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Purpose: The Retinoic Acid Receptor Alpha (RARA) gene is a potential candidate gene for myopia due to its differential
expression in animal models during experimentally induced myopia. To test for whether RARA is associated with myopia
we have undertaken a case-control study assessing for associations between RARA and myopia, hypermetropia, and ocular
biometric measures.
Methods: A total of 802 Anglo-Celtic individuals were genotyped. Five tag single nucleotide polymorphisms (tSNPs) in
RARA with an r2 of 0.8 and a minor allele frequency greater than 5% were selected for genotyping. Genotype frequencies
of these 5 tSNPs were compared between individuals with emmetropia and those with myopia or hypermetropia. A
quantitative analysis was also performed to assess associations with ocular biometric measures including axial length,
corneal curvature and anterior chamber depth.
Results: We did not identify any significant association between tSNPs in RARA with either myopia or hypermetropia as
qualitative traits. Neither did we identify any significant associations of these tSNPs with the quantitative traits of axial
length, corneal curvature and anterior chamber depth.
Conclusions: This is the first study to assess for associations between RARA and myopia, hypermetropia, and ocular
biometric measures. Our findings suggest that variations in the nucleotide sequence of RARA are not associated with
myopia, hypermetropia, or ocular biometric measures in our population.

Refractive errors, including myopia and hypermetropia,
represent a diverse but common spectrum of eye disease
associated with significant morbidity across the world [1,2].
Refractive errors occur when light rays from an object focus
in front of (myopia) or behind (hypermetropia) the retina,
leading to an unfocussed image. They present a considerable
public health burden with a prevalence of 20-25% for myopia
in Western nations and much higher rates in some South-East
Asian countries up to 75%, with hypermetropia also being
frequent, particularly in older subsamples [3-6]. The four
major refractive components of the eye are represented by the
power of the cornea, determined in part by its curvature, the
depth of the anterior chamber, the power of the lens and the
length of the eye (axial length) [7]. Refractive errors arise
through a failure of one or more of these refractive
components typically resulting in a mismatch of axial length
with refractive power [8].

Myopia and hypermetropia are complex disease traits.
Environmental risk factors, such as education and near-work,
are known to play a role in the development of myopia but the
role that these play in hypermetropia is not clear [9-12].
Nonetheless, such risk factors only explain around 12% of the
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observed phenotypic variance [13]. A substantial genetic role
in the development of myopia is evident from familial studies
indicating that children with one or both parents presenting
with myopia have a 3 to 7 fold risk of developing myopia
compared to children with neither parent having myopia [14,
15].

Family and twin heritability studies have indicated that
refractive error, as well as axial length, corneal curvature, and
anterior chamber depth are all highly heritable (heritability
estimates ranging from 50% to 90%) [16-20]. Moreover,
genetic linkage analyses have already identified 19
chromosomal regions that might harbor myopia genes, but so
far no confirmed genes have been identified from these
regions [21-31]. Several studies have sought to identify causal
variants in candidate genes from these regions based on a
postulated biological role in myopia [32-37]. The role of genes
in the development of hypermetropia is less researched
despite heritability studies predicting that hypermetropia is
also highly heritable [38,39].

The underlying genes causing refractive errors such as
myopia has not been fully elucidated but we hypothesized that
the Retinoic Acid Receptor Alpha (RARA) gene represents a
plausible candidate. This gene has been shown to be
differentially expressed in both guinea pigs and chicks during
experimentally induced form-deprivation myopia [40,41]. In
addition, inhibition of the synthesis of retinoic acid, the major
ligand for this receptor, has been shown to reduce form-
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deprivation myopia [42]. RARA represents one of six
receptors for retinoic acid but unlike the others it has been
shown to be strongly expressed in the retina [43,44]. Given
that changes in retinal gene expression are the likely origin of
signals that initiate eye growth it is not unreasonable to
hypothesize that RARA may play a role in the development of
myopia [45]. In support of this, double knockout mice lacking
both copies of RARA have a reduced eye weight and a reduced
retinal area [46].

In order to further explore the possible role of RARA in
the development of refractive errors such as myopia we have
undertaken a case-control genetic association study. We have
utilized a tag single nucleotide polymorphism (tSNP)
approach to analyze common polymorphisms within the
coding region of RARA and its promoter and assessed for
genetic associations to myopia, hypermetropia and ocular
biometry measures.

METHODS
Subjects: Individuals with Anglo-Celtic ancestry were
included in this study with ethnicity being based on the place
of birth of the participant as well as their parents and
grandparents, if known. Individuals with a history of other eye
diseases, such as keratoconus, glaucoma, or age related
macular degeneration (AMD) that could affect refraction
measurements were excluded from the study. Individuals with
a history of genetic disorders known to predispose to myopia,
such as Stickler or Marfan syndromes, were also excluded.
Individuals with greater than a 2 D difference between eyes
were excluded as well as individuals where the refractive
measurement of each eye fell into 2 different refraction

groups. Using the above criteria we selected all relevant
participants from the Genes in Myopia Study (GEM; n=570)
[47], the Blue Mountains Eye Study (BMES; n=131) [48] and
the Melbourne Visual Impairment Project (VIP; n=101) [49].
Only unrelated individuals were chosen. These individuals
from the GEM, BMES, and VIP studies were then pooled for
use in the current study. This pooling approach was necessary
in order to obtain a sufficient number of cases and controls for
a statistically viable genetic association study. The similarities
in the methodology for obtaining ophthalmic measurements
for each of these studies facilitated this pooling approach. All
participants were divided into three groups, based on their
refractive measurements; myopia (≤-0.50 D), emmetropia
(-0.50 to +0.75 D) and hypermetropia (>+0.75 D).

Refractive measurements of the eye were obtained using
an auto-refractor (Topcon RM-8800 autorefractor; Topcon,
Paramus, NJ). If objective measurements were not obtained,
then subjective refractive measurements using a modified
version of the Early Treatment of Diabetic Retinopathy Study
(ETDRS) Protocol were used. The ocular biometry
measurements of axial length, anterior chamber depth and
corneal curvature (average of K1 and K2) were obtained using
partial coherence interferometry (IOL master; Carl Zeiss,
Oberkochen, Germany). Whole blood was collected from all
subjects and DNA extracted using a standard phenol-
chloroform technique [50]. Ethical approval for this study was
obtained from the Royal Victorian Eye and Ear Hospital
(RVEEH) Human Research Ethics Committee, Melbourne,
Australia, and adhered to the tenets of the Declaration of
Helsinki. Before any testing, all participants provided
informed consent to participate in the study.

TABLE 1. BASELINE OCULAR BIOMETRY MEASURES FOR PARTICIPANTS IN THE ‘HIGH MYOPIA’, ‘LOW/MODERATE MYOPIA’,
‘EMMETROPIA’, AND ‘HYPERMETROPIA’ GROUPS.

 Spherical
equivalent (D)

Axial length
(mm)

Corneal
curvature (D)

Anterior chamber
depth (mm)

High Myopia
(n=117)

(< -6.00 D)

-8.57(2.39) 26.74(1.31) 44.07(1.61) 3.59(0.46)

Low/Moderate myopia
(n=263)

(-5.99 DS to -0.50 D)

-2.61(1.46) 24.46(1.01) 44.15(1.42) 3.53 (0.40)

Emmetropia
(n=116)

(-0.499 DS to +0.75 D)

0.06(0.20) 23.26(0.62) 44.16(1.33) 3.37(0.38)

Hypermetropia
(n=306)

(> +0.75 D)

2.67(2.04) 22.66(0.93) 43.88(1.40) 3.21(0.40)

p value for trend < 0.001 < 0.001 0.31 <0.001

Results shown are the Mean (Standard Deviation; SD). D = Diopter. p values were obtained using one-way ANOVA. Data are
for right eye, as there were no significant differences between the measurements of the right and left eyes.
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SNP selection and genotyping: Known SNPs within the
coding region of RARA as well as the region encompassing 2
kb upstream of the start of exon 1 and 1 kb downstream of the
stop codon were identified from the Phase II HapMap data
(Release 21a). The HapMap CEU population was chosen as
being the most representative ethnic population for this study.
The prevalence data was then inputted into the HaploView
program (version 3.32) [51] and the inbuilt Tagger program
was used to select tSNPs. A pair-wise tagging approach, with
a criteria of r2 >0.8 and a minor allele frequency (MAF) >5%
was used, leading to five tSNPs being chosen.

All 5 tSNPs were genotyped at the Australian Genome
Research Facility (Brisbane, Australia [AGRF]) using a
Sequenom® Autoflex MassSpectrometer (Sequenom, San
Diego, CA) according to manufacturer instructions.
Statistical analysis: Power calculations were performed using
the Quanto 1.1 software and indicated that we were able to

detect a minimum Odds Ratio (OR) of 2.5 with a power of
80% assuming an equal sample size of cases and control (each
of 117 high myopia and emmetropia) under an additive model
with a minor allele frequency of at least 0.05. We were also
able to detect an OR of 2.5 with power 80% with a minimum
of 96 emmetropia and 288 hypermetropia under an additive
model with a minor allele frequency of at least 0.05. Genotype
frequencies were compared for each of the myopia and
hypermetropia groups relative to the emmetropia group.
Deviations from Hardy Weinberg Equilibrium (HWE) were
assessed using a χ2 goodness-of-fit test. Differences in
genotype frequencies, with myopia or hypermetropia as a
binary trait was analyzed using an additive model by applying
the linear test of trend using SPSS (version 14.0; SPSS Inc,
Chicago, IL). Quantitative analysis, with axial length (AL),
corneal curvature (CC), and anterior chamber depth (ACD)
were undertaken using an independent samples t-test, also

Figure 1. Schematic representation of the physical location of the 5 tag single nucleotide polymorphisms within the RARA gene. The grey
boxes represent exons and the lines represent introns. The tSNPs are identified by their reference numbers in dbSNP.

TABLE 2. DEMOGRAPHIC CHARACTERIZES AND GENOTYPE FREQUENCIES OF 5 TAG SINGLE NUCLEOTIDE POLYMORPHISMS OF
PARTICIPANTS FROM THREE DIFFERENT STUDY POPULATION.

 BMES, N=131             GEMs, N=570 VIP, N=101 p value
40 (30.5)                      212 (37.2) 39 (38.5) 0.32
61.5 (8.6)                     52.9 (13.6)* 61.6 (10.1) <0.001

Genotypes
rs2715554 TT 90 (69.2) 392 (69.1) 70 (71.6) 0.56

 TC 33 (25.4) 159 (28.0) 26 (26.3)
 CC 7 (5.4) 16 (2.8) 2 (2.1) 0.10

rs2715553 TT 50 (38.2) 169 (29.7) 26 (26.6)
 TC 56 (42.7) 286 (50.3) 59 (60.1)
 CC 25 (19.1) 114 (20.0) 13 (13.3)

rs9303285 TT 93 (72.1) 437 (77.1) 78 (80.9) 0.44
 TC 31 (24.0) 118 (20.8) 16 (16.4)
 CC 5 (3.9) 12 (2.1) 3 (3.1)

rs482284 GG 65 (50.0) 292 (51.8) 45 (46.8) 0.02**
 GA 44 (33.8) 229 (40.6) 45 (46.8)
 AA 21 (16.2) 43 (7.6) 6 (6.4)

rs4890109 GG 116 (89.2) 507 (88.8) 86 (87.5) 0.90
 GT 13 (10.0) 61 (10.7) 12 (12.5)

 TT 1 (0.8) 3 (0.5) 0 (0)

The asterisk denotes participants only from GEM study were younger than the other two studies. The double asterisk indicates
that after Bonferoni correction, the corrected p value (0.05/5) = 0.01 to obtain a significant difference amongst the three studies
for the five tag single nucleotide polymorphisms
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through SPSS (version 14.0; SPSS Inc). To minimize type 1
errors due to multiple testing, a Bonferroni correction was
applied. This meant that the threshold p-value for statistical
significance was 0.05/5 =0.01 for this study. Haplotype
analysis was performed for each phenotype using
UNPHASED [52].

RESULTS
Baseline demographics: A total of 802 individuals with mean
(SD) age 55.4 (13.1) and 36.3% (n=291) male were initially
genotyped in this study. There were 380 subjects in the
‘myopia’ group, 116 in the ‘emmetropia’ group and 306 in the
‘hypermetropia’ group. We observed a high correlation
between right and left eyes for refraction (r2=0.98), axial
length (r2=0.84), corneal curvature (r2=1.00) and anterior
chamber depth (r2=0.70). These correlations were statistically
significant (p<0.001) and therefore only data for the right eye
was used for analysis. The mean (SD) and range values for
the refraction and ocular biometric measures for the right eye
are given in Table 1.
Genetic association for myopia and hypermetropia: A total of
five tSNPs, which tagged 10 known SNPs with a MAF >5% in
RARA, were genotyped in this study. All five tSNPs were in
Hardy Weinberg Equilibrium, with the failure rate of
genotyping being 2%. All five tSNPs were intronic, with 4
being located in intron 2, the longest intron of the gene (Figure
1). As expected, none of the tSNPs were in high LD with each
other (r2 <0.8). Genotype frequencies were compared between
the three cohorts but no significant differences were evident
(Table 2). Genotype frequencies for these five SNPs were
compared for the ‘myopia’ and ‘hypermetropia’ groups

relative to the ‘emmetropia’ group. As can be seen in Table 3,
no statistically significant associations were observed for
these five tSNPs in the ‘myopia’ or the ‘hypermetropia’
cohort. In addition, we also undertook an analysis for each
cohort separately, although it decreased the study power, the
results were similar for each of the cohorts. An analysis was
also performed for males and females separately and again no
significant differences were observed.

All five SNPs for the population under study where in
high LD with each other (r2 <0.95) with the exception of
rs4890109 which is not in high lD with rs9303285. All five
SNPs studies in this population fall within the same LD block.
This is comparable, but not identical , to the HapMap data
from the CEU population which places rs4890109 in a
different LD block to the other four SNPs (Figure 2).
Haplotype analysis was undertaken using a two, three, four,
or five sliding SNP window to investigate haplotype
associations. No significant associations were observed based
on this analysis and was similar to that obtained from analysis
when using single SNPs.
Genetic association for refraction and ocular biometry:
Although refractive measures were available for all 802
individuals, ocular biometry was only available for 593
subjects. Ocular biometry measures showed a normal
distribution and were each assessed for genetic association
using quantitative analysis where the mean values of the three
genotypes for each of the five tSNPs were compared and a p-
value calculated. None of the five tSNPs compared showed
statistically significant associations for axial length, corneal
curvature or anterior chamber depth as shown in Table 4. The
tSNP rs482284 (5’ of exon 3) initially showed significant

TABLE 3. ASSOCIATION ANALYSIS OF MYOPIA OR HYPERMETROPIA COMPARED TO EMMETROPIA WITH THE 5 RARA TAG SINGLE NUCLEOTIDE
POLYMORPHISMS.

tSNP Genotype Frequency
emmetropia n (%)

Frequency
myopia n(%)

p value Frequency
hypermetropia n (%)

p value

rs2715554 TT 79 (69.3) 258 (69.0) 0.17 213 (70.1) 0.21
 TC 28 (24.6) 106 (28.3)  83 (27.3)
 CC 7 (6.1) 10 (2.7)  8 (2.6)

rs2715553 TT 33 (28.7) 114 (30.3) 0.46 97 (31.9) 0.42
 TC 64 (55.7) 187 (49.7)  148 (48.7)
 CC 18 (15.7) 75 (19.9)  59 (19.4)

rs9303285 TT 91 (79.8) 290 (77.7) 0.81 225 (74.3) 0.49
 TC 20 (17.5) 75 (20.1)  69 (22.8)
 CC 3 (2.6) 8 (2.1)  9 (3.0)

rs482284 GG 59 (52.7) 197 (52.8) 0.95 145 (47.9) 0.68
 GA 43 (38.4) 146 (39.1)  128 (42.2)
 AA 10 (8.9) 30 (8.0)  30 (9.9)

rs4890109 GG 104 (90.4) 335 (88.4) 0.58 268 (88.4) 0.73
 GT 11 (9.6) 41 (10.8)  34 (11.2)

 TT 0 (0.0) 3 (0.8)  1 (0.3)

The p value indicates the significant level from χ 2 tests in comparison with emmetropia.
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association with axial length (p=0.04) but this association did
not remain significant after Bonferroni correction.

DISCUSSION
Our study represents the first to assess for a genetic association
between RARA and myopia, hypermetropia, and ocular
biometry. Using a tag SNP approach we were able to capture
all common genetic variants within the coding and promoter
regions of RARA by genotyping five tSNPs. We found no
association with myopia and hypermetropia with these five
tSNPs in our Caucasian cohort. We also performed a
quantitative analysis using axial length, corneal curvature and
anterior chamber depth and again found no association of
these traits with the five tSNPs. These findings present strong
evidence that any effect that RARA has shown in animal
models is unlikely to be due to the presence of DNA variants
within the gene or associated regions.

Although our findings do not implicate a direct genetic
role for RARA in myopia and hypermetropia, we cannot rule
out the possibility that RARA may be just one link in a yet

unknown complex pathway involved in causing refractive
errors. There is strong evidence from animal studies for a role
of RARA and retinoic acid in the development of myopia as
well as it having a role in regulating eye length (axial length)
[42,46,53]. It has been shown that the introduction of retinoic
acid to the diet of chicks in form-deprivation experiments
resulted in an overall increase in eye length and conversely,
inhibition of the ligand was shown to have the opposite effect
[42,54]. In addition, mice lacking both copies of RARA
presented with a lower eye weight and reduced retinal areas
compared to wild-type mice [46]. However, our study
suggests that any putative biological role that RARA might
have on the development of refraction is unlikely to be
mediated by common variations in the DNA sequence. We
cannot rule out the possibility that rare genetic variants or
variants resulting in small effect size might contribute to
changes in refraction. Alternative mechanisms of action such
as those mediated by epigenetic effects or those that affect
gene expression may play a role and this needs to be further

Figure 2. Linkage disequilibrium (LD) map comparing the current study with HapMap data for single nucleotide polymorphisms in the RARA
gene. In the left hand panel is shown the LD block with r2 values indicated in the red diamonds and the position of the 5 tag SNPs for the
current study. In the right hand panel the LD map from available HapMap data with position of available SNPs as well as the 5 tag SNPs (r2

values are indicated in the diamonds). At the top of the panel are shown the different RARA alternatively spliced transcripts at this location
on chromosome 17 (http://genome.ucsc.edu/).
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explored to fully understand what role, if any, RARA has in
the development of refractive errors.

Our study cohort has been carefully selected to
encompass a homogenous population with clear phenotypic
definitions. We selected subjects with only Caucasian
ethnicity to minimize population admixture and used strict
definitions of refractive error to prevent misclassification. It
has been suggested that extreme sampling provides a powerful
method to improve the power of genetic association studies
[55,56]. In the current study we recruited individuals across
the entire spectrum of refractive error from hypermetropia to
those with high myopia. This provided us with the advantage
that both refractive (qualitative) and ocular biometry
measures (quantitative) could be analyzed, giving a more
thorough analysis of refraction and its underlying
determinants. Utilizing a tSNP approach has also strengthened
our study and has ensured maximal genetic coverage of the
RARA gene. However, the tSNP approach also has limitations
in that only common tSNPs (MAF <5%) were genotyped, so

there remains a possibility that we have missed rarer alleles in
RARA that might contribute to the development of refractive
errors such as myopia and hypermetropia [57]. As with any
case-control association study, particularly one with negative
results, there are always questions of power to detect
association and cohort size. The power calculations that we
performed suggest that this cohort is sufficiently large to
detect potential changes associated with RARA but we cannot
rule out the possibility that smaller effect changes in RARA
may have been missed by using a cohort of this size.

This study has found that RARA is not genetically
associated with myopia or hypermetropia despite its
biological role in the eye. Although this is a negative result,
additional validation work is still required to assess for rare
variants and to assess for association in larger cohorts.
Additional research exploring the possible role for RARA in
the development of refractive errors via mechanisms that do
not involve direct changes in the nucleotide sequence is also
warranted.

TABLE 4. QUANTITATIVE ASSOCIATION ANALYSIS OF OCULAR BIOMETRIC MEASUREMENTS WITH THE 5 RARA TAG SINGLE
NUCLEOTIDE POLYMORPHISMS.

Genotypes Frequency Axial length,
mean (SD)

Anterior chamber
depth, mean (SD)

Corneal curvature
mean (SD)

rs2715554
TT 410 23.98 (1.72) 3.41 (0.43) 44.06 (1.35)
TC 176 24.06 (1.65) 3.38 (0.43) 43.94 (1.60)
CC 21 23.90 (2.59) 3.29 (0.41) 44.21 (1.73)

p value 0.84 0.23 0.66
rs2715553

TT 188 23.92 (1.85) 3.36 (0.46) 44.01 (1.66)
TC 306 24.07 (1.69) 3.42 (0.42) 43.99 (1.35)
CC 115 23.97 (1.70) 3.42 (0.44) 44.18 (1.28)

p value 0.79 0.27 0.34
rs9303285

TT 464 24.03 (1.74) 3.40 (0.44) 44.05 (1.39)
TC 129 24.01 (1.77) 3.41 (0.42) 43.99 (1.56)
CC 12 23.25 (1.50) 3.25 (0.29) 43.97 (1.86)

p value 0.13 0.23 0.86
rs482284

GG 309 24.07 (1.78) 3.41 (0.43) 43.97 (1.40)
GA 245 24.03 (1.68) 3.42 (0.43) 44.14 (1.48)
AA 50 23.52 (1.76) 3.27 (0.44) 43.93 (1.50)

p value 0.04 0.05 0.87
rs4890109

GG 539 24.01 (1.75) 3.40 (0.44) 44.05 (1.39)
GT 68 23.99 (1.70) 3.41 (0.44) 44.0 (1.77)
TT 4 24.57 (0.90) 3.31 (0.49) 43.93 (2.15)

p value 0.53 0.67 0.87

The p value indicates the significant level from the test of one-way ANOVA.
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