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Abstract

Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-a. TNF-a
directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts.
Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early
stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of
TNF-a produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major
pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse
macrophages, and we show that TNF-a is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection
of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the
presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced
osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the
production of TNF-a, whereas the production of TNF-a by similarly infected RANKL-primed RAW-D cells was markedly
down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the
presence of neutralizing antibody against TNF-a. Inhibitors of NFATc1 and p38MAPK, but not of NF-kB signaling,
significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment
of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis
infection, whereas re-treatment of RANKL-primed macrophages with TNF-a did not enhance osteoclastogenesis in the
presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a
TNF-a independent manner, and RANKL but not TNF-a was effective in inducing osteoclastogenesis from RANKL-primed
RAW-D cells in the presence of P. gingivalis.
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Introduction

Osteoclasts are large multinucleated cells that are derived from

the common progenitor cells of the monocyte/macrophage

lineage. Osteoclasts play a central role in bone resorption. Bone

remodeling involves cooperation of osteoclasts and bone forming

osteoblasts to maintain normal bone volume and calcium

homeostasis. However, in inflammatory diseases such as peri-

odontal disease and rheumatoid arthritis, the balance between

osteoclasts and osteoblasts is disrupted, and osteoclasts accumulate

causing local pathological bone loss.

Differentiation of osteoclasts is regulated by macrophage-

colony-stimulating factor (M-CSF) and receptor activator of

nuclear factor kB ligand (RANKL) [1]. RANKL, which belongs

to the tumor necrosis factor (TNF) family, binds to the TNF family

receptor, receptor activator of nuclear factor kB (RANK)

expressed on osteoclast precursor cells, and triggers osteoclast

differentiation. The signaling mechanisms underlying RANKL-

induced osteoclastogenesis have been extensively studied [2].

Binding of RANKL to RANK leads to the activation of NF-kB

and mitogen activated protein kinases (MAPKs), including p38

and c-Jun N-terminal kinase (JNK). Deletion of both of the NF-kB

subunits p50 and p52 results in defective osteoclast differentiation

and causes osteopetrosis in mice, indicating that the NF-kB

pathway controls osteoclastogenesis [3]. c-Fos is also activated by

RANK and plays an essential role in osteoclast differentiation [4].

NF-kB and c-Fos induce the expression of nuclear factor of

activated T cells cytoplasmic 1 (NFATc1), which is auto-amplified

during osteoclastogenesis [5]. NFATc1 regulates the expression of

osteoclast-specific genes including calcitonin receptor, cathepsin

K, and tartrate-resistant acid phosphatase (TRAP) [6]. RANK

signaling also induces the expression of genes that inhibit osteoclast

differentiation; e.g., IFN-b induced by RANKL inhibits osteoclas-

togenesis by suppressing c-Fos expression [7].

Periodontitis is a common inflammatory disease, and bone

destruction in periodontitis is usually associated with bacterial

infections [8,9]. LPS, a major constituent of Gram-negative

bacteria and an important TLR4 ligand, has been shown to be a
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potent stimulator of bone loss in vivo [10]. However, TLR ligands

have been shown to have stimulatory or inhibitory functions on

osteoclastogenesis in vitro. Simultaneous addition of RANKL and

LPS or staphylococcal lipoteichoic acid inhibits differentiation of

osteoclasts from bone marrow macrophage (BMM) [11,12]. LPS,

in contrast, stimulates the late stage of osteoclastogenesis and

enhances the survival and activation of osteoclasts [11,13,14].

Very recently, Zhang et al reported that P. gingivalis, which is

implicated in periodontitis, differentially affects osteoclast differ-

entiation from bone marrow macrophages depending on the stage

of osteoclast differentiation [15]. In contrast, TLR ligands promote

osteoclastogenesis via other cells such as osteoblasts. E. coli LPS

and diacyl lipoprotein stimulate the expression of RANKL and IL-

6 in osteoblasts through TLRs, and promote osteoclastogenesis in

co-cultures of osteoblasts and hematopoietic cells [16,17,18]. LPS

also stimulates the production of PGE2 in osteoblasts, which leads

to bone resorption [19].

Down-stream signaling pathways of TLRs, other than TLR3,

utilize myeloid differentiation factor 88 (Myd88). Myd88 recruits

IL-1R-associated kinases leading to the activation of NF-kB and

MAPK. Activated NF-kB then induces the transcription of

inflammatory genes such as TNF-a and IL-6 [20,21]. P. gingivalis

is a Gram-negative bacterial species, but its LPS has a unique

chemical structure, and interacts with both TLR2 and TLR4. P.

gingivalis LPS weakly activates TLR4 signaling, and its biological

activities are primarily mediated via signaling through TLR2 [22].

On the other hand, live P. gingivalis induces cytokines and

chemokines such as TNF-a, IL-6, and MCP-1, which signal

through both TLR2 and TLR4 [22]. TNF-a is known as a major

inducer not only of inflammation but also of bone loss. TNF-a
directly acts on BMM exposed to RANKL or transforming growth

factor (TGF)-b, and induces osteoclast differentiation in a RANKL

independent manner in vitro [23,24]. TNF-a is a multifunctional

cytokine, and also participates in restraining inflammation and

tissue healing [25,26]. Thus, the role of TNF-a in osteoclastogen-

esis in bacterial infection is not obvious.

We have previously demonstrated that a macrophage cell line,

RAW-D, a subclone of RAW264 has a high capacity to

differentiate into osteoclasts [27]. In the present study, we

investigated the effect of infection of RAW-D with P. gingivalis on

osteoclastogenesis. Our results demonstrate that infection with

P. gingivalis markedly stimulated osteoclast differentiation from

RANKL-primed RAW-D cells. We found that osteoclastogenesis

induced by P. gingivalis infection of RANKL-primed RAW-D cells

and BMM was TNF-a independent, and we found that RANKL

but not TNF-a was effective in inducing osteoclastogenesis from

RANKL-primed RAW-D cells in the presence of P. gingivalis.

Results

Infection of RANKL-primed RAW-D Cells with P. gingivalis
Induces Osteoclastogenesis

We first examined whether P. gingivalis infection induced

osteoclastogenesis in a mouse macrophage cell line, RAW-D.

Although RAW-D has a high potential to differentiate into

osteoclasts, P. gingivalis infection alone did not induce osteoclasto-

genesis in RAW-D cells (data not shown). Because recent studies

have shown that LPS stimulates osteoclast differentiation from

RANKL-pretreated osteoclast precursors [14], we stimulated

RAW-D cells with RANKL for 22 h, then removed the RANKL,

and infected the cells with P. gingivalis. Cells were cultured for two

more days, and the effect of P. gingivalis infection on osteoclast

differentiation was analyzed. After the initial 22 h of culture in the

presence of RANKL, i.e., after RANKL-priming, a few mononu-

clear cells positive for the osteoclast-specific enzyme TRAP were

present, but no TRAP-positive multinucleated cells (MNCs) were

observed, and no TRAP-positive MNCs appeared during further

culture for 48 h in the absence of RANKL and P. gingivalis (Fig. 1A,

left). In contrast, infection of RANKL-primed RAW-D cells with

P. gingivalis induced osteoclastogenesis in an infectious dose-

dependent manner (Figs. 1A right, and 1B). We analyzed mRNA

expression levels of several osteoclast-specific genes in unprimed or

RANKL-primed RAW-D cells that were infected with P. gingivalis

or were uninfected. P. gingivalis infection of RANKL-primed

RAW-D cells significantly increased the expression of osteoclast-

specific genes such as cathepsin K (ctsk) (Fig. 1C) and calcitonin

receptors (calcr) (data not shown) in comparison with uninfected

RANKL-primed RAW-D cells. Pretreatment with TNF-a instead

of RANKL did not induce osteoclast differentiation (Fig. 1D).

Osteoprotegrin (OPG) did not inhibit osteoclastogenesis induced

by infection with P. gingivalis (Fig. 1E). Thus, RANKL-pretreat-

ment was necessary, but concurrent presence of RANKL was not

required for osteoclastogenesis in RANKL-primed macrophages

induced by infection with P. gingivalis. These data indicate that

infection of RANKL-primed macrophages with P. gingivalis

induced osteoclast differentiation from osteoclast precursor cells.

TLR4 is not Involved in Osteoclastogenesis Induced
by the Infection of RANKL-primed RAW-D Cells with
P. gingivalis

P. gingivalis is known to stimulate the production of TNF-a and

IL-6 through TLR2 and TLR4 signals [22]. Therefore, we

analyzed TLRs involved in the stimulation of osteoclastogenesis

induced by P. gingivalis infection. Treatment with E. coli LPS, a

TLR4 ligand, and the synthetic lipoprotein Pam3CSK4, a TLR2

ligand, stimulated osteoclastogenesis in RANKL-primed RAW-D

cells (Fig. 2A). Similarly, P. gingivalis LPS induced osteoclastogen-

esis in RANKL-primed RAW-D cells (Fig. 2B). We found that the

concentration of P. gingivalis LPS required to stimulate osteoclas-

togenesis was higher than the concentration of E. coli LPS required

for similar stimulation. P. gingivalis treated at 65uC for 15 min

stimulated osteoclastogenesis at levels similar to live P. gingivalis,

but treatment of P. gingivalis at 90uC for 5 min reduced the

induction of osteoclastogenesis from RANKL-primed RAW-D

cells (Fig. 2C), suggesting that some protein components of live P.

gingivalis may be involved. Polymyxin B (1 mg/ml), which is a

specific inhibitor of TLR4, inhibited osteoclastogenesis in

RANKL-primed RAW-D cells induced by E. coli LPS, but not

in cells induced by Pam3CSK4. However, the same concentration

of polymyxin B (1 mg/ml) did not inhibit the induction of

osteoclastogenesis in RANKL-primed RAW-D cells induced by

live P. gingivalis or P. gingivalis LPS (Fig. 2D). Although a higher

concentration of polymyxin B (5 mg/ml) partially inhibited the

induction of osteoclastogenesis in RANKL-primed RAW-D cells

by P. gingivalis LPS, these results show that the major effect of P.

gingivalis on osteoclastogenesis in RANKL-primed RAW-D cells

does not involve TLR 4 signaling.

TNF-a Induces Osteoclastogenesis in RANKL-primed
Macrophages, but Infection with P. gingivalis Induces
Osteoclastogenesis in RANKL-primed Macrophages in
the Absence of TNF-a

TNF-a has been shown to induce osteoclast differentiation in

mouse BMM in vitro [24]. To analyze the contribution of TNF-a to

osteoclastogenesis in RANKL-primed RAW-D cells infected with

P. gingivalis, we analyzed TNF-a mRNA expression. Infection of

unprimed or RANKL-primed RAW-D cells with P. gingivalis

Bacterial Infection Promotes Osteoclastogenesis
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stimulated the expression of TNF-a. However, level of TNF-a
induced in RANKL-primed RAW-D cells was only 60–65% of the

level induced in unprimed RAW-D cells (Fig. 3A). In addition, the

production of TNF-a protein from RANKL-primed RAW-D cells

induced by P. gingivalis was markedly decreased (Fig. 3B). Because

addition of TNF-a stimulated osteoclastogenesis in RANKL-

primed RAW-D cells (Fig. 3C), we analyzed the capacity of P.

gingivalis infection to induce osteoclastogenesis in RANKL-primed

RAW-D in the presence of neutralizing antibody against mouse

TNF-a. TNF-a neutralizing antibody completely blocked osteo-

clast differentiation in uninfected RANKL-primed RAW-D cells

in the presence of mouse TNF-a (20 ng/ml) (Fig. 3C, left). In

contrast, TNF-a neutralizing antibody did not block osteoclast

differentiation in P. gingivalis-infected RANKL-primed RAW-D

cells (Fig. 3C, right). These data indicate that TNF-a is not

required for osteoclastogenesis in RANKL-primed RAW-D

induced by infection with P. gingivalis.

We next analyzed mouse BMMs to determine whether TNF-a
is involved in osteoclast differentiation in RANKL-primed

macrophages in primary culture. We found that, as was the case

in RANKL-primed RAW-D cells, P. gingivalis infection of

RANKL-primed BMM stimulated osteoclastogenesis (Fig. 4A).

Neutralizing antibody against anti-mouse TNF-a blocked osteo-

clast differentiation induced by TNF-a but did not inhibit

Figure 1. Infection of RANKL-primed RAW-D macrophages with P. gingivalis induces osteoclastogenesis. (A) (B) P. gingivalis infection of
RANKL-primed RAW-D cells induces the formation of TRAP-positive MNCs. (C) P. gingivalis infection of RANKL-primed RAW-D cells induces mRNA
expression of the osteoclast-specific gene, cathepsin K. Total RNA was isolated, and cathepsin K expression was assessed by real-time PCR. Expression
levels were normalized to GAPDH. Effect of pretreatment (D), or OPG (E) on osteoclastogenesis induced by infection with P. gingivalis. RAW-D cells
were primed with RANKL (50 ng/ml) or TNF-a (10 ng/ml) for 22 h, then infected with P. gingivalis, and cultured for 24–48 h. After 24 h, RNA was
extracted and analyzed for gene expression. After 48 h, the culture was stained for TRAP, and TRAP-positive MNCs were counted. Data are expressed
as mean 6 S.D. of four independent cultures. Statistical significance was determined with Student’s t test. **P,0.01, *P,0.05 compared to
uninfected control (B, C) or untreated control (D).
doi:10.1371/journal.pone.0038500.g001
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osteoclast differentiation induced by infection of RANKL-primed

BMM with P. gingivalis (Fig. 4B).

Expression of NFATc1 but not c-fos is up-regulated
During Osteoclastogenesis in RANKL-primed RAW-D Cells
Induced by Infection with P. gingivalis

To assess the contribution of osteoclast signaling molecules in

osteoclastogenesis in RANKL-primed RAW-D cells induced by

infection with P. gingivalis, we analyzed mRNA expression levels of

NFATc1, c-Fos, and IFNb in unprimed RAW-D cells treated or

not treated with RANKL or P. gingivalis, and in RANKL-primed

RAW-D cells retreated or not retreated with RANKL or P.

gingivalis. Initial RANKL treatment of RAW-D cells stimulated the

expression of both NFATc1 and c-fos. However, expression of

both NFATc1 and c-fos declined if the cells were further cultured

in the absence of RANKL or P. gingivalis for 24 h (Fig. 5A and B,

compare bars 3 and 4). Retreatment of RANKL-primed

macrophages with RANKL increased expression of both NFATc1

and c-fos compared to unretreated cells. In contrast, infection (i.e.,

retreatment) of RANKL-primed cells with live P. gingivalis

increased expression of NFATc1 but not of c-fos (Fig. 5A and

B). INFb is known to inhibit osteoclastogenesis by down-regulating

c-Fos [7]. RANKL stimulated the expression of IFNb, whereas P.

gingivalis infection of RAW-D cells reduced the expression of IFNb.

Retreatment of RANKL-treated RAW-D cells with P. gingivalis

also decreased the expression of IFNb mRNA (Fig. 5C). Together,

these data suggest that expression of NFATc1 is important in

osteoclastogenesis in RANKL-primed RAW-D cells induced by

infection with P. gingivalis, and the down-regulation of IFNb
expression induced by P. gingivalis may facilitate induction of

osteoclast differentiation.

NFATc1 and p38 MAPK Signaling but not JNK or NF-kB
Signaling are Required for Osteoclastogenesis in RANKL-
primed RAW-D Cells Induced by Infection with
P. gingivalis

To elucidate the mechanism of osteoclast induction, we

analyzed the effect of inhibitors of NFATc1, MAPK, and NF-kB

pathways on osteoclastogenesis in RANKL-primed RAW-D cells

induced by infection with P. gingivalis. All inhibitors suppressed

osteoclastogenesis in RANKL-primed RAW-D cells induced by

retreatment with RANKL (Fig. 6A). Inhibitors of NFATc1

(FK506) and p38 MAPK (SB203580), similarly inhibited osteo-

Figure 2. TLR4 is not involved in osteoclastogenesis in RANKL-primed RAW-D cells induced by infection with P. gingivalis. Effect of
E.coli LPS or Pam3CSK4 (A) or P. gingivalis LPS (B) on osteoclastogenesis in RANKL-primed RAW-D cells. (C) Effect of heat treatment of P. gingivalis on
osteoclastogenesis in RANKL-primed RAW-D cells. (D) Effect of polymyxin B on osteoclast formation in RANKL-primed RAW-D cells induced by E. coli
LPS, Pam3CSK4, live P. gingivalis, or P. gingivalis LPS. RAW-D cells were primed with RANKL (50 ng/ml) for 22 h and then treated with E. coli LPS
(100 ng/ml), Pam3CSK4 (100 ng/ml), P. gingivalis LPS (10 mg/ml) or live P. gingivalis (m.o.i. = 10) in the presence of various concentrations of
polymyxin B. After 48 h, the culture was stained for TRAP, and the number of TRAP-positive MNCs was counted. Data are expressed as mean 6 S.D. of
four independent cultures. Statistical significance was determined with Student’s t test. **P,0.01 compared to untreated controls (A, B, and C) or
controls without polymyxin B (D).
doi:10.1371/journal.pone.0038500.g002
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clastogenesis in RANKL-primed RAW-D cells induced by

infection with P. gingivalis (Fig. 6A). In contrast, inhibitor of NF-

kB (Bay11.7082) did not significantly inhibit osteoclastogenesis in

RANKL-primed RAW-D cells induced by infection with P.

gingivalis. The concentrations of these inhibitors used in the

differentiation assays did not inhibit the proliferation of RAW-D

cells (Fig. 6B). These results indicate that osteoclastogenesis in

RANKL-primed RAW-D cells induced by infection with P.

gingivalis is dependent on the expression of NFATc1 and p38

MAPK but is not dependent on expression of NF-kB, whereas

osteoclastogenesis induced in these cells by RANKL is dependent

on NF-kB as well as on NFATc1 and p38 MAPK.

RANKL but not TNF-a Enhances Osteoclastogenesis in
RANKL-primed RAW-D Cells in the Presence of
P. gingivalis

To determine the role of RANKL and TNF-a in osteoclasto-

genesis induced by infection with P. gingivalis, we further analyzed

the effect of RANKL and TNF-a on osteoclastogenesis in

RANKL-primed RAW-D cells in the presence or absence of P.

gingivalis. RANKL retreatment stimulated osteoclastogenesis in a

dose-dependent manner in RANKL-primed RAW-D cells

(Fig. 7A, left). RANKL retreatment coupled with live P. gingivalis

infection further enhanced osteoclastogenesis (Fig. 7B, left).

Similarly, TNF-a retreatment of RANKL-primed RAW-D cells

strongly stimulated osteoclast formation in RANKL-primed

RAW-D cells (Fig. 7A, right). However, TNF-a retreatment

coupled with live P. gingivalis infection did not increase osteoclast

formation (Fig. 7B, right). These data indicate that TNF-a
stimulates osteoclastogenesis in osteoclast precursor cells in the

absence, but not in the presence, of P. gingivalis. On the other hand,

RANKL enhances osteoclastogenesis in osteoclast precursor cells

both in the presence or absence of P. gingivalis.

We analyzed mRNA expression of p55 TNF receptor, p75 TNF

receptor, TLR2, and TLR4 in RANKL-primed or untreated

RAW-D cells and in RANKL-primed RAW-D cells retreated with

P. gingivalis or RANKL by semi-quantitative RT-PCR. Expression

of p55 and p75 TNF receptors was increased by P. gingivalis and

was not down-regulated in RANKL-primed RAW-D cells.

Expression of both TLR2 and TLR4 was also detected in

RANKL-primed RAW-D cells (Fig. 7C). These data suggest that

the inability of TNF-a to enhance osteoclastogenesis in RANKL-

primed RAW-D in the presence of P. gingivalis may not be a

consequence of the loss of expression of TNF-a receptors.

Figure 3. P. gingivalis induces osteoclastogenesis in RANKL-primed RAW-D cells in the absence of TNF-a. Analysis of TNF-a mRNA
expression (A) or production of TNF-a protein (B) by P. gingivalis infected RANKL-primed RAW-D cells and unprimed cells. (C) Effect of neutralizing
antibody against mouse TNF-a on osteoclast formation in RANKL-primed RAW-D cells induced by TNF-a or live P. gingivalis. RAW-D cells were primed
with RANKL (50 ng/ml) for 22 h and then retreated with TNF-a or live P. gingivalis in the presence or absence of neutralizing antibody against mouse
TNF-a or control IgG. After 24 h, RNA was extracted, and TNF-a mRNA expression was assessed by real-time PCR. After 48 h, cell supernatants were
collected and analyzed for TNF-a by ELISA. After 48 h, the culture was stained for TRAP, and the number of TRAP-positive MNCs was counted. Data
are expressed as mean 6 S.D. of four independent cultures. Statistical significance was determined with Student’s t test. **P,0.01, *P,0.05
compared with unprimed infected RAW-D or RANKL-primed uninfected control (A), unprimed control (B), or control IgG1 (C).
doi:10.1371/journal.pone.0038500.g003
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Discussion

Osteoclasts are responsible for inflammatory bone loss caused

by diseases such as periodontitis and rheumatoid arthritis.

Periodontitis is a common infectious inflammatory disease

associated with resorption of alveolar bone. It has previously been

reported that bacterial components such as E. coli LPS induce

bone loss in vivo and affect osteoclastogenesis in vitro [10,16,17,18].

Recent studies have shown that E. coli LPS inhibits osteoclastogen-

esis from bone marrow macrophages in early stages of the process

but stimulates osteoclastogenesis in later stages. [14]. Hotokezaka

et al. have also shown that peptidoglycan in addition to E. coli LPS

induce osteoclastogenesis and especially cell fusion in RANKL-

treated RAW264.7 cells in the presence of a low concentration of

U0126, a MAPK-ERK kinase (MEK)/ERK inhibitor [28]. While

our experiments were ongoing, Zhang et al reported that P.

gingivalis differentially modulates osteoclast differentiation from

bone marrow macrophages depending on the stage of osteoclas-

togenesis [15]. However, it is possible that, if the adherent cells are

not positively depleted, primary bone marrow macrophage

preparations will be contaminated with small numbers of other

cell lineages such as T cells and stromal cells that may affect

osteoclast differentiation [23]. Direct effects of pathogens such as

P. gingivalis on osteoclastogenesis are still not clear. In addition,

although cytokines are considered to be involved in the pathology

of periodontitis [29,30], the contribution of TNF-a produced by

macrophages to osteoclastogenesis is obscure. In the present study,

using the RAW-D macrophage cell line, we demonstrated that

infection of RANKL-primed macrophages with P. gingivalis

markedly promoted osteoclastogenesis in the absence of TNF-a.

Zhang et al. showed that P. gingivalis increases osteoclastogenesis

two-fold compared to RANKL alone as assessed by analysis of the

formation of TRAP-positive MNCs. We found a more marked

effect of P. gingivalis infection on osteoclastogenesis from RANKL-

primed RAW-D cells. If RANKL-primed RAW-D cells were

cultured without stimulation, they did not form TRAP-positive

cells, whereas, if RANKL-primed RAW-D cells were infected with

P. gingivalis they formed numerous TRAP-positive MNCs. We also

Figure 4. Infection of RANKL-primed BMM with P. gingivalis induces osteoclastogenesis in the absence of TNF-a. (A) Infection of
RANKL-primed BMM with P. gingivalis induces osteoclastogenesis. Representative photographs are shown. (B) Effect of neutralizing antibody against
mouse TNF-a on osteoclastogenesis in RANKL-primed BMM induced by TNF-a or live P. gingivalis. BMM were stimulated with RANKL (50 ng/ml) for
22 h and then re-stimulated by TNF-a or live P. gingivalis (m.o.i. = 10) in the presence or absence of neutralizing antibody against mouse TNF-a or
control IgG. At the end of culture, the culture was stained for TRAP, and TRAP-positive MNCs were counted. Data are expressed as mean 6 S.D. of
four independent cultures. Statistical significance was determined with Student’s t test. **P,0.01, compared with control IgG1.
doi:10.1371/journal.pone.0038500.g004
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showed evidence that P. gingivalis infection induces expression of

several osteoclast-specific genes such as cathepsin K and calcitonin

receptors. As we used a macrophage cell line, RAW-D, it is

apparent that the effect of P. gingivalis infection is the result of

direct action on RAW-D cells. We also showed that P. gingivalis

LPS similarly affects osteoclast induction in RANKL-primed

RAW-D macrophages.

Cytokine production from macrophages infected with P.

gingivalis is down-regulated in both TLR2 and TLR4 knockout

mice, although the reduction is greater in TLR2 knockout mice

[15,22]. On the other hand, it has been shown that TLR2 is

crucial for inflammatory bone loss in an experimental model of

periodontitis induced by infection with P. gingivalis [31]. Zhang

et al. showed the importance of TLR2 and Myd88 in the inhibition

of RANKL-induced osteoclastogenesis by P. gingivalis infection in

unprimed bone marrow macrophages. In this study, using

polymyxin B, we showed that TLR4 was not necessary for the

induction of osteoclastogenesis by P. gingivalis infection. These

results suggest that TLR2 is involved in osteoclastogenesis in

RANKL-primed RAW-D cells induced by P. gingivalis infection.

We also found that a high amount of P. gingivalis LPS was

necessary to induce osteoclastogenesis, indicating that the signal

through P. gingivalis LPS is weak or other components of P. gingivalis

may be involved. Heat treatment of P. gingivalis reduced the

stimulatory activity suggesting that some protein components may

be involved. Several virulence factors of P. gingivalis such as LPS,

lipoproteins, Fim A fimbriae, hemagglutinins, and cysteine

proteinases (gingipains) are considered to have pathological roles

in periodontitis [32]. P. gingivalis Fim A fimbrial proteins signal

through TLR2 and induce the production of inflammatory

cytokines in macrophages [22,33]. However, Fim A proteins have

been shown to be activated by heat treatment at 95uC for 10 min

[34]. Further investigation is necessary to elucidate the contribu-

tion of TLRs in osteoclast formation induced by live P. gingivalis in

RANKL-primed macrophages.

Using specific inhibitors, we found that different signaling

pathways are required for osteoclastogenesis in RANKL-primed

RAW-D cells induced by P. gingivalis than in cells induced by

RANKL. Although inhibitors of both of NFATc1 and NF-kB

inhibited osteoclastogenesis induced by RANKL, a specific

inhibitor of NFATc1, but not an inhibitor of NF-kB, inhibited

osteoclastogenesis induced by infection with P. gingivalis in

RANKL-primed RAW-D cells. Osteoclastogenesis induced by P.

gingivalis in RANKL-primed RAW-D cells was dependent on

NFATc1 but not NF-kB. Interestingly, Zhang et al. showed the

existence of a negative feedback loop between NF-ATc1 and NF-

kB [15]. In their study, NFATc1 signaling was activated, but P.

gingivalis-induced NF-kB activation was down-regulated in

RANKL-primed macrophages. Although the mechanism is

unknown, our results support Zhang et al.’s hypothesis. It remains

to be determined how NFATc1 is activated in osteoclastogenesis

induced by P. gingivalis in RANKL-primed macrophages. In

osteoclastogenesis, NF-kB and c-Fos are recruited to the NFATc1

promoter and contribute to its transcription in early phases of

osteoclastogenesis; however, in later phases NF-kB and c-Fos are

not involved as NFATc1 stimulates its own transcription through

an auto-amplification loop [35]. Therefore, in RANKL-primed

macrophages, it is possible that the expression level of NFATc1is

sufficient to auto-amplify its own expression. However, P. gingivalis

may employ additional mechanisms to maintain the localization

and expression of NFATc1. It has been reported that peptidogly-

can and LPS activate phospholipase C c2 (PLCc2), leading to

intracellular calcium mobilization in BMM [36], which may

activate NFATc1.

An important observation in the current report is that TNF-a is

not required for osteoclastogenesis in RANKL-primed RAW-D

Figure 5. Expression of osteoclast signaling proteins in osteoclastogenesis in RANKL-primed RAW-D cells induced by infection.
RAW-D cells were stimulated with or without RANKL (50 ng/ml) or P. gingivalis for 22 h. RANKL-primed RAW-D cells were then retreated with or
without RANKL (50 ng/ml) or P. gingivalis for 24 h. Total RNA was prepared, cDNA was synthesized, and real-time PCR analysis was performed using
NFATc1 (A), c-fos (B), or IFNb (C) Taqman probes. Statistical significance was determined with Student’s t test. **P,0.01, *P,0.05 compared with
unprimed control or RANKL-primed control.
doi:10.1371/journal.pone.0038500.g005
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cells induced by P. gingivalis infection. Several reports have shown

that RANKL treatment of macrophages reduces the production of

inflammatory cytokines induced by LPS [15,37]. RANKL

pretreatment also protected mice from LPS-induced death from

endotoxic shock caused by excess amounts of pro-inflammatory

cytokines [38]. In the current study, we have shown that P.

gingivalis infection stimulates osteoclastogenesis in the presence of

neutralizing antibody against TNF-a. In addition, we showed that

osteoclastogenesis induced by P. gingivalis infection was not

significantly inhibited by a specific inhibitor of NF-kB, adding

further support to the conclusion that TNF-a is not involved. In

contrast, Ukai et al. recently reported that culture supernatant

from P. gingivalis-stimulated macrophages induced osteoclastogen-

esis from BMM, and TNF-a was involved [39]. Although our data

conflict with their results, this discrepancy can be attributed to

differences in the culture conditions or presence of live P. gingivalis

in our experiments. Our finding that TNF-a induces osteoclasto-

genesis in RANKL-primed RAW-D cells in the absence of

stimulation with TLR ligands is similar to the results of Ukai et al.

More interestingly, TNF-a did not enhance osteoclastogenesis

in RANKL-primed RAW-D induced in the presence of P.

gingivalis. At present, it is unknown why RANKL-primed

macrophages are not responsive to TNF-a in the presence of P.

gingivalis. This is likely to be the result of differences in the

endogenous signaling response of RANKL-primed macrophages

to TNF-a in the presence or absence of P. gingivalis. It has been

reported that some negative regulators of NF-kB activation, such

as A20, are induced by LPS [40]. Pretreatment of macrophages

with TNF-a suppressed cytokine induction by inhibiting LPS-

induced NF-kB signaling; this effect was mediated by A20 and

glycogen synthase kinase 3-a (GSK3) [25]. Our results suggest that

there may be similar regulatory mechanisms operating between

signaling through TNF receptor and TLRs, which may be an

important regulatory mechanism for protection from excessive

inflammation.

In contrast to TNF-a, retreatment with RANKL promoted

osteoclast differentiation from RANKL-primed macrophages in

the presence of P. gingivalis. It has recently been shown that

RANKL antagonists and OPG inhibit bone loss in experimental

periodontitis [41,42], indicating the importance of RANKL and

OPG balance in bone loss in periodontitis. In addition, a previous

study showed that a higher percentage of T and B cells expressed

RANKL in bone resorption lesions of diseased gingival tissues

[43]. Consistent with previous results, our data indicate that

RANKL plays an important role in bone destruction in the

presence of pathogen.

Our current work suggests a possible role of TNF-a and

RANKL in osteoclastogenesis induced by infection with P.

Figure 6. Effect of signaling inhibitors on osteoclastogenesis in RANKL-primed RAW-D cells induced by infection. (A) Effect of
inhibitors NFAT (FK506), p38 MAPK (SB203580), and NF-kB (Bay11.7082) on osteoclastogenesis in RANKL-primed RAW-D cells induced by RANKL or by
infection with P. gingivalis. (B) Effect of inhibitors on cell proliferation of RANKL-primed RAW-D cells in the presence of P. gingivalis for 2 days. RAW-D
cells were stimulated with RANKL (50 ng/ml) for 22 h and then retreated with RANKL or P. gingivalis in the presence or absence of various
concentrations of inhibitors. The culture was stained for TRAP activity after 48 h and TRAP-positive MNCs were counted. Proliferation was analyzed
using CCK-8 cell proliferation kit. Data are expressed as mean 6 S.D. of four independent cultures. Statistical significance was determined with
Student’s t test. **P,0.01 compared to cultures without inhibitors.
doi:10.1371/journal.pone.0038500.g006

Bacterial Infection Promotes Osteoclastogenesis

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e38500



Figure 7. RANKL but not TNF-a promotes osteoclastogenesis in RANKL-primed RAW-D cells in the presence of P. gingivalis. RAW-D
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gingivalis (Fig. 8). Infection of osteoclast precursor cells with P.

gingivalis markedly stimulates osteoclastogenesis in an NFATc1

dependent but NF-kB independent manner. TNF-a has the ability

to promote osteoclastogenesis in the absence of direct stimulation

with pathogen, but does not promote osteoclastogenesis in

osteoclast precursor cells in the presence of P. gingivalis. In

contrast, RANKL effectively stimulated osteoclastogenesis from

osteoclast precursor cells in the presence or absence of P. gingivalis.

Our results identify differential effects of RANKL and TNF-a on

osteoclastogenesis in RANKL-primed macrophages in the pres-

ence of pathogen, which will be useful in devising strategies to

regulate bone loss in infection-induced inflammatory diseases.

Materials and Methods

Materials
FCS was purchased from BioWhittaker (Walkersville, MD).

Recombinant human soluble RANKL, M-CSF, and OPG

(osteoprotegerin) were from Pepro-Tech (London, United King-

dom). Recombinant mouse TNF-a was purchased from R&D

Systems (Minneapolis, MN). LPS from Escherichia coli O55:B5 and

Porphyromonas gingivalis ATCC33277 were purchased from Sigma-

Aldrich (St. Louis MO) and InvivoGen (San Diego, CA),

respectively. Synthetic bacterial lipoprotein, Pam3CSK4, and

polymyxin B were obtained from InvivoGen (San Diego, CA). NF-

AT activation inhibitor, FK506, was obtained from LC Labora-

tories (Woburn MA). P38 MAPK inhibitor, SB203580, was

purchased from Calbiochem (San Diego, CA). IkB-a inhibitor,

BAY11-8082, was obtained from InvivoGen (San Diego, CA).

Neutralizing antibody against anti-mouse TNF-a (MP6-XT3) and

isotype control antibody, rat IgG1 (eBRG), were from eBioscience

(San Diego, CA). Male C57BL/6 mice (aged 5–10 weeks) were

purchased from Kyudo Co. (Saga, Japan).

Ethics Statement
All experiments were reviewed and approved by the Laboratory

Animal Care and Use Committee of Saga University, permit

number (20-026-4).

Bacterial Strain and Culture
P. gingivalis ATCC33277 (kindly provided by Dr. K. Nakayama,

Nagasaki University, Japan) was cultured and maintained on

enriched trypto-soy agar plates containing 5 mg/ml hemine,

defibrinated sheep blood, and 1 mg/ml menadione, at 37uC in an

anaerobic atmosphere. For the preparation of P. gingivalis for cell

stimulation, bacteria were harvested, centrifuged, and washed in

PBS. The number of bacteria (CFU/ml) was determined by

measuring the optical density (OD) at 600 nm.

cells were stimulated with RANKL (50 ng/ml) for 22 h and then re-stimulated with RANKL or TNF-a in the absence (A) or presence (B) of live P.
gingivalis. The culture was stained for TRAP activity after 48 h of retreatment, and TRAP-positive MNCs were counted. Data are expressed as mean 6
S.D. of four independent cultures. Statistical significance was determined with Student’s t test. **P,0.01, compared to cultures without RANKL or
TNF-a. (C) Expression of mRNAs for p55 and p75 TNF receptors, TLR2, and TLR4 in RAW-D cells treated with or without P. gingivalis for 22 h, or RANKL-
primed RAW-D cells retreated with or without RANKL or P. gingivalis for 24 h. Total RNA was isolated, and mRNA expression was assessed by semi-
quantitative RT-PCR using specific primers as described in Materials and Methods.
doi:10.1371/journal.pone.0038500.g007

Figure 8. Possible role of TNF-a in osteoclastogenesis in the presence or absence of P. gingivalis. Macrophages respond to infection with
P. gingivalis by producing TNF-a, which stimulates osteoclastogenesis in osteoclast precursor cells in the absence of P. gingivalis (A). However,
osteoclast precursor cells primed with RANKL do not produce TNF-a and respond differentially to various stimuli. (B) Cells that are not stimulated do
not differentiate into osteoclasts. (C) Cells that are continuously re-stimulated with RANKL differentiate into osteoclasts in an NFATc1- and NF-kB-
dependent manner in the presence of P. gingivalis. (D) Cells that are infected with P. gingivalis differentiate into osteoclasts in an NFATc1-dependent
and NF-kB-independent manner. TNF-a does not stimulate osteoclastogenesis in osteoclast precursor cells in the presence of P. gingivalis, whereas
RANKL stimulates osteoclastogenesis in the presence or absence of P. gingivalis.
doi:10.1371/journal.pone.0038500.g008
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Cell Culture and Osteoclastogenesis
The murine macrophage cell line RAW-D (a subclone of

RAW264) [27], was cultured in a-MEM containing 10% FCS. For

stimulation with TLR ligands and P. gingivalis, RAW-D cells were

precultured with RANKL (50 ng/ml) for 22 h. The cells were

then replated in 96 well plates at a density of 4.56104 cells/ml.

Cells were then infected with live P. gingivalis at indicated

multiplicities of infection (MOI), or incubated in the presence or

absence of RANKL (5 ng/ml) for 1–2 days. For stimulation of

primary macrophages, bone marrow cells were cultured in the

presence of 10 ng/ml M-CSF for 3 days to generate BMMs,

which were then stimulated with 50 ng/ml RANKL for 22 h, then

infected with P. gingivalis and cultured in the presence of M-CSF

(10 ng/ml) for 2 days [5]. At the end of the culture, cells were

fixed and stained with a commercial kit for the osteoclast marker,

TRAP (Sigma-Aldrich, St. Louis, MO). TRAP-positive cells with 3

or more nuclei were counted as multinucleated cells (MNCs).

RT-PCR and Real-time PCR
Total RNA was extracted using Isogen (Nippon Gene),

according to the manufacturer’s protocol. cDNA was synthesized

from 1 mg total RNA using a random primer and avian

myeloblastosis virus RT and a PrimeScript RT-PCR kit (Takara

Bio, Inc. Shiga, Japan). PCR was performed using Quick HS Taq

DyeMix (Toyobo). The following primers were used for semi-

quantitative RT-PCR analysis: mouse tnfrsf1a (p55 TNF receptor),

sense, 59-GAAGTTGTGCCTACCTCCTC-39, antisense, 59-

GTGATTCGTAGAGCAGAGGG-39; mouse tnfrsf1b (p75 TNF

receptor), sense, 59-ACGTTCTCTGACACCACATC-39, anti-

sense, 59-TGGCATCTCTTTGTAGGCAG-39; mouse tlr2

(TLR2), sense, 59-GCATGGATCAGAAACTCAGC-39, anti-

sense, 59-CAACCGATGGACGTGTAAAC-39; mouse tlr4

(TLR4), sense, 59-TCTGATGGTGAAGGTTGGAC-39, anti-

sense, 59-CCAAATGTTCAAGACTGCCC-39. As an internal

control for RNA quantity, the same cDNA was amplified using

primers specific for mouse actin mRNA: sense, 59-AGGGTGT-

GATGGTGGGAAT-39, antisense, 59-TGCTATGTTGCTCTA-

GACTTCGAG-39. Real-time PCR reactions were performed

using a TaqMan gene expression assay kit with a StepOnePlus

real-time PCR system (Applied Biosystems Foster City, CA).

Reactions were conducted in a 10 ml reaction mixture containing

900 nM primers and 250 nM probes, and were incubated 10 min

at 95uC, followed by 40 cycles of a two-step amplification

procedure composed of annealing/extension for 1 min at 60uC
and denaturation for 15 s at 95uC. mRNA levels were quantified

using a standard curve generated with serially diluted cDNA and

normalized to Gapdh expression. Commercially available probe-

primer sets (Applied Biosystems) with proprietary sequences were

used.

Cell Viability Assay
RANKL-primed RAW-D cells were infected with P. gingivalis,

and cultured in the presence of various concentrations of signaling

inhibitors for 2 days. Cell viability was evaluated using Cell

Counting kit-8 (CCK-8) (Dojin Laboratories, Japan) reagent. A 1/

10 volume of reagent was added to each well, and the cells were

incubated at 37uC for an additional 2 h. Absorbance at 450 nm

was then measured.

ELISA Analysis
Culture supernatants were collected, and protein levels of TNF-

a were measured by enzyme-linked immunosorbent assay using an

ELISA kit (eBioscience, San Diego, CA) according to the

manufacturer’s instructions.
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