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ABSTRACT 
 

The gene encoding aldehyde dehydrogenase 7 family member A1 (ALDH7A1) has been associated with the 
development and prognosis in multiple cancers; however, the role of ALDH7A1 polymorphisms in oral cancer 
remains unknown. For this purpose, the influences of ALDH7A1 rs13182402 and rs12659017 on oral cancer 
development and prognosis were analyzed. Our resulted showed that ALDH7A1 rs13182402 genotype had less 
pathologic nodal metastasis among betel quid chewer. ALDH7A1 rs13182402 also corresponded to higher 
expressions in upper aerodigestive mucosa, whole blood, the musculoskeletal system and oral cancer tissues 
than did the ALDH7A1 wild type. Furthermore, ALDH7A1 overexpression in oral cancer cells increased in vitro 
migration, whereas its silencing reduced cell migration. Conversely, ALDH7A1 expression in tumor tissues and 
in patients with advanced disease was lower than that in normal tissues and in patients with early-stage 
disease. When the patients were classified into ALDH7A1-high and -low-expression groups, the high-ALDH7A1 
group had superior outcomes in progression-free survival than the low-ALDH7A1 group (5-year survival of 
58.7% vs. 48.0%, P = 0.048) did. In conclusion, patients with high ALDH7A1 expression might, however, have 
more favorable prognoses than those with low ALDH7A1 expression have. 

mailto:ysf@csmu.edu.tw
mailto:cwlin@csmu.edu.tw
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 4557 AGING 

INTRODUCTION 
 

The aldehyde dehydrogenase (ALDH) superfamily, 

encoded by ALDH genes, is crucial for metabolizing 

physiological and pathophysiological aldehydes [1]. 

ALDH polymorphisms or mutations reduce the activities 

of ALDH and increase acetaldehyde, which is toxic, 

mutagenic, and carcinogenic. Acetaldehyde also results 

in deoxyribonucleic acid (DNA) adducts, inhibited 

DNA repair, and DNA methylation [2]. As many as 19 

ALDH genes have been identified within the human 

genome, and several diseases have been proven to be 

associated with ALDH mutations [3]. However, the role 

of individual ALDH genes in cancer development and 

prognosis has been a subject of controversial discussion. 

 

ALDH 7 family member A1 (ALDH7A1), a member of 

the ALDH superfamily, is the enzyme encoded by 

ALDH7A1 [4]. Several studies have proven the 

relationship between ALDH7A1 mutations and 

pyridoxine-dependent seizures in children [5]. 

ALDH7A1 dysfunctions have also been associated with 

other disorders, such as osteoporosis and Huntington’s 

disease, as well as with the mechanism of intracellular 

transport [6–9]. However, the role of ALDH7A1 in 

cancer development and prognosis has remained 

unclear. The roles of the different ALDH7A1 

polymorphisms may vary, moreover, on account of 

different allele mutations and cancer types [10, 11]. 

 

Oral cancer, a subgroup of head and neck squamous cell 

carcinoma (HNSCC), is the sixth most common cancer 

globally and the fourth most common cancer in 

Taiwanese men [12, 13]. Although several innovative 

treatments that are effective in prolonging survival have 

been developed and approved [14, 15], over 50% of 

patients using those treatment agents still progressed to 

recurrent metastatic status, and only 20%–30% of them 

experienced long-term survival [16, 17]. With the 

development of next-generation sequencing, applying 

genetic information to cancer risk prediction, diagnosis, 

and treatment has become more feasible [18–20]. The 

role of genetic polymorphism in cancer development 

and progression is also critical. 

 

In this study, we enrolled patients diagnosed as having 

oral cancer and healthy controls as participants. The 

ALDH7A1 single-nucleotide polymorphisms (SNPs) of 

these participants were retrospectively tested. The 

effects of ALDH7A1 polymorphism were compared for 

all participants, those who habitually chewed betel quid, 

and those who did not chew betel quid. Furthermore, 

published databases, such as Genotype-Tissue 

Expression (GTEx) Portal and The Cancer Genome 

Atlas (TCGA), were used to validate our results. Oral 

cancer tissues and five oral cancer cell lines (SCC-14, 

SAS, CA9-22, HSC-3, and OECM-1) were used to 

investigate the correlations of ALDH7A1 rs13182402 

polymorphisms and ALDH7A1 expression levels. 

Based on this study, we discovered the impact and 

functions of ALDH7A1 polymorphism in oral cancer. 

 

RESULTS 
 

Baseline characteristics 

 

A total of 1332 patients with oral cancer and 1191 

healthy controls were enrolled. All the participants were 

male. No major age difference between the patients and 

healthy controls was observed (P = 0.920). Due to the 

observational study, patients with oral cancer were 

significantly more likely to smoke cigarettes, drink 

alcohol, and chew betel quid than the healthy controls 

were (all P < 0.001). The basic characteristics of the 

participants are presented in Table 1. 

 

ALDH7A1 SNPs 

 

Two ALDH7A1 SNPs, namely rs13182402 and 

rs12659017, were sequenced for all participants. Both 

SNPs are located on chromosome 5. The allele 

frequencies of the SNPs for the East Asian population 

are 5.75% and 70.4%, respectively, as reported by the 

1000 Genomes Project. The clinical significance of 

these two SNPs is not reported in ClinVar (Table 2). 

 

Influence of ALDH7A1 SNPs in oral cancer 

development 

 

The incidences of ALDH7A1 rs13182402 and rs12659017 

polymorphism between the patients with oral cancer and 

healthy controls were comparable. For the AORs, which 

were because of different basic characteristics and 

adjusted by age, smoke cigarettes, drink alcohol, and 

chew betel quid, also showed that cancer development 

risk between these two groups was no different. In 

Taiwan, oral cancer is the largest subgroup of HNSCC, 

and more than 80% of patients with oral cancer habitually 

chew betel quid [21, 22]. Betel quid chewing significantly 

contributes to the development of oral cancer [23–25]. 

Thus, the analysis classified participants into categories of 

alcohol drinkers and betel quid chewers. As shown in 

Table 3, no significant differences were observed between 

oral cancer patients with ALDH7A1 rs13182402 and 

rs12659017 and those with the wild-type (WT) gene. 

Moreover, no associations were observed in the alcohol 

drinker or betel quid chewer (Table 3). 

 

Prognostic effect of ALDH7A1 SNPs in oral cancer 

 

The prognostic influence of ALDH7A1 SNPs in oral 

cancer was also analyzed. Among the patients with and
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Table 1. Basic characteristics of the patients with oral cancer and healthy controls. 

Variable Patients (N = 1332) Controls (N = 1191) P value 

Age (yrs)   
P = 0.476 

 ≧55 705 (52.9%) 628 (52.7%) 

 <55 627 (47.1%) 563 (47.3%) 

Cigarette smoking   
P < 0.001* 

 Yes 1124 (84.4%) 632 (53.1%) 

 No 208 (15.6%) 559 (46.9%) 

Alcohol drinking   
P < 0.001* 

 Yes 635 (47.7%) 236 (19.8%) 

 No 697 (52.3%) 955 (80.2%) 

Betel quid chewing   
P < 0.001* 

 Yes 994 (74.6%) 199 (16.7%) 

 No 338 (25.4%) 992 (83.3%) 

Pathologic staging  

   I + II 622 (46.7%) 

 III + IV 710 (53.3%) 

Pathologic T staging  

   T1 + T2 667 (50.1%) 

 T3 + T4 665 (49.9%) 

Pathologic N staging  

   N0 876 (65.8%) 

 N+ 456 (34.2%) 

Pathologic M staging  

   M0 1322 (99.2%) 

 M1 10 (0.8%) 

Histological differentiation  

   Well 186 (14.0%) 

 Moderate to poor 1146 (86.0%) 

 
Table 2. Detailed information of ALDH7A1 SNPs from dbSNP. 

dbSNP rs13182402 rs12659017 

Organism  Homo sapiens  Homo sapiens 

Position1  chr5:126582456 chr5:126652483 

Nucleotide change A>G G>A 

Variation type SNV SNV 

Minor allele frequency2 G = 0.0575 A = 0.7044 

Gene consequence Intron variant None 

Clinical significance Not reported in ClinVar Not reported in ClinVar 

1GRCh38.p12. 2Minor allele frequency using the East Asian population from 1000 Genomes. 

 
without ALDH7A1 rs13182402 and rs12659017 

polymorphism, no differences in pathologic staging, 

tumor size, lymph node metastasis, distant metastasis, 

or histologic differentiation were observed (Tables 4 

and 5). Among the patients who habitually used betel 

quid, however, those with ALDH7A1 rs13182402 

polymorphism had less pathologic nodal metastasis 

than did those with the normal allele type (AG + GG 

vs. AA, 24.6% vs. 34.6%, P = 0.016; Table 4). After 

adjustment for other factors, ALDH7A1 rs13182402 

represented an independent favorable prognostic 

factor for nodal metastasis (OR [95% confidence 

interval (CI)] = 0.596 [0.382–0.929], P = 0.022; 

Table 6). 



www.aging-us.com 4559 AGING 

Table 3. Odds ratios (OR) and 95% confidence interval (CI) of oral cancer associated with ALDH7A1 genotypic 
frequencies. 

Variable Patients (N, %) Controls (N, %) OR (95% CI) AOR (95% CI)a 

All (both Betel quid chewer and non-betel quid chewer) 

 N = 1332 N = 1191   

rs13182402 

 AA 1161 (87.2%) 1063 (89.3%) 1.000 (reference) 1.000 (reference) 

 AG 166 (12.5%) 125 (10.5%) 1.216 (0.950–1.556) 1.177 (0.868–1.597) 

 GG 5 (0.4%) 3 (0.3%) 1.526 (0.364–6.401) 1.600 (0.293–8.725) 

 AG+GG 171 (12.8%) 128 (10.7%) 1.223 (0.959–1.561) 1.188 (0.879–1.605) 

rs12659017 

 AA 698 (52.4%) 611 (51.3%) 1.000 (reference) 1.000 (reference) 

 AG 534 (40.1%) 490 (41.1%) 0.954 (0.810–1.124) 1.058 (0.863–1.296) 

 GG 100 (7.5%) 90 (7.6%) 0.973 (0.431–1.319) 0.919 (0.634–1.333) 

 AG+GG 634 (47.6%) 580 (48.7%) 0.957 (0.818–1.119) 1.033 (0.851–1.253) 

Alcohol drinker 

 N = 635 N = 236   

rs13182402 

 AA 560 (88.2%) 205 (86.9%) 1.000 (reference) 1.000 (reference) 

 AG 73 (11.5%) 30 (12.7%) 0.891 (0.566–1.403) 0.822 (0.481–1.406) 

 GG 2 (0.3%) 1 (0.4%) 0.732 (0.066–8.117) 0.757 (0.046–12.557) 

 AG+GG 75 (11.8%) 31 (13.1%) 0.886 (0.566–1.386) 0.821 (0.484–1.391) 

rs12659017 

 AA 332 (52.3%) 122 (51.7%) 1.000 (reference) 1.000 (reference) 

 AG 256 (40.3%) 93 (39.4%) 1.012 (0.738–1.386) 1.154 (0.798–1.670) 

 GG 47 (7.4%) 21 (8.9%) 0.822 (0.472–1.432) 0.812 (0.426–1.548) 

 AG+GG 303 (47.7%) 114 (48.3%) 0.977 (0.724–1.317) 1.086 (0.765–1.542) 

Betel quid chewer 

 N = 994 N = 199   

rs13182402 

 AA 868 (87.3%) 174 (87.4%) 1.000 (reference) 1.000 (reference) 

 AG 123 (12.4%) 24 (12.1%) 1.027 (0.664–1.638) 1.024 (0.641–1.638) 

 GG 3 (0.3%) 1 (0.5%) 0.601 (0.062–5.815) 0.608 (0.062–5.936) 

 AG+GG 126 (12.7%) 25 (12.6%) 1.010 (0.638–1.599) 1.007 (0.635–1.597) 

rs12659017 

 AA 524 (52.7%) 114 (57.3%) 1.000 (reference) 1.000 (reference) 

 AG 394 (39.6%) 66 (33.2%) 1.299 (0.934–1.807) 1.289 (0.925–1.796) 

 GG 76 (7.7%) 19 (9.5%) 0.870 (0.506–1.496) 0.866 (0.502–1.494) 

 AG+GG 470 (47.3%) 85 (42.7%) 1.203 (0.885–1.636) 1.195 (0.878–1.628) 

aAdjusted for the effects of age, cigarette smoking, alcohol drinking, and betel quid chewer. 
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Table 4. The distributions of demographical characteristics of ALDH7A1 rs13182402 allele mutation in oral cancer. 

Variable 

Total (N = 1332) Alcohol drinker (N = 635) Betel Quid Chewers (N = 994) 

AA  
(N = 1161) 

AG+GG  
(N = 171) 

P 
value 

AA  
(N = 560) 

AG+GG  
(N = 75) 

P 
value 

AA  
(N = 868) 

AG+GG  
(N = 126) 

P 
value 

Stage 

 Stage I + II 544 (46.9%) 78 (45.6%) 0.413 260(46.4%) 32(42.7%) 0.313 408 (47.0%) 62 (49.2%) 0.356 

 Stage III + IV 617 (53.1%) 93 (54.4%)  300(53.6%) 43(57.3%)  460 (53.0%) 64 (50.8%)  

T staging 

 T1/2 591(50.9%) 570 (49.1%) 0.067 295(52.7%) 37(49.3%) 0.336 446 (51.4%) 60 (47.6%) 0.244 

 T3/4 570 (49.1%) 95 (55.6%)  265(47.3%) 38(50.7%)  422 (48.6%) 66 (52.4%)  

N staging 

 N0 758 (65.3%) 118 (69.0%) 0.193 201(62.7%) 28(37.3%) 0.45 568 (65.4%) 95 (75.4%) 0.016 

 N+ 403 (34.7%) 53 (31.0%)  359(64.1%) 47(62.7%)  300 (34.6%) 31 (24.6%)  

Metastasis 

 M0 1152 (99.2%) 170 (99.4%) 0.626 554(98.9%) 74(98.7%) 0.587 861 (99.2%) 126 (100.0%) 0.386 

 M1 9 (0.8%) 1 (0.6%)  6(1.1%) 1(1.3%)  7 (0.8%) 0 (0.0%)  

Cell differentiated 

 Well 161 (13.9%) 25 (14.6%) 0.433 80(14.3%) 11(14.7%) 0.522 131 (15.1%) 20 (15.9%) 0.453 

 Moderate or poor 1000 (86.1%) 146 (85.4%)  480(85.7%) 64(85.3%)  737 (84.9%) 106 (84.1%)  

 
Table 5. The distributions of demographical characteristics of ALDH7A1 rs12659017 allele mutation in oral cancer. 

Variable 

Total (N = 1332) Alcohol drinker (N = 635) Betel Quid Chewers (N = 994) 

AA  
(N = 698) 

AG+GG  
(N = 634) 

P 
value 

AA  
(N = 332) 

AG+GG  
(N = 303) 

P 
value 

AA  
(N = 524) 

AG+GG  
(N = 470) 

P 
value 

Stage 

 Stage I + II 342 (49.0%) 280 (44.2%) 0.044 154 (46.4%) 138 (45.5%) 0.447 256 (48.9%) 214 (45.5%) 0.163 

 Stage III + IV 356 (51.0%) 354 (55.8%)  178 (53.6%) 165 (54.5%)  268 (51.1%) 256 (54.5%)  

T staging 

 T1/2 364 (52.1%) 303 (47.8%) 0.063 174 (52.4%) 158 (52.1%) 0.505 276 (52.7%) 230 (48.9%) 0.133 

 T3/4 334 (47.9%) 331 (52.2%)  158 (47.6%) 145 (47.9%)  248 (47.3%) 240 (51.1%)  

N staging 

 N+ 233 (33.4%) 223 (35.2%) 0.264 209 (63.0%) 197 (65.0%) 0.323 179 (34.2%) 152 (32.3%) 0.295 

 N0 465 (66.6%) 411 (64.8%)  123 (37.0%) 106 (35.0%)  345 (65.8%) 318 (67.7%)  

Metastasis 

 M0 693 (99.3%) 629 (99.2%) 0.563 328 (98.8%) 300 (99.0%) 0.55 521 (99.4%) 466 (99.1%) 0.441 

 M1 5 (0.7%) 5 (0.8%)  4 (1.2%) 3 (1.0%)  3 (0.6%) 4 (0.9%)  

Cell differentiated 

 Well 99 (14.2%) 87 (13.7%) 0.436 46 (13.9%) 45 (14.9%) 0.403 76 (14.5%) 75 (16.0%) 0.291 

 Moderate or poor 599 (85.8%) 547 (86.3%)  286 (86.1%) 258 (85.1%)  448 (85.5%) 395 (84.0%)  

 

 
Table 6. Univariate and multivariate logistic regression for neck lymph node metastasis in oral cancer patients with 
betel quid chewing. 

Variable 
Univariate Multivariate 

P value OR (95% CI) P value OR (95% CI) 

Age (yrs)  

 ≥ 55 vs. <55 0.069 0.783 (0.601–1.020)   
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Tumor T status 

 T3/4 vs. T1/2 <0.001 2.864 (2.174–3.772) <0.001 3.100 (2.337–4.113) 

Metastasis 

 M1 vs. M0 0.021 12.222 (1.465–101.938) 0.01 18.165 (2.024–162.999) 

Cell differentiation 

 Moderately or poorly differentiated vs. 
well differentiated 

<0.001 2.465 (1.597–3.804) <0.001 2.877 (1.829–4.524) 

rs13182402 

 AG+GG vs. AA 0.028 0.618 (0.402–0.949) 0.022 0.596 (0.382–0.929) 

rs12659017 

 AG+GG vs. AA 0.543 0.921 (0.707–1.200)   

 

ALDH7A1 allele mutation with higher mRNA 

Expression 

 

To support our findings, some published databases were 

used to validate our results. In the GTEx database, 

which has 54 enrolled non-diseased normal tissue sites 

covering nearly 1000 individuals, ALDH7A1 

expression in the rs13182402 mutation expression (AG 

+ GG) was higher in upper aerodigestive (esophagus) 

mucosa, whole blood, and the musculoskeletal system 

compared with the ALDH7A1 allele normal type (AA) 

(all P < 0.001; Figure 1A–1C). Furthermore, to realize 

 

 
 

Figure 1. The validated results of ALDH7A1 expression by Genotype-Tissue Expression (GTEx) Portal 
(https://www.gtexportal.org/home/). (A–C) In GTEx, which enrolled 54 non-diseased tissue sites across nearly 1000 individuals, violin 
plots of ALDH7A1 rs13182402 mutation was associated with higher ALDH7A1 expression level in upper aerodigestive (esophagus) mucosa, 
whole blood, and musculoskeletal system than those of ALDH7A1 allele normal type (P < 0.001, < 0.001, < 0.001, respectively). (D) 
ALDH7A1 mRNA expression in cancer tissue of 30 oral cancer patients was analyzed by quantitative real time-PCR assay. 

https://www.gtexportal.org/home/
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correlation between the mRNA level of ALDH7A1 and 

rs13182402 polymorphism, quantitative real time-PCR 

(qPCR) were used to analyze ALDH7A1 mRNA level 

in cancer tissue of 30 oral cancer patients. We found 

that oral cancer patient who carry allele mutation (AG) 

of rs13182402 polymorphism have significantly higher 

mRNA levels of ALDH7A1 compare to AA genotype 

(Figure 1D). Taken together, these results demonstrated 

that ALDH7A1 allele mutation (rs13182402) was 

associated with higher ALDH7A1 expression than the 

ALDH7A1 SNP wild type was. 

 

Relationship between ALDH7A1 expression and 

clinical outcomes 

 

ALDH7A1 expression was lower in tumor tissues than 

in normal and adjacent normal tissues from the TCGA 

database (both P < 0.001; Figure 2A and 2B). Within the 

tumor tissues, ALDH7A1 expression levels were also 

lower for patients with nodal metastasis than for those 

without (P < 0.0257; Figure 2C). The patients could be 

divided into ALDH7A1-high- and ALDH7A1-low-

expression groups. Because approximately 10% (12.8%, 

171 out of 1332) of the patients with oral cancer had 

ALDH7A1 allele mutation (rs13182402), one-tenth of 

the patients with the highest ALDH7A1 expression in 

the TCGA database were classified as the high-

ALDH7A1 group, and the others were classified as the 

low-ALDH7A1 group. The basic characteristics of these 

two groups are shown in Table 7. The high-ALDH7A1 

group tended to have better clinical outcomes than the 

low-ALDH7A1 group did (5-year progression-free 

survival, 58.7% vs. 48.0%, P = 0.048; 5-year overall 

survival, 49.0% vs. 47.4%, P = 0.412) (Table 7, Figure 

2D and 2E). These results indirectly demonstrate that 

patients with oral cancer and ALDH7A1 rs13182402 

mutation have higher ALDH7A1 expression than others 

do, which might result in less nodal metastasis and better 

prognostic outcomes. 

 

Functional analysis of ALDH7A1 expression in oral 

cancer cell lines 

 

To further investigate correlations of ALDH7A1 

rs13182402 polymorphisms with ALDH7A1 expression 

levels in oral cancer, we examined rs13182402 

genotypes of five oral cancer cell lines (SCC-14, SAS, 

CA9-22, HSC-3, and OECM-1) and found that SAS  

 

 
 

Figure 2. The validated results of ALDH7A1 expression. The Cancer Genome Atlas (TCGA) database (https://www.cbioportal.org/) 

was used to validate our results. (A, B) In TCGA database, ALDH7A1 expression levels were lower in tumor tissues than those in normal and 
adjacent normal tissues (P < 0.001, and < 0.001, respectively). ALDH7A1 expression levels were also lower for patients with nodal 
metastasis than those without nodal metastasis (P < 0.0257) (C). If the patients were divided into ALDH7A1 -high and –low groups, the high-
ALDH7A1 group tended to have better clinical outcomes than the low-ALDH7A1 group did (5-year progression-free survival, 58.7% vs. 
48.0%, P = 0.048; 5-year overall survival, 49.0% vs. 47.4%, P = 0.412) (D and E). 

https://www.cbioportal.org/
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Table 7. Basic characteristics of high- and low- ALDH7A1 expression patients diagnosed HNSCC from the TCGA 
database. 

Variable High ALDH7A1 (N = 52) Low ALDH7A1 (N = 463) P value 

Age (yrs) 

 ≧55 44 (69.7%) 322 (69.7%) 0.015 

 <55 8 (15.4%) 141 (30.3%)  

Pathologic staging 

 I + II 12 (23.1%) 89 (19.2%) 0.759 

 III + IV 34 (65.4%) 310 (67.0%)  

 Unknown 6 (11.5%) 64 (13.8%)  

Pathologic T staging 

 T1 + T2 20 (38.5%) 163 (35.2%) 0.897 

 T3 + T4 26 (50.0%) 244 (52.7%)  

 Unknown 6 (11.5%) 56 (12.1%)  

Pathologic N staging 

 N0 21 (40.4%) 153 (33.0%) 0.527 

 N+ 21 (40.4%) 221 (47.7%)  

 Unknown 10 (19.2%) 89 (19.2%)  

Pathologic M staging 

 M0 15 (28.8%) 168 (36.3%) 0.531 

 M1 0 (0.0%) 1 (0.2%)  

 Unknown 37 (71.2%) 294 (63.5%)  

Histological differentiation 

 Well 8 (15.4%) 54 (11.7%) 0.76 

 Moderate 28 (53.8%) 273 (59.0%)  

 Poor 13 (25.0%) 110 (23.8%)  

 Undifferentiated 0 (0.0%) 7 (1.5%)  

 Unknown 3 (5.8%) 19 (4.1%)  

5-year progression free survival 58.70% 48.00% 0.048 

5-year overall survival 49.00% 47.40% 0.412 

 

cells carried the GG genotype of rs13182402 compared 

to SCC-14, CA9-22, HSC-3 and OECM-1 cells which 

carried the AA genotype (Figure 3A, upper panel). 

Moreover, we detected ALDH7A1 expression by 

quantitative real time-PCR analysis. Among these oral 

cancer cell lines, we observed that SAS cells expressed 

higher ALDH7A1 levels than SCC-14, CA9-22, HSC-3 

and OECM-1 cells (Figure 3A, lower panel). 

Furthermore, SAS cell lines also expressed higher 

migratory potential than SCC-14, CA9-22, HSC-3 and 

OECM-1 cells by using Boyden chamber migration 

assays (Figure 3B). 

 

To determine the whether ALDH7A1 influences 

cellular migration, siRNA directly against the 

ALDH7A1 expression for SAS cells and transfection 

with pcDNA vector for overexpression of ALDH7A1 

for CA9-22 cells was employed. We confirmed 

knockdown and overexpression of ALDH7A1 protein 

and mRNA levels through Western blotting and real 

time-PCR in SAS and CA9-22 cells, respectively 

(Figure 3C and 3D). Moreover, by using Boyden 

chamber migration assays, the results showed that using 

ALDH7A1 knockdown significantly repressed 

migratory potential in SAS cells (Figure 3E), whereas 

overexpression of ALDH7A1 significantly enhanced 

those potentials in CA9-22 cells (Figure 3F). 

 

DISCUSSION 
 

A total of 2523 participants (1332 patients with oral 
cancer and 1191 healthy controls) were enrolled in this 

study. ALDH7A1 polymorphisms did not influence the 

risk of oral cancer for all participants, alcoholic 
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drinkers, or betel quid chewers. However, ALDH7A1 

rs13182402 represented an independent favorable 

prognostic factor for nodal lymph node metastasis in 

patients with oral cancer who chewed betel quid. 

Databases used in validation also indicated that the 

expression of ALDH7A1 rs13182402 allele mutations 

was higher in upper aerodigestive (esophagus) mucosa, 

whole blood, and the musculoskeletal system than the 

expression of the ALDH7A1 normal type was. 

ALDH7A1 expression in tumor cells and in patients 

with advanced cancer status was lower than that in 

normal tissue and in patients with early-stage disease. 

Patients with HNSCC who had high ALDH7A1 

expression also tended to have superior progression-free 

survival outcomes compared with those having low 

ALDH7A1 expression. Future research to further 

validate these findings is warranted. 

 

Allele frequency of ALDH7A1 rs13182402 in the East 

Asian population is low. However, some points 

supported us to pay attention to ALDH7A1 poly-

morphisms. First, based on the concept of precision 

medicine, although the incidences of certain genetic 

alterations were low, the possibility of treatment 

opinion for these few patients still existed, such as 

tropomyosin receptor kinase (TRK) inhibitors for the 

patients with TRK fusion genes, and anaplastic 

lymphoma kinase (ALK) inhibitor for the patients with 

ALK-mutant non-small cell lung cancer [26, 27]. Drug 

development for these small populations was still worth 

looking forward to. Besides, according to the TCGA 

database, the patients with high-ALDH7A1 expression 

tend to have superior outcomes in progression-free 

survival than those with low-ALDH7A1. The critical 

issue was how to divide the patients into the high- and 

low- expression group. Advanced in vivo validations 

were warranted to identify the cutoff level, which might 

be helpful to expand the effective population. Finally, 

several studies reported the importance of ALDH 

isoenzymes in cancers [2, 13, 28, 29], and ALDH7A1 is 

a member of the ALDH superfamily. Based on this 

study, the results provided us with a better 

understanding of the roles of ALDH in oral cancer, 

especially ALDH7A1 polymorphism. 

 

 
 

Figure 3. Correlations of ALDH7A1 rs13182402 genotypes with ALDH7A1 mRNA levels in five oral cancer cell lines. (A) Upper 

panel, ALDH7A1 rs13182402 genotypes in oral cancer cell lines (SCC-14, SAS, CA9-22, HSC-3, and OECM-1) were detected by a TaqMan SNP 
Genotyping Assay. Lower panel, mRNA level of ALDH7A1 was detected by quantitative real time-PCR analysis. (B) The migratory ability in 
oral cancer cell lines (SCC-14, SAS, CA9-22, HSC-3, and OECM-1) was detected by Boyden chamber migration assays. (C) Western blot 
analysis and real time-PCR assay for ALDH7A1 protein and mRNA expressions of SAS cells after siRNA directly against the ALDH7A1 
expression were conducted. (D) Western blot analysis and real time-PCR assay for ALDH7A1 protein and mRNA expressions of CA9-22 cells 
after transfection with vectors containing a constitutively active ALDH7A1 cDNA were conducted. (E and F) Boyden chamber migration 
assays for cell migratory ability in SAS cells and CA9-22 cells were conducted. 
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Acetaldehyde, a metabolite from ethanol, is metabolized 

to acetate by ALDH, a process that results in DNA 

adducts, inhibited DNA repair, and DNA methylation 

[2]. Several studies have discussed the interaction 

between ALDH and cancer, especially within the Asian 

population [2, 13]. Some authors reported that ALDH 
genes play a role in the maintenance and differentiation 

of cancer stem cells [30], and others contended that high 

ALDH expression in cancer stem cells is associated with 

graver prognostic outcomes [31]. However, the 

functions of individual ALDH isoenzymes, such as 

ALDH7A1, have not been clearly ascertained. Wang et 

al. [10] revealed that ALDH7A1 rs13182402 allele 

mutation reduces the development of esophageal 

squamous cell carcinoma (OR [95% CI] = 0.79 [0.67–

0.93], P = 0.003). However, Lu et al. [11] suggested 

that ALDH7A1 rs12659017 mutation advances 

colorectal cancer (OR [95% CI], 1.09 [1.06–1.12], P < 

0.001). The different alleles on the same gene lead to 

potentially different influences on cancer development. 

In our study, both ALDH7A1 rs13182402 and 

rs12659017 were not discovered to constitute risk 

factors for oral cancer development. 

 

Conversely, the prognostic role of ALDH7A1 in 

cancer is equivocal. Giacalone et al. [32] demonstrated 

that in non-small-cell lung cancer, patients with higher 

ALDH7A1 expression on an immunohistochemical 

stain experienced lower recurrence-free survival than 

those with lower ALDH7A1 expression did. Rose  

et al. [33] also reported that higher ALDH7A1 

expression was associated with human nodular 

melanoma, a melanoma subtype with a higher 

recurrence rate than that of superficial spreading 

melanoma. However, high ALDH7A1 expression can 

play an opposite role in other cancer types. Hoogen et 

al. [34] revealed that in prostate cancer, ALDH7A1 

knockdown reduces intrabone growth and inhibits 

experimentally induced bone metastasis. Moreover, 

Busso-Lopes et al. [35] found that low expression of 

ALDH7A1 in extracellular vesicles from metastatic 

lymph nodes is correlated with reduced survival in oral 

cancer patients. Other prognosis-related mechanisms, 

such as the activity of peroxisome proliferator-

activated receptors and DNA methylation, have also 

been shown to be influenced by ALDH7A1 expression 

[36–38]. Thus, the influence of ALDH7A1 on 

prognosis should be evaluated for individual cancer 

types. 

 

The expression of ALDH7A1 might varies remarkably 

among different tissues from the published database, 

such as the GTEx database and TCGA database. In our 
study, ALDH7A1 rs13182402 allele mutation, which 

was detected from the whole-blood genomic DNA, was 

an independent favorable prognostic factor for nodal 

metastasis in oral cancer. In the GTEx database, this 

allele mutation was validated in different non-diseased 

tissue sites and associated with higher ALDH7A1 

expression than the normal type in blood. Moreover, 

oral cancer patient who carry allele mutation (AG) of 

rs13182402 polymorphism have significantly higher 

mRNA levels of ALDH7A1 compare to AA genotype. 

Similarly, in tumor tissue, the high-ALDH7A1 group 

tended to have better progression-free survival 

outcomes than the low-ALDH7A1 group did, validated 

by the TCGA database. And conversely, ALDH7A1 

expression in advanced status (patients with nodal 

metastasis) was lower than that in early status (patients 

without nodal metastasis). The result supported that 

ALDH7A1 rs13182402 allele mutation, detected from 

the whole-blood genomic DNA, was associated with 

high ALDH7A1 expression and favorable outcomes. 

Besides, based on our previous study, which indicated 

that lower ALDH7A1 expression was associated with 

increased cell proliferation, DNA synthesis, and 

decreased apoptosis [39], several aspects warrant 

discussion. First, different allele mutations might result 

in different functions. Patients with HNSCC and mutant 

ALDH7A1 (missense mutation, c.1168 G > C, 

rs121912707) had lower ALDH7A1 expression than 

those carrying ALDH7A1 wild-type [39], but in the 

current study, ALDH7A1 rs13182402 mutation led to 

increased ALDH7A1 expression. Because of the 

complexity of genotype-phenotype interactions and the 

fact that the mechanisms of epistatic interaction for 

different alleles of the same gene are largely unknown 

[40], future in vitro studies of individual alleles are 

warranted. 

 

Betel (areca) nut, which has areca alkaloids including 

arecoline, arecaidine, guvacoline, and guvacine, was 

found to be implicated in carcinogenesis [41]. However, 

areca nut, the major component of betel quid, is also 

considered to lead to angiogenesis and cancer 

metastasis. Ji et al. [42] suggested that betel nut 

promotes massive inflammation that supports the 

proliferation of transforming cells. Subsequently, the 

vascular endothelial growth factor signaling pathway 

and angiogenesis are activated, causing cell growth and 

subsequent metastasis. Several studies have also 

reported that habitual betel quid chewing is associated 

with metabolic disorders [43–45]. However, in the 

TCGA database, low ALDH7A1 expression was 

correlated with disorders of the metabolic-associated 

signaling pathways, and the cancer metastasis 

mechanism might arise through cancer metabolism 

because of ALDH7A1 mutations [37, 39]. Nevertheless, 

few studies have discussed the interaction among betel 
quid chewing, ALDH7A1 expression, and cancer 

metastasis. Future studies investigating this as well as a 

potential link with cancer metabolism are warranted. 
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Several limitations were present in this study. Although 

less information provided the interactions between the 

loci and survival outcomes in our cohort, some 

published databases, such as the TCGA database, 

indirectly remedied the impact of ALDH7A1 expression 

on clinical outcomes. In Taiwan, tobacco, alcohol, and 

betel quid chewing were reported significantly in the 

development of oral cancer, several studies also 

mentioned the impact of obesity on cancer development 

and prognosis. This factor would also be included in our 

future studies [46–48]. Advanced studies, included 

individual allele mutations and clinical outcomes which 

were corresponded to the training and validation cohorts, 

should be warranted in the future. Furthermore, more 

detailed allele information of the patients enrolled in 

TCGA was unavailable. Moreover, due to the complex 

epistatic interaction between different alleles of the same 

gene [40], determining whether gain or loss of function 

occurred in each ALDH7A1 allele is problematic. 

Although patients with oral cancer who had lower 

ALDH7A1 expression had poorer prognoses than those 

with higher expression did, individual allele functions 

should be validated in vitro. Finally, few studies have 

discussed the interaction between betel quid chewing, 

ALDH7A1 expression, and cancer metastasis. Thus, 

more experiments in this area are also necessary. 

 

In conclusion, this study reported that ALDH7A1 SNPs, 

detected from the whole-blood genomic DNA, did not 

affect the risk of oral cancer. But ALDH7A1 

rs13182402 mutation was an independent favorable 

prognostic factor for neck lymph node metastasis in the 

patients who used betel quid. In addition, the published 

database showed that ALDH7A1 rs13182402 mutation 

in whole blood coexisted with high ALDH7A1 

expression. And patients with higher ALDH7A1 

expression seemed to have superior prognoses than 

those with lower expression do. It hinted ALDH7A1 

rs13182402 mutation, associated with high ALDH7A1 

expression, might be a favorable prognostic factor for 

patients with oral cancer. Future validations in vitro and 

in vivo are warranted. 

 

MATERIALS AND METHODS 
 

Study subjects 
 

Patients diagnosed as having oral cancer at Chung Shan 

Medical University Hospital and Changhua Christian 

Hospital between 2007 and 2019 were enrolled into the 

case group. Moreover, healthy participants without a 

cancer history were enrolled from Taiwan Biobank as a 

control group. For the case group, all patients included 

were pathological diagnostic oral cancer. In Taiwan, 

because more than 90% of oral cancer patients were 

male [13, 49], females were excluded due to a rare 

population. The patients who were no pathological 

diagnosis, cytologic diagnosis only, and second primary 

malignancies were also excluded. Healthy participants 

were included between 30- to 70-year-old and had 

normal mental capacity. The participants who were 

female or diagnosed with malignancies were excluded. 

Clinical information, including age, pathologic staging, 

and any habits of chewing betel quid, smoking 

cigarettes, or drinking alcohol, was collected according 

to the medical records. All patients were staged 

according to the American Joint Committee on Cancer’s 

staging system (seventh edition) [50]. This study was 

approved by the Institutional Review Board of Chung 

Shan Medical University Hospital (CSMUH No: 

CS15125 and CS1-21151). 

 

Oral cancer cell lines and culture 

 

The human SAS, CA9-22 and HSC-3 cell lines were 

purchased from and validated by the Japanese 

Collection of Research Bioresources Cell Bank (JCRB, 

Osaka, Japan). SCC-14 cells lines were purchased from 

were obtained from Cell Lines Service (CLS; 

Eppelheim, Germany). The OECM-1 cell line derived 

from a male Taiwanese patient [51] was maintained in 

RPMI-1640 medium with 10% FBS. All cells were 

cultured and maintained at 37°C in a 5% CO2 and 95% 

air atmosphere. 

 

DNA extraction and genotyping 

 

Whole-blood specimens were collected and placed in 

sterile tubes containing ethylene diamine tetraacetic 

acid. These specimens were immediately centrifuged 

and then stored at −80°C. Genomic DNA was extracted 

from peripheral blood leukocytes by using QIAamp 

DNA blood mini kits (Qiagen, Valencia, CA, USA) 

according to previously described publication [52, 53] 

and then dissolved the extracts into pH 7.8 TE buffer 

(10 mM trisaminomethane and 1 mM ethylene diamine 

tetraacetic acid; pH 7.8) and then quantified by 

measuring the optical density at 260 nm. The final 

product was stored at −20°C and used as a template for 

polymerase chain reaction. Two ALDH7A1 genetic 

polymorphism rs13182402 and rs12659017 were 

detected in previous study and International HapMap 

Project database [7]. Moreover, ALDH7A1 rs13182402 

and rs12659017 polymorphism were reported 

significantly in malignant diseases, such as esophageal 

squamous cell carcinoma, osteoporosis, and colorectal 

cancer [7, 10, 11]. But the roles of ALDH7A1 

polymorphisms in oral cancer were unknown. 

Therefore, we chose these two candidate loci in our 
study. Assessment of allelic discrimination for 

ALDH7A1 rs13182402 (assay IDs: C__31889488_10) 

and rs12659017 (assay IDs: C_32255284_10) SNPs 
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was performed using a TaqMan assay with an Applied 

Biosystems StepOne Real-Time Polymerase Chain 

Reaction System (Applied Biosystems, Foster City, CA, 

USA). The results were further analyzed using SDS 

version 3.0. The details of DNA extraction and 

genotyping were published in our previous study [54]. 

 

RNA preparation and quantitative real-time PCR 

 

Total RNA was isolated from oral cancer cell lines and 

oral cancer tissues using RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) according to previously described 

[55, 56]. Quantitative real-time PCR analysis was 

performed using TaqMan one-step PCR Master Mix 

(Applied Biosystems) as previously described [57]. 

 

Cell migration assay 

 

Five oral cancer cell lines (SCC-14, SAS, CA9-22, 

HSC-3, and OECM-1) cell migration was evaluated as 

described previously [58–61]. Briefly, after 48-hours 

treatment with siRNA or other manipulations, migration 

responses of SAS cell or other cell lines were assessed 

in a Boyden chamber assay with cell culture inserts of 

diameter 6.5-mm and pore size 8 μm (Neuro Probe) at 

24-hours incubation. 

 

Published databases for validation 

 

In this study, several published databases were used to 

validate our results. dbSNP, a public-domain archive 

housing a broad collection of simple genetic poly-

morphisms, includes the sequence context and frequency 

of the polymorphism [62]. GTEx Portal, a comprehensive 

public resource for studying tissue-specific gene 

expression and regulation, provides gene expression, 

quantitative trait loci, and histology images for nearly 

1000 individuals registered at 54 non-diseased tissue 

sites [63]. TCGA database was downloaded from 

cBioPortal, an open-access resource providing more 

than 5000 tumor samples from 20 cancer studies [64]. 

 

Statistical analysis 

 

The correlations between the clinicopathological 

parameters were analyzed by using the Chi-square test. 

And Hardy Weinberg test was done to detect the 

population representation of genotypes of the two loci. 

The adjusted odds ratio (AOR)-with 95% CIs of the 

association between genotype frequency and oral cancer 

risk and clinical pathological characteristics—were 

measured using multiple logistic regression models after 

controlling for covariates. The variables with P values 
of <0.05 in univariate analyses were enrolled into the 

multivariate analysis. SPSS (version 21.0, SPSS Inc., 

Chicago, IL, USA) was used for all statistical analyses. 
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