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Purpose: In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl 

methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass 

(B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds 

were tested for mechanical strength and the ability to promote new bone formation in vivo.

Patients and methods: To evaluate the potential of each scaffold in bone regeneration, 

ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels 

to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB 

nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-

sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation.

Results: Results from the present study demonstrate that PIB nanogels/B-MBG composites 

showed greater improvement in mechanical strength when compared to PIB nanogels alone. In 

vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects 

containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. 

Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were 

degraded over time and bone remodeling occurred in the surrounding bone defect as early as 

4 weeks post-implantation.

Conclusion: The results from the present study indicate that PIB nanogels are a potential 

bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as 

an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gela-

tion once body temperature is reached. Furthermore, its combination with B-MBG scaffolds 

improves the mechanical properties and ability to promote new bone formation when compared 

to PIB nanogels alone.

Keywords: bone graft, boron, osteoporosis, osteoporotic defect, mesoporous bioactive graft, 

tissue engineering

Introduction
Osteoporosis is a worldwide disease characterized by low bone mass and poor bone 

strength caused by an imbalance between bone forming osteoblasts and bone resorb-

ing osteoclasts.1 An estimated 200 million people are affected worldwide with the 

great majority being women.2 Reports demonstrate that within the lifetime of a patient 

suffering from the disease, 30%–50% of women and 15%–30% of men will suffer at 

minimum one osteoporotic-related fracture.3
 A recent systematic review found that not 

only was life quality for these patients severely decreased, but the incidence of death for 

patients following hip fracture is at least doubled for an age-matched control without 
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such fractures, and is continuously rising.4 Currently the two 

major pharmacological approaches are anabolic agents such 

as parathyroid hormone which stimulates bone formation 

or anti-resorptive agents including bisphosphonates, calci-

tonin, raloxifene, and estrogen which act by inhibiting bone 

resorption.5 Although much research to date focuses on the 

prevention of bone loss by using the abovementioned agents, 

less emphasis has been placed on the repair of defects fol-

lowing fracture while more than 1.5 million fractures occur 

annually in the United States alone.6

To date the replacement and repair of damaged or 

diseased tissues is largely driven by the field of tissue engi-

neering which is an interdisciplinary field that draws on 

a multitude of disciplines including material science, cell 

biology, biotechnology, and biomaterials.7,8 Mesoporous 

bioactive glass (MBG) has been widely used as a bone 

replacement material due to its mesoporous structure which 

increases surface area and allows for preferential osteoblast 

adhesion, proliferation, and differentiation.9,10 Previously 

we have demonstrated that the incorporation of the trace 

element boron plays an important role in bone growth.9,11 

Boron has the ability to stimulate wound healing, facilitate 

the release of osteo-inductive growth factors and cytokines, 

and increase the extracellular matrix (ECM) turnover.9,11,12 

Boron-containing MBG (B-MBG) is an excellent scaffold 

with significantly enhanced osteogenic properties and drug 

delivery capability for tissue engineering compared with 

MBG alone.9

However, MBG as a scaffold for bone repair also has 

drawbacks such as inherent brittleness.13,14 In contrast, 

p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) 

nanogels is a temperature-sensitive cross-linking polymer 

and its dispersion exhibits three phase states (swollen gel, 

flowable sol, and shrunken gel) in accordance with tem-

perature changes. It can be used to treat defects of irregular 

shapes and deformities as an injectable, thermoresponsive, 

biocompatible hydrogel for tissue engineering applications 

which undergoes rapid thermal gelation once the sol form 

reaches body temperature.15,16 Recently, PIB nanogels have 

been applied in interventional therapy for liver tumors and 

vascular occlusion of renal artery as a novel blood-vessel-

embolic material.15,17 However to date, no study has applied 

this new technology for the repair of bone defects. Therefore, 

the aim of the present study was to investigate the role of 

PIB nanogels as a bone substitute material for the repair of 

femur defects in rats. Furthermore, a new composite scaffold 

combining PIB nanogels with B-MBG scaffolds was fabri-

cated and evaluated for material characterization, mechanical 

properties, and in vivo early bone formation in comparison 

to PIB nanogels alone.

Material and methods
Fabrication of PIB nanogels/B-MBg 
composite scaffold
PIB nanogels were fabricated according to the method of 

precipitation polymerization, as previously described.17 

B-MBG was fabricated according to the method of our pre-

vious study.9 Then, B-MBG powder was put into the PIB 

nanogels solution, and stirred for 48 hours at 4°C. The mass 

ratios of B-MBG powder and PIB nanogels in the mixture 

were 1:1 respectively.

characterization of PIB nanogels/B-MBg 
scaffolds
The size of PIB nanogels were determined by dynamic light 

scattering (Zetasizer Nano-ZS 90; Malvern Instruments, 

Malvern, UK) using a helium–neon laser source (λ=633 nm) 

with scattering angle 90°. All samples were diluted with ultra-

pure water to 0.5 mg/mL. The size was measured at the vari-

ous temperatures from 25°C to 40°C with pre-equilibration 

for 5 minutes at each point. The dynamic viscoelastic prop-

erties of nanogel dispersions were obtained using a stress-

controlled rheometer (Kinexus; Malvern Instruments) with a 

parallel plate (Φ=40 mm, gap set at 1.0 mm) in the range of 

20°C–50°C with the following parameters: shear stress =1.0 

Pa, heating rate =5°C/min, and frequency =1.0 Hz.

In vivo bone regeneration
PIB nanogels/B-MBG and PIB nanogels were respectively 

implanted into the right and left critical-sized femur defect 

of mature osteoporotic female Wistar rats. The osteogenic 

properties were then evaluated by histological staining as 

described in the following section.

animals and surgical protocols
Animal feeding and surgical procedures were conducted in 

accordance with the guidelines of Animal Care and Use Com-

mittee of Wuhan University, People’s Republic of China, 

and authorized by the Ethics Committee at the School of 

Dentistry, Wuhan University. All animals were given food 

and water ad libitum. They were kept at room temperature 

under a 12 hour light/dark cycle.

Preparation of ovariectoporosis model
Ten week old mature female Wistar rats weighing between 

200–300 g were used for this experiment. Ten percent 
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chloralic hydras (4 mL/kg body weight) was injected inside 

the abdomen for anesthetization. An osteoporosis model was 

induced by means of bilateral ovariectomy as previously 

described by our group.10,18,19 Briefly, a lumbar bilateral inci-

sion was made where the ovaries were located. The ovarian  

artery and vein were sutured before the removal of the ova-

ries. The muscles and skin were respectively sutured after 

the ovaries had been removed.

Femur defect model and scaffold 
implanting
Femur defect drilling was performed under general anes-

thesia by intraperitoneal injection of sodium pentobarbital 

(40 mg/kg body weight). A linear skin incision of approxi-

mately 1 cm in the distal femoral epiphysis was made bilat-

erally and blunt dissection of the muscles was performed 

to expose the femoral condyle.20,21 Then, a 3 mm diameter 

anteroposterior bicortical channel was created perpendicu-

lar to the shaft axis to remove cancellous bone, by using a 

trephine burr at a slow speed irrigated with saline solution 

to avoid thermal necrosis. The drilled holes were rinsed by 

injection with saline solution in order to remove bone frag-

ments from the cavity.

A total of 18 rats were used for the experiment. PIB nano-

gels and B-MBG/nanogels scaffolds were gently placed in the 

right and left defects of each femur in experimental animals. 

Nine animals were used to confirm the osteoporotic model 

as well as for the control blank defects (data not shown). 

Following equal implantation of each scaffold, muscles and 

skin were sutured respectively. Gentamycin was given by 

intramuscular injection to prevent postoperative infection 

after the incisions were closed.

At each time point of 2, 4, and 8 weeks after femur 

surgery, six rats were sacrificed by cervical dislocation. All 

femurs were then removed for histological processing.

histological preparation and staining
The femur samples were fixed in 4% formaldehyde for 

24 hours at room temperature and then flushed in water 

for 8 hours. Femoral condyles were decalcified in 10% 

ethylenediaminetetraacetic acid (EDTA) for 2 weeks, 

changed twice per week, and then dehydrated in a series of 

graded concentrations of ethanol from 70% to 100%. To 

get a distinct view of the defect, the orientation and align-

ment of femurs were carefully considered during paraffin 

embedding. A series of slices starting at a distance of 1 mm 

proximal from the end of the growth plate with a length of 

2 mm were chosen for evaluation. For analysis of the bone 

regeneration process within the defect, the central region 

of the 2.5 mm diameter defect was defined by analyzing 

a circular contour as area of measurement per slice, thus 

obtaining a consistent volume of interest and to avoid 

including the native bone margins.

Longitudinal serial sections, 4 µm thick, were cut 

and mounted on polylysine-coated microscope slides. 

For descriptive histology, hematoxylin and eosin (H&E) 

staining, Safranin O staining (Sigma S2255; Sigma-Aldrich 

Co., St Louis, MO, USA) and tartrate-resistant acid phos-

phatase staining (Sigma 387A; Sigma Aldrich Co.) were 

performed according to manufacturer’s protocol. Speci-

mens were examined under microscopic light by using an 

Olympus DP72 microscope (Olympus Corporation, Tokyo, 

Japan). The number of osteoclasts was counted under a 

light microscope. Cells containing more than three nuclei 

were defined as osteoclasts as previously described.10,22 

To validate the results, each experiment was repeated at 

least three times.

evaluation of new bone formation
Qualification of the regenerated bone was done according to 

H&E staining by using Image Pro Plus 6.0 software (Media 

Cybernetics, Bethesda, MD, USA). Areas of newly formed 

bone which acquired a bluish-green stain were delineated 

manually and then calculated as the percentage of new 

bone area in total cross-sectional area ([bone area/total 

area] ×100%) as previously described.21,23–25 The number 

of osteoclasts was measured by OsteoMeasure software 

(OsteoMetrics, Decatur, GA, USA) following nomencla-

ture defined by the American Society for Bone and Mineral 

Research. Nine randomly selected representative fields 

(2,048x1,536pix) from each section were identified (original 

magnification ×10) and averaged.

Statistical analysis
All statistical analysis was performed by using SPSS version 

17.0 software (SPSS Inc., Chicago, IL, USA). Data (percent-

age of new bone formation and osteoclast number) were 

expressed as mean ± standard deviation and were analyzed 

using one-way analysis of variance and post hoc Student’s 

t-test. A 5% (P,0.05) level of significance was adopted.

Results
characterization of PIB nanogels/B-MBg 
scaffolds
As shown in Figure 1, PIB nanogels exhibited temperature-

sensitive volume phase transition. The particle size of 
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Figure 1 The size curve of PIB nanogels with a function of temperature, the red 
dash line is the differential curve of the size-temperature curve of PIB nanogels.
Abbreviation: PIB, p(N-isopropylacrylamide-co-butyl methylacrylate).

 nanogels decreased from about 180 nm at 25°C to 80 nm 

at 37°C. Most notably, a sudden change of nanogels’ size 

occurred at 32.5°C, that is, the volume phase transition 

temperature. The temperature sensitive volume phase transi-

tion was attributed to the increase of the hydrophobic force 

between nanogels’ particles in response to the increasing 

temperature. Therefore, concentrated PIB nanogels’ disper-

sion exhibited different phase states depending on the tem-

perature. At lower temperature (,25°C), hydrophilic PIB 

nanogels swelled, and formed a swollen gel phase due to the 

crowded volume effect. PIB nanogels then shrank with the 

increasing temperature, and turned from a swollen gel phase 

into flowable sol phase owing to the volume reduction.

When nanogels’ concentration is below 8.0 wt%, the 

storage modulus (G’) and the loss modulus (G”) of PIB 

nanogels always decreased with the increasing temperature in 

rheological determination (Figure 2). PIB nanogels exhibited 

two phase states: swollen gel phase and flowable sol phase; 

the shrunken gel phase was not observed. The mixture of 

5.0 wt% PIB nanogels dispersion and 6.0 wt% MBG, how-

ever, exhibited three phase states: swollen gel phase, flowable 

sol phase, and shrunken gel phase. Moreover, the addition 

of MBG improved the mechanical strength of PIB nanogels’ 

dispersion (Figure 2).

histological observation and histological 
staining assessment
Histological analysis by H&E and Safranin O staining 

revealed more new bone formation in the defects filled with 

PIB nanogels/B-MBG scaffolds compared to PIB nanogels 

scaffold alone (Figures 3, 4 and 5). In both the PIB nanogels 

and PIB nanogels/B-MBG composite scaffolds, ECM has 

been formed and cells migrated inside the defects as observed 

by H&E staining at 2 weeks (Figure 3A and D). Defects 

treated with PIB nanogels were however sparsely populated 

with fibrous tissue along with a clear border of native bone 

(Figure 3A). On the other hand, signs of newly formed 

irregular bone trabeculae can be seen in the PIB nanogels/ 

B-MBG groups (Figure 3D). At 4 weeks, the density of the 

ECM had increased and extensive newly formed bone was 

observed (Figures 3B, E). Furthermore, the formation of 

new blood vessels randomly dispersed throughout the defect 

area was also observed (Figures 3B, E). The new bone of 

the PIB nanogels/B-MBG groups demonstrated significantly 

higher levels of new bone formation at 4 weeks (Figure 4). 

At 8 weeks, bone islands were observed in the center of 

defects with abundant bone formation peripherally. As 

compared with PIB nanogels scaffolds, significantly higher 
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Figure 2 The dynamic viscoelastic comparison of the mixture of PIB nanogels with B-MBg.
Notes: (A) 8.0 wt% PIB nanogels dispersion; (B) the mixture of PIB nanogels with B-MBg, the concentration of PIB nanogels and B-MBg was 5.0 wt% and 6.0 wt%; (C) the 
mixture of PIB nanogels with B-MBg, the concentration of PIB nanogels and B-MBg was 5.0 wt% and 10.0 wt%.
Abbreviations: PIB, p(N-isopropylacrylamide-co-butyl methylacrylate); B-MBg, boron-containing mesoporous bioactive glass; wt, weight.
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2 weeks

Nanogel

A B C

D E F

B-MBG +
nanogel

4 weeks 8 weeks

Figure 3 h&e staining of PIB nanogels alone (A–C) and B-MBg/nanogels (D–F) at 2, 4, and 8 weeks post-implantation (bar =100 µm).
Notes: Red arrow, residual material; black arrow, fibroblasts; red triangle, osteoblasts; red star, old bone; black star, new bone.
Abbreviations: PIB, p(N-isopropylacrylamide-co-butyl methylacrylate); B-MBg, boron-containing mesoporous bioactive glass; h&e, hematoxylin and eosin.

new bone tissue was observed in the critical sized defects 

of PIB nanogels/B-MBG composite scaffold at 8 weeks 

(Figure 4).

Osteoclastic resorption was evaluated by tartrate-resistant 

acid phosphatase staining. At 2 weeks, shuttle shaped osteo-

clasts were not observed in the defects either peripherally or 

centrally indicating that bone remodeling was not initiated 

(Figure 6A and D). At 4 weeks, osteoclasts were found  lining 

the surface of the osteoporotic trabeculae. No significant dif-

ference was observed between both groups at 2 or 4 weeks 

(Figure 7). At 8 weeks, a gradual increase in osteoclast 

number was observed in both groups and a significantly lower 

number of osteoclasts was found on B-MBG/nanogels scaf-

folds when compared to control nanogels (Figure 7).

Discussion
Although a broad range of bone grafting materials has been 

used for tissue repair application, to date no ideal bone 

substitute material exists. Natural polymer-based materials 

are excellent scaffolds for cell attachment and growth due 

to their tissue-like water content and structure stability, 

however their weak mechanical properties make them sus-

ceptible to pressure when implanted into bone defects.26–28 

Biodegradable synthetic polymer-based materials can readily 

be manufactured into specific shapes with relatively high 

mechanical strength, but they are usually hydrophobic and 

lack biocompatibility.28,29 Ceramic-based materials mimic the 

natural bone mineral,28,30,31 have revealed good bone-bonding 

ability32 and osteoconductivity,30,31 however their fabrication 

procedures are more complex and have the inherent brittle-

ness which limits their use in bone replacement procedures.28 

In order to overcome the disadvantages of either of these 

materials, many composite scaffolds have been fabricated. 

The ideal composite should combine optimum properties 

such as biocompatibility, bioactivity, biodegradability, 

mesopore structure, and mechanical strength.
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Figure 4 early bone regeneration properties of PIB nanogels versus B-MBg/
nanogels scaffolds at 2, 4, and 8 weeks as depicted from histological analysis.
Notes: PIB nanogels containing the incorporation of B-MBG demonstrated significantly 
more early bone formation at all times (*P,0.05).
Abbreviations: PIB, p(N-isopropylacrylamide-co-butyl methylacrylate); B-MBg, 
boron-containing mesoporous bioactive glass.
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2 weeks

Nanogel

A B C

D E F

B-MBG +
nanogel

4 weeks 8 weeks

Figure 5 safranin O of PIB nanogels alone (A–C) and B-MBg/nanogels (D–F) at 2, 4, and 8 weeks post-implantation (bar =100 µm).
Notes: Black star, new bone; red arrow, residual material. (safranin O: sigma s2255; sigma-aldrich co., st louis, MO, Usa).
Abbreviations: PIB, p(N-isopropylacrylamide-co-butyl methylacrylate); B-MBg, boron-containing mesoporous bioactive glass.

2 weeks

Nanogel

A B C

D E F

B-MBG +
nanogel

4 weeks 8 weeks

Figure 6 TraP staining of PIB nanogels alone (A–C) and B-MBg/nanogels (D–F) at 2, 4, and 8 weeks post-implantation (bar =100 µm).
Notes: arrow depicts TraP staining in multinucleated cells bordering either the scaffold surface or peripheral bone surface.
Abbreviations: TraP, tartrate-resistant acid phosphatase; PIB, p(N-isopropylacrylamide-co-butyl methylacrylate); B-MBg, boron-containing mesoporous bioactive glass.

This study focuses on a novel biomaterial, PIB nanogels, 

and its ability to be used as a bone replacement graft. Unlike 

conventional biomaterials, it presents as liquid state at room 

temperature and solidifies at body temperature.15,17 Hydrogels 

are quite similar to natural living tissues, due to their ability 

to retain a significant amount of water or biological fluids. 

They are three-dimensional, hydrophilic, polymeric networks 

which can be used as bone substitutes and drug delivery 

systems.33 There are three principles for an ideal hydrogel 

biomaterial: 1) upon injection, it can be solidified quickly 

without excessive heat generation; 2) gelation temperature 

in vivo should be near body temperature; and 3) the gelation 

products should be biocompatible or bioactive to form a tight 

bone bonding interface.34 PIB nanogels possess all three of 

these properties but lack some of the mechanical properties 

offered by ceramic scaffolds.15,17 Furthermore, the material 

itself undergoes material shrinkage when passing from the 

liquid phase at room temperature to the hardened phase at 

body temperature. Thus their use alone for bone tissue repair 

comes with certain disadvantages.
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As a bioceramic material, MBG has excellent bone-like 

apatite-formation properties and well-ordered mesoporous 

channels.35 Mesoporous structures of biomaterials are of great 

importance for the loading and delivery of cells and drugs and 

can improve angiogenesis for tissue ingrowths and initiate 

osteoblast differentiation and bone regeneration.9 When in 

contact with biological fluids, bioactive glass can mechani-

cally and chemically bond to bone by forming a carbonated 

hydroxyl-apatite layer on the glass surface. This bioactive 

bone-bonding property ensures the implant osteo-integration36 

and makes nanogel one of the leading new and promising 

scaffold materials.37 The main disadvantage of MBG scaffolds 

is their brittleness and high rate of degradation.35

In the present study we explored the physical and bio-

logical properties of the PIB nanogels/B-MBG composite 

scaffolds. When compared to PIB nanogels alone, the 

incorporation of B-MBG greatly improved the mechanical 

strength of the PIB nanogels as well as the bone regenera-

tion abilities of PIB nanogels. H&E and Safranin O staining 

revealed significant new bone formation within the defects 

both peripherally and centrally in the PIB nanogels/B-MBG 

scaffold groups. The results demonstrate that B-MBG plays 

an important role in enhancing bone regeneration. Our 

previous study showed that B-MBG scaffolds have the abil-

ity to control the release of boron ions which promotes bone 

growth.9 We have previously demonstrated that osteoblasts 

seeded in the presence of boron demonstrate significantly 

higher cell proliferation and increase the bone-inducing 

properties by expressing higher levels of collagen 1 and 

Runx2.9 Thus it is reasonable to assume that under the pres-

ent study parameters, the osteoporotic healing of defects 

is largely driven by the release of boron which is able to 

stimulate osteoblast bone-forming behavior. It remains to 

be investigated what role boron may have on osteoclast 

bone-resorbing activity.

In summary, it has been demonstrated that by combining 

the advantages of the two biomaterials, novel PIB nanogels 

with B-MBG were able to efficiently generate high quantities 

of early bone formation in ovariectomized rats. The results 

from the present study indicate that PIB nanogels/B-MBG 

composite scaffolds have the potential to create a new class of 

bone repair biomaterials with consummate properties suited 

for bone tissue engineering.

Conclusion
The fabrication of PIB nanogels/B-MBG enhanced the 

mechanical properties and bone regeneration abilities com-

pared to PIB nanogels alone. The PIB nanogels/B-MBG 

composite has potential future use in bone tissue engineer-

ing especially for the repair of bone defects with irregular 

shapes because of its ability to act as a gel at injection tem-

peratures and solidify at body temperatures. The ordered 

mesoporous structure, temperature-sensitive phase transition, 

enhanced mechanical strength, and biocompatibility make 

PIB nanogels/B-MBG a desired biomaterial for bone tissue 

engineering.
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Figure 7 Number of osteoclasts from histological analysis (TraP staining) in defects 
treated with either nanogels alone or B-MBg/nanogels at 2, 4, and 8 weeks post-
implantation.
Note: A significantly lower number of osteoclasts was observed at 8 weeks (*P,0.05).
Abbreviations: TraP, tartrate-resistant acid phosphatase; B-MBg, boron-containing 
mesoporous bioactive glass.
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