Beam Output dose 0.231 0.458 0.373 1.223 0.741 0.309
Symmetry GT 0.095 0.096 0.121 0.145 0.792 0.691
Symmetry LR 0.072 0.075 0.094 0.103 0.704 0.641
Beam quality factor 0.011 0.020 0.017 0.028 0.845 0.561

Mean 0.102 0.162 0.151 0.375 0.770 0.550

Abbreviations: GT, gun target direction; LR, left-right direction; MAE, mean absolute error; RMSE, root-mean-square error.

of ANN? The stacked LSTM is effective at predicting
daily MPC record. However, the generic stacked LSTM
is poor in predicting the record of the gantry relative
with two times cubic interpolation. In Figure 8a, the
predictive range is significantly shifted up and slightly
delayed. According to Wang et al. study?® about “Why
are the ARIMA and SARIMA not sufficient?,” we guess
that LSTM predictive performance is related to the sig-
nal frequency. Interpolation reduces high-frequency sig-
nals and can greatly improve the predictive ability of
the stacked LSTM model. Therefore, we try four times
cubic interpolation and six times cubic interpolation in
the stacked LSTM model, which significantly improves
the accuracy performance (Figure 10b,c). The predictive
performance of the gantry relative with six times cubic

interpolation is great (R? = 0.978) in the stacked LSTM
model.

For all daily MPC tests, the predicted record locates
within the clinical tolerances (AAPM TG-142),' pro-
viding a window of opportunity to prevent the perfor-
mance issue in advance. However, in the actual situa-
tion, besides keeping parameters within the tolerance, a
clinical physicist should monitor trends in the machine
performance?’ and to know when the Linac needs to be
maintained, thereby reducing the chance of Linac down-
time. Here, a five-step-ahead prediction is appropriate to
provide trends in Linac status. If the data point is within
the tolerance, the newly entered data can be monitored.

To illustrate the robustness of the LSTM model, the
record of four QC items based on Quickcheck in another
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The R? of 4 QC items based on Quickcheck in LSTM and ARIMA
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FIGURE 7 Comparison graph of model performance for four
quality control (QC) items based on Quickcheck in the coefficient of
determination (R2). The purple line means long short-term memory
(LSTM), and the blue line means autoregressive integrated moving
average model (ARIMA)

Varian Linac was applied. LSTM performed better than
ARIMA in four QC items with the smaller MAE value,
smaller RMSE value, and higher R? (Table 3). It indi-
cates an idea that others don’t have to optimize these
parameters for each machine, and the model is rea-
sonably robust. The optimal hyperparameters are rec-
ommended to select in the stacked LSTM model when
applied to another Linac.For a clinical routine, itis unnec-
essary to retrain the neural network each day with the
daily acquired QC record.

If the stacked LSTM model works, it will be a great
tool for medical physicists who are in charge of Linac’s
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routine QC. It is possible that the model (LTSM) is overfit-
ted resulting better performance compared to reference
model (ARIMA). However, there exist some limitations
in this study. Firstly, some hyperparameters correlate
with each other and can result in different performances
when optimized simultaneously rather than tuning?®
Secondly, due to prediction models being based on large
learning-phase data sets, the predictive models are not
designed to detect large sudden one-off jumps in data
such as might be expected with a Linac component fail-
ure.

Predictive QC is more suited to detecting and pre-
dicting gradual drifts and failures that repeat at regu-
lar intervals. The present study results suggest that the
approach of predictive QC based on MPC tests is feasi-
ble. Moreover, the stacked LSTM model is robust when
applied to another radiotherapy machine with four QC
items based on Quickcheck. In future work, the QC items
of other types of radiotherapy machines will be applied
in the stacked LSTM model, which should be fine-tuned
to obtain better predictive performance.

5 | CONCLUSIONS

This study developed and evaluated a generalized
stacked LSTM model for daily QC prediction. More-
over, the stacked LSTM model is robustness applied in
another radiotherapy machine. This model has a better
performance than the ARIMA model and can reduce the
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