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This study presents a new blood pressure (BP) estimation algorithm utilizing machine

learning (ML). A cuffless device that can measure BP without calibration would be

precious for portability, continuous measurement, and comfortability, but unfortunately,

it does not currently exist. Conventional BP measurement with a cuff is standard, but

this method has various problems like inaccurate BP measurement, poor portability,

and painful cuff pressure. To overcome these disadvantages, many researchers have

developed cuffless BP estimation devices. However, these devices are not clinically

applicable because they require advanced preparation before use, such as calibration,

do not follow international standards (81060-1:2007), or have been designed using

insufficient data sets. The present study was conducted to combat these issues. We

recruited 127 participants and obtained 878 raw datasets. According to international

standards, our diverse data set included participants from different age groups with a

wide variety of blood pressures. We utilized ML to formulate a BP estimation method

that did not require calibration. The present study also conformed to the method

required by international standards while calculating the level of error in BP estimation.

Two essential methods were applied in this study: (a) grouping the participants into

five subsets based on the relationship between the pulse transit time and systolic

BP by a support vector machine ensemble with bagging (b) applying the information

from the wavelet transformation of the pulse wave and the electrocardiogram to the

linear regression BP estimation model for each group. For systolic BP, the standard

deviation of error for the proposed BP estimation results with cross-validation was

7.74 mmHg, which was an improvement from 17.05 mmHg, as estimated by the

conventional pulse-transit-time-based methods. For diastolic BP, the standard deviation

of error was 6.42 mmHg for the proposed BP estimation, which was an improvement

from 14.05mmHg. The purpose of the present study was to demonstrate and evaluate

the performance of the newly developed BP estimation ML method that meets the

international standard for non-invasive sphygmomanometers in a population with a

diverse range of age and BP.
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INTRODUCTION

Non-invasive blood pressure (BP) measurement with cuff-based
devices is widely used, and these devices are necessary for various
medical situations (1). However, there are some disadvantages of
the cuff-based BP measurement methods: (i) a study showed that
three out of 10 home cuff-based BP measurement devices were
inaccurate (2); (ii) the measurement is usually intermittent and
does not capture all the BP changes occurring throughout the
measurement period; (iii) the current cuff-based BP devices are
still bulky, and are not portable or practical for daily or long-term
use (3, 4); (iv) cuff pressure can be painful for some patients; it
can also interrupt their state of rest. The cuff pressure results in
difficulty for measuring BP during sleep or everyday life or, even
worse, may affect the BP measurement itself (5).

Many researchers have developed cuffless BP estimation
devices to overcome these disadvantages, allowing patients to
monitor BP continuously (6–8). Pulse transit time (PTT) is the
pulse wave propagating time from two separate arterial sites on
the same cardiac cycle (9, 10), which usually needs to be examined
using a continuous electrocardiogram (ECG) (11). The PTT
indirectly depends on blood pressure; the higher the pressure,
the faster the PTT (11). This phenomenon has been used
for non-invasive BP estimation. However, many conventional
cuffless PTT-based BP estimation studies have some drawbacks,
divided into four categories: (1) analysis of biased, (2) small
datasets, (3) studies with devices that required calibration, and
(4) insufficient accuracy as required by international standards.
Some studies analyzed biased data that included only young
participants with a narrow blood pressure range (12, 13), while
others had insufficient participants (13–18). Other studies needed
additional advanced preparations such as frequent calibrations
(19–21), required additional parameters (22, 23), or used devices
that needed to be anchored to the body, resulting in annoyance
for some users (24). Besides, some studies either had a wide gap
of means and standard deviations from the reference (25, 26), or
a low regression coefficient (R²) (27, 28), resulting in the need
for more precise mathematical models (29). Table 1 shows the
previous studies for non-invasive cuffless BP estimation. Poon
and Zhang’s cuffless BP measurement was the only study that
had handled a large variety of participants’ blood pressures (39
with hypertension), range of age (57 ± 27 years old), and large
participant number (85 participants) (21). The estimated SBP and
DBP in the Poon and Zhang’s method differed from the reference
BP by 0.6 ± 9.8 mmHg and 0.9 ± 5.6 mmHg, respectively.
However, the BP estimation method in Poon and Zhang’s study
had major shortcomings to need a calibration procedure for each
participant, and the accuracy of BP estimation was not precise.

An international standard has already been formulated
for cuffless sphygmomanometers (ISO 81060-1:2007) (31).
ISO standard is an international standard that must be met
when releasing the cuffless, non-invasive blood pressure
estimation model as a medical device to the market in
the future. However, to the best of our knowledge, a
cuffless BP estimation model that meets the international
standard does not currently exist. The purpose of the present
study was to demonstrate and evaluate the performance

of the newly developed ML method for BP estimation
that meets the international standard for non-invasive
sphygmomanometers in a population with a diverse range
of age and BP.

METHODS

Participants
We recruited 127 participants (73 males and 54 females) at
the University of Fukui Hospital and its affiliated institutions.
The study was conducted with the approval of the Research
Ethics Committee of the University of Fukui (Approval Number:
20148035). Written informed consent was obtained from all the
participants. All participants were asked to fill out a medical
form that included sex, date of birth, past medical history,
and current medications before measuring participant BP. We
excluded those participants who were either pregnant, <18 years
old, or had a persistent arrhythmia. We recruited participants
with a specified range of BP, as required by a protocol of the
International Standard of Non-invasive Sphygmomanometers
(ISO 81060-1:2007) (31).

Experimental System
A biopotential sensing system was developed to measure ECG
and pulse wave simultaneously, as shown in Figure 1. The
system consisted of (A) a biopotential amplification device and
data transmitter, (B) an ECG electrical potential electrode, (C)
a pulse wave sensor and the second ECG electrical potential
electrode, (D) a receiving dongle, and (E) a personal computer for
data recording. The personal computer recorded and analyzed
the waveform of the ECG and the pulse wave. Participants
held one of the two ECG sensor electrodes with their thumb
and index finger of the left hand (B in Figure 1). Another
sensor electrode that could sense the ECG and the pulse wave
simultaneously was attached to the index finger of the right hand
in the sitting position (C in Figure 1). The sampling frequencies
and the resolution of these waveforms were 1024Hz and 12
bits, respectively.

Data Collection Protocol
We collected the reference and analyzed datasets according to the
protocol of ISO81060-1:2007 (31).We acquired the reference and
analyzed datasets from the participants in the sitting position at
room temperature without disturbing influences. The left arm of
the participants was used for the reference measurement. The
protocol for collecting data is shown in Figure 2. After a 5-
min rest to stabilize the BP, the first reference BP measurement
was taken. Then, the participants took a 1-min rest after the
first reference measurement to avoid venous congestion. The
measurement was then taken with the device being tested, after
the first reference measurement but before the second reference
measurement. Participants retook a 1-min rest after the test
device data acquisition. After the rest, the second reference
measurement was taken.We took themeasurement using the test
device in each participant at least three times.
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TABLE 1 | Prior non-invasive cuffless blood pressure estimation studies.

References Source # of participants Range of age Methods MAE SBP MAE DBP

Gao et al. (30) PPG 65 22–65 W

SVM

5.1 ± 4.3 4.6 ± 4.3

Chen et al. (25) BCG

ECG

51 20–74 AS 9.0 ± 5.6 1.8 ± 1.3

Chan et al. (26) ECG

PPG

PTT

/ / AS 7.5 ± 8.8 4.1 ± 5.6

Ding et al. (13) PTT

PPG

27 21–29 AS −0.4 ± 5.2 −0.1 ± 4.0

Chen et al. (15, 16) PTT 23/26 19–60 AS 2.2 ± 6.2 −1.5 ± 6.5

Poon and Zhan (21) PTT 85 / (57 ± 27) AS 0.6 ± 9.8 0.9 ± 5.6

MAE, mean absolute error; SBP, systolic blood pressure; DBP, diastolic blood pressure; PPG, photoplethysmogram; ECG, electrocardiogram; PTT, pulse transit time; BCG,

ballistocardiograph; AS, analytical solution; SVM, support vector regression machine; W, wavelet.

FIGURE 1 | Biopotential sensing system. (A) Biopotential amplification device and data transmitter, (B) First ECG electrical potential electrode, (C) Pulse wave sensor

and the second ECG electrical electrode, (D) Receiving dongle, (E) Personal computer for data recording.

FIGURE 2 | Protocol for collecting data. We took the measurement using the test device in each participant at least three times.

Reference Data
Two medically trained observers measured the reference BP
simultaneously with one reference mercury sphygmomanometer
using a “Y” connector that lets two observers measure one
participant’s BP. The systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were determined by phase 1 and phase 5 of
Korotkoff sounds, respectively. All measurements were recorded
to the nearest 2 mmHg. If the values of SBP and DBP as measured
by the two observers were <4 mmHg apart, the mean value of
the BP was calculated from the observed values and used as the

reference data. If the difference in the measured BP between the
two observers was more significant than 4 mmHg, we excluded
both the reference and the test device data. These reference BP
acquisition methods were stipulated by the ISO standard (31).

Preparation of the Data Set for Machine
Learning
Due to the quality of the measurement, some data were not
suitable for data analysis, included either poor ECG, poor
pulse wave signals, significant blood pressure changes between
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the reference measurements taken before and after the test
device BP measurement. We applied several structured criteria
to the dataset for the preprocessing of machine learning, as
shown below:

Exclusion Criteria Based on Reference Data
We excluded the data according to exclusion criteria, as
designated by the ISO standard for the reference dataset (31);
(a) if the difference between the reference measurements taken
by the two observers was more than 4 mmHg, (b) if the
difference between the reference measurements before and
after the test device measurement was more than 12 mmHg
for SBP or more than 8 mmHg for DBP, (c) if three valid
datasets could not be acquired from one participant due to any
reason (e.g., unstable BP).

Exclusion Criteria Based on Waveform
We excluded the following cases from the data analysis: (a) the
amplitude of the ECG or the pulse waveform was too low due to
the dryness of the participant’s hands, (b) the crest of the ECG and
the pulse waveform was not clear, (c) steady noise (mainly caused
due to power supply noise) interfering with the waveform due
to unstable electrode holding, and (d) a wavelet calculation error
occurring either in the ECG or the pulse waveformmainly caused
due to measurement errors. A specific cutoff value was set for
each exclusion criteria so that data could be excluded objectively.

Data Selection to Satisfy the ISO Protocol
The proportion of participants with high blood pressure and
those with low blood pressure was designated according to
the protocol of ISO80601-1:2007 (31). ISO requests a wide
range of blood pressure proportions to demonstrate the device’s
applicability to a wide range of participants with various blood
pressures. Since we acquired many datasets within the normal
range of blood pressure, we needed to exclude some of these
datasets from the other datasets for an accurate analysis. The
datasets containing large PTT fluctuations and low signal quality
of ECG were excluded in descending order until the datasets met
the ISO standard protocol.

Final Data Set for Training and Evaluation
One hundred and twenty-seven participants with 878 datasets
remained in the study. We excluded 21 participants with 423
datasets because of the exclusion criteria based on reference
BP data. Nineteen participants with 127 datasets were excluded
because of the exclusion criteria based on waveform. Among
the 85 patients with 328 datasets, 68 datasets were excluded
(66 datasets were normal BP range and 2 datasets were
SBP ≥140 mmHg) in descending order of PTT fluctuation
and exclude one participant for meeting BP distribution of
the ISO standard. Finally, we acquired 260 datasets from 84
participants. The ISO protocol requiresmore than 85 participants
with more than 255 datasets. In this study, we prioritized
the distribution of BP values with a certain proportion of
participants with high and low BP participants because we
aimed to confirm the ability of the device to apply to a wide
variety of BP values. The participant’s BP distributions are
shown in Table 2. We also intended that the device should

TABLE 2 | Blood pressure distribution of participants.

ISO standard Acquired data

Participant 85 84

Valid data set 255 260

Gender ratio Each ≥30% Female 54 (64.3%)

SBP ≤ 100 mmHg ≥13 data/5% 39 data (15.0%)

SBP ≥ 160 mmHg ≥13 data/5% 16 data (6.2%)

SBP ≥ 140 mmHg ≥52 data/20% 52 data (20.0%)

DBP ≤ 60 mmHg ≥13 data/5% 43 data (16.5%)

DBP ≤ 100 mmHg ≥13 data/5% 13 data (5.0%)

DBP ≤ 85 mmHg ≥52 data/20% 71 data (27.3%)

SBP, systolic blood pressure; DBP, diastolic blood pressure.

TABLE 3 | Age distribution of participants.

Age (years) 58.1 ± 16.1

20∼24 2 (2.4%)

25∼29 2 (2.4%)

30∼34 5 (6.0%)

35∼39 5 (6.0%)

40∼44 4 (4.8%)

45∼49 5 (6.0%)

50∼54 7 (8.3%)

55∼59 8 (10.0%)

60∼64 13 (15.5%)

65∼69 12 (14.3%)

70∼74 7 (13.0%)

75∼79 7 (13.0%)

80∼84 3 (3.6%)

85∼ 4 (4.8%)

apply to diverse age groups. The ISO protocol requires the
participants’ age to range from 18 years old to 65 years old.
We collected datasets from young and older participants, and
our age range was more expansive than the requirements
of the ISO protocols. Table 3 shows the age distribution of
the participants.

Implementation of the BP Estimation
Algorithm
The proposed algorithm consists of four steps: (i) waveform
preparation, (ii) participant group classification, (iii) feature
extraction, and (iv) BP value estimation according to the selected
participants’ group.

Waveform Preparation
The ECG and the pulse waveforms were averaged to a single
waveform in a 10-s window to decrease the difference between
each pulse. Due to the heart rate fluctuations, the pulse intervals
were normalized and extended to 1 s. Normalization was also
applied to the amplitude of the wave due to the amplitude
fluctuation for each pulse. By multiplying the amplitude peak
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FIGURE 3 | Example of normalized ECG and pulse wave. The ECG and the pulse waveforms were averaged to a single waveform in a 10-second window. The pulse

intervals were normalized and extended to one second. Normalization was also applied to the amplitude of the wave.

FIGURE 4 | Five groups were divided by group estimator in the PTT-reference plot. The participants were distributed 1:1:3:3:2 in the five areas surrounded by the four

curves.

by the multiplication coefficient, the amplitude peak of the
waveform is calculated. The R wave peak was defined as the
largest peak of the ECG wave from the baseline before and after
its generation. As the T wave in ECG is also a big positive
wave and we needed to recognize the R wave and the T wave
correctly, the threshold was set to 0.7 from the baseline in the
normalized amplitude width. The wave that was bigger than 0.7
was recognized as the R wave, and the wave that was smaller than
0.7 just after R wave was recognized as the T wave. The similar
procedure was also performed for the pulse waveform. Examples
of the normalized ECG and the normalized pulse waveforms are
shown in Figure 3.

Participants’ Group Classification
We divided the entire data into five categories (group 1, group
2, group 3, group 4, and group 5.) at a ratio of 1:1:3:3:2 with
four curved borders. Figure 4 shows the distribution of sample
data divided by the four curved borders. The four curved
borders divide the entire data into five subgroups, such as
group 1 for the very high BP subgroup, group 2 for the high

BP subgroup, group 3 for the moderate BP subgroup, group
4 for the low BP subgroup, and group 5 for the very low
BP subgroup at the ratio of 1:1:3:3:2. We noticed that even
with almost the same PTT, the BP differed significantly among
participants through data collection. However, BP was mainly
stable in the same participant. The group classification formula
was derived from the relationship between the BP tendency and
the waveform features. We expected the classified groups to
function as rough BP estimators from waveform features and
PTT alone. The ratio of the number of samples was determined
as 1:1:3:3:2 while shifting the coefficient term of the 1/PTT line
for SBP and PTT. Since we drew four curved borders evenly
spaced, subgroup 1(very high BP subgroup) contains very few
participants. Hence, we drew the bottom three curves evenly
spaced and the top curved border 50% nearly to the second one.
As a result, the participants were distributed 1:1:3:3:2 in the five
areas surrounded by the four curves.

A support vector machine ensemble with bagging was selected
as a group estimator (32, 33). The support vector machine is
one machine learning and constructs a hyperplane or set of
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TABLE 4 | Selected feature values.

Selected features Waveform Normalized time** Normalized frequency**

1 * 1/ PTT - - -

2. The square root of body weight - - -

3. Wavelet coefficients Pulse wave 11 7

4. Wavelet coefficients ECG 14 3

5. Bodyweight - - -

6. Wavelet coefficients Pulse wave 19 1

7. Heart rate - - -

8. Wavelet coefficients Pulse wave 1 2

9. Wavelet coefficients ECG 1 2

10. Wavelet coefficients Pulse wave 17 1

11. Pulse transit time - - -

12. Wavelet coefficients ECG 19 2

13. Wavelet coefficients Pulse wave 13 1

14. Wavelet coefficients Pulse wave 14 1

15. Wavelet coefficients Pulse wave 20 1

16. Wavelet coefficients Pulse wave 5 1

17. Wavelet coefficients ECG 5 1

18. Wavelet coefficients ECG 8 1

19. Wavelet coefficients ECG 19 1

20. Peak of ECG ECG - -

21. Wavelet coefficients ECG 20 4

22. Wavelet coefficients Pulse wave 10 1

23. Wavelet coefficients Pulse wave 8 1

24. Wavelet coefficients Pulse wave 8 2

PTT, pulse transit time, ECG, electrocardiogram.

*Numbers are assigned in order of the effectiveness of features.

**Wavelet coefficients of ECG/pulse wave: The time indicates the number from the beginning of the normalized time axis divided into 20 equal parts. The frequency indicates the number

from the beginning of the normalized frequency axis divided into 8 equal parts.

FIGURE 5 | Examples of the wavelet transformation of the ECG and pulse waveforms. The ST-segment and the baseline between the T wave and the P wave had

frequently used the wavelet coefficient features in both the wavelet coefficients of the ECG and pulse waveforms.
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hyperplanes in a high- or infinite-dimensional space, which can
be used for classification, regression, or other tasks like outlier
detection. We applied 10-fold cross-validation for learning.
Cross-validation is a technique for assessing how the results
of a statistical analysis generalize to an independent data
set (34). Even the support vector machine (SVM) has been
proposed to provide a good generalization performance; if we
use only one SVM, the classification result of the practically
implemented SVM is often far from the theoretically expected
level. To improve the limited classification performance of the
one SVM estimator, we prepared 35 support vector machine
estimators with bagging (bootstrap technique). Each SVM was
trained independently using the randomly chosen training
samples via a bootstrap technique. Then, they were aggregated
into to make a collective decision for participants’ group
clarification (32, 33).

Feature Extraction
The candidate features for machine learning consisted of the
following features: participants basic information (age, body
weight, height, etc.), PTT, basic information of second derivative
photoplethysmogram (a, b, c, etc.), wavelet features from the
ECG, and wavelet features from the pulse wave. The continuous
wavelet transform was adopted for waveform analysis. We
obtained the wavelet features from each cell by dividing the
normalized wave of both the ECG and the pulse wave into 20
bands in the horizontal and eight bands in the vertical direction.
In this way, we prepared 320 features (20 [the horizontal
direction] × 8[the vertical direction] × 2[ECG, pulse wave])
as wavelet features from the ECG and the pulse wave. These
features were used to create a BP estimation linear regression
model for each group. Table 4 shows the specific features that
were used in machine learning in descending order. Although
some traditional features such as 1/PTT, the square root of
body weight, heart rate, PTT, and the peak of ECG were used,
many newly-developed features such as wavelet coefficients of
the ECG/pulse waveforms were also used in the models. The ST-
segment and the baseline between the T wave and the P wave
had frequently used the wavelet coefficient features in both the
wavelet coefficients of the ECG and pulse waveforms. Figure 5
shows one example of the wavelet transformation of the ECG and
pulse waveforms.

BP Value Estimation From the Selected Participants’

Group
The present study’s model comprises two steps: grouping
estimation by the SVM ensemble with bagging (mentioned
above) and the BP estimation linear regression model for each
group. The estimation formula for BP value was derived from
the relationship between the feature values and the reference
BP values. Since the BP estimation model was prepared for
each group, five BP estimation models were learned from the
5-grouped datasets. Linear regression was used for the BP
value estimator. The incremental feature value selection was
applied to select useful features only. Feature value candidates
consisted of the wavelet transformation of the ECG and the

TABLE 5 | Comparison of conventional PTT-based methods and the proposed

method.

Standard deviation of

error in SBP

Standard deviation of

error in DBP

*Measured BP 21.34 mmHg 14.65 mmHg

PTT-based

methods

17.05 mmHg 14.05 mmHg

Proposed method 7.74 mmHg 6.42 mmHg

BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; PTT,

pulse transit time.

*Measured BP is the overall distribution of the BP data without any data treatment.

pulse waveforms, weight, height, body mass index (BMI), PTT,
and 1/PTT.

Primary Outcome
The primary outcome in this study was the evaluation of
the models formulated with the standard deviation of the
error between the estimated BP value and the reference value.
The 10-fold cross-validation was adopted for evaluating the
model performance. The original sample was partitioned into
10 subsamples. Of the 10 subsamples, a single subsample was
retrained as the validation data for testing the model, and the
remaining nine subsamples were used as training data. The cross-
validation process was repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. The 10
standard deviation error results were averaged for the evaluation
result (34).

RESULTS

Comparison of Conventional PTT-Based
Method and the Proposed Method
Table 5 shows a comparison of the conventional PTT-
based methods and the proposed method for the primary
outcome. For SBP, the error of the standard deviation of the
proposed BP estimation results with cross-validation was
7.74 mmHg, which was an improvement from 17.05 mmHg,
as estimated by the conventional PTT-based methods. For
DBP, the error of the standard deviation of the proposed
BP estimation results with cross-validation was 6.42 mmHg,
which was an improvement from 14.05 mmHg, as estimated
by the conventional PTT-based methods. The association
between the estimated BP by the proposed method and
the measured reference BP for SBP and DBP are shown in
Figures 6, 7, respectively. The proposed method had small-range
prediction values closer to the reference values compared to the
PTT-based methods.

DISCUSSIONS

Comparison to Prior Work
This study aimed to propose a new BP estimation method that
did not require calibration based on a wide range of age and
BP distribution while assessing the participants according to the
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FIGURE 6 | (A) Proposed method reference-prediction plot (Systolic blood pressure). (B) PTT-based method reference-prediction plot (Systolic blood pressure). The

proposed method had small-range prediction values closer to the reference values compared to the PTT-based methods.

FIGURE 7 | (A) Proposed method reference-prediction plot (Diastolic blood pressure). (B) PTT-based method reference-prediction plot (Diastolic blood pressure). The

proposed method had small-range prediction values closer to the reference values compared to the PTT-based methods.

ISO standard protocol. To the best of our knowledge, the present
study is the only one that has met most of the protocols of
the ISO standard in reference BP acquire method, the number
of participants, BP distribution, and the standard deviation of
the error for prediction model (<8mm SBP). Table 1 shows
prior studies performed for BP estimation using PTT and ECG
analysis. It presents a comparison of the signal source, number of
participants, range of age, estimation methods, and error.

Implementing Wavelet Transformation,
Grouping, and Used Features
As shown in Table 4 and Figure 5, the characteristics of the
features used in the present models were divided into two:

traditional features and newly developed features. Traditional
features such as 1/PTT, the square root of body weight, heart
rate, and PTT were well-studied, and they were also effective
in improving the accuracy in the present study (29). Besides,
newly developed features such as wavelet transformation of the
ECG and the pulse waveforms were as effective as traditional
features (17, 18). The cells of frequently used wavelet coefficient
features in both ECG and pulse wave were the ST-segment and
the baseline between the T wave and P wave in the ECG (shown
in Figure 5). The ST segment represents the interval between
ventricular depolarization and repolarization and pumps blood
to blood vessels during the ST segment (35). Since the P
wave represents the depolarization of the left and right atria
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and corresponds to atrial contraction, blood moves from the
circulatory system to the heart during the baseline between the
T wave and P wave (36). Because the arteriosclerosis of the
blood vessel wall plays a significant role in determining blood
pressure, it seems to be consistent with themany essential wavelet
coefficients in the ST segment and the baseline between the T and
P waves.

Another feature of the present study was the grouping of
the datasets into 5 subgroups. Since the arterial walls are
composed of the proteoglycans, endothelium, elastin, collagen,
and smooth muscles in varying quantities depending on
individuals and vessel size, grouping participants into five
subgroups was considered effective (37). By grouping the
datasets, the participants’ BP estimation model can be accurately
selected for each participant that matches the stiffness of the
vessel wall.

The Merit of the Cuffless
Sphygmomanometer
We adopted a data collection and evaluation method in line with
the ISO standard for non-invasive sphygmomanometers (31). If
the estimation accuracy is sufficiently improved, it is possible to
implement a cuffless sphygmomanometer that predicts the trends
of BP instead of using cuff-based BP devices in the near future.
A cuffless sphygmomanometer has many potential advantages.
Considerable fluctuations in BP trends can be used as a warning
signal by medical practitioners. Most vital parameters in today’s
operating rooms are measured continuously, except for BP.

Physicians are always concerned about the deterioration of
a patient’s vital signs in the emergency departments, especially
for BP. When we use the model in actual clinical settings in
the future, we can use a watch-type pulse wave sensor for 24/7
monitoring. Blood pressure estimates are calculated within 1 s
from pulse wave detection, and we can know blood pressure
estimates for each pulse, resulting in improved patient safety.
In the intensive care unit, invasive arterial blood pressure
monitoring is routinely used to monitor seriously ill patients.
For these patients, this is not only painful but, more seriously,
can cause life-threatening infections or bleeding. However,
since the device is non-invasive, the present BP estimation
method has no risk of these complications. As it can record BP
changes at every beat, it may also contribute to ensuring patient
safety by retrospective investigation when incidents occur in
a hospital.

A cuffless sphygmomanometer can bring various benefits
to ordinary households as well. BP fluctuations are essential
in monitoring systems for older patients, like the ones present
in smart homes. By installing a cuffless sphygmomanometer in
places where sudden changes in the BP of an older individual are
likely to occur, such as in beds, chairs, toilets, and bathrooms,
the healthcare provider can respond swiftly to these changes.
Accumulation of daily blood pressure data can be utilized in
outpatient treatment, leading to the improved prescription of
appropriate antihypertensive medications and compliance.
Furthermore, machine learning with other parameters
can lead to the prediction of sudden events in daily life.

Therefore, the development of a cuffless sphygmomanometer
is expected to impact an aging society’s social security
system significantly.

Limitations of the Present Study
First of all, the present study results were data-dependent,
and different datasets might create different BP estimation
models. The characteristics used in the present study may
differ depending on the datasets. In machine learning, 260
data sets in this study are relatively small, and it is desirable
to perform sensitivity analysis with more data. However, to
our knowledge, this study is one of the largest studies in the
field of non-invasive BP estimation. This study also meets the
requirements of ISO standards that demanding more than 255
datasets. We have a plan for a validation study with more
participants in ICU/ER settings. Secondly, it can be challenging
to interpret the created algorithm. As shown in Figure 5, it is
challenging to determine precisely why this frequency during
the specific period in the ECG and the pulse waveforms were
related to the BP. However, these limitations are generally found
in ML, and despite these challenges, applying the ML model
to clinical practice is rapidly progressing (38–40). Third, we
performed waveform measurements on motionless participants
and excluded participants in arrhythmias in the present study.
Since the current model averages pulse waveforms, patient’s
movement and arrhythmias can cause the poor performance of
BP estimates. Finally, we did not validate the present model with
a new dataset in the settings where BP change can be bigger, such
as ICU/ER, further validation in ICU/ER settings is needed in
the future.

CONCLUSIONS

Based on the participants with a wide age range and BP
distribution, we proposed a novel cuffless BP estimation method
by grouping participants and applying wavelet features. The
standard deviation of error improved from 17.05 to 7.74
mmHg for SBP and from 14.05 to 6.42 mmHg for DBP
compared to the PTT-only estimation methods. We plan to
increase the number of datasets in ICU and ER settings
and improve the accuracy of the estimation methods in
future studies.
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