
nanomaterials

Communication

Mixed-Solvent Polarity-Assisted Phase Transition of
Cesium Lead Halide Perovskite Nanocrystals with
Improved Stability at Room Temperature

Rui Yun, Li Luo * , Jingqi He, Jiaxi Wang , Xiaofen Li, Weiren Zhao, Zhaogang Nie and
Zhiping Lin

School of Physics and Optoelectronic Engineering, Guangdong University of Technology,
Guangzhou 510006, China; 13570980324@163.com (R.Y.); 13690103732@163.com (J.H.);
18635208773@163.com (J.W.); selfiemua@163.com (X.L.); zwrab@163.com (W.Z.); zgniegdut@163.com (Z.N.);
zhipinglphy@gdut.edu.cn (Z.L.)
* Correspondence: luoli@gdut.edu.cn

Received: 16 September 2019; Accepted: 28 October 2019; Published: 30 October 2019
����������
�������

Abstract: Cesium lead halide perovskite nanocrystals (NCs) have attracted enormous interest in
light-emitting diode, photodetector and low-threshold lasing application in terms of their unique
optical and electrical performance. However, little attention has been paid to other structures
associated with CsPbBr3, such as CsPb2Br5. Herein, we realize a facile method to prepare dual-phase
NCs with improved stability against polar solvents by replacing conventional oleylamine with
cetyltrimethyl ammonium bromide (CTAB) in the reprecipitation process. The growth of NCs can
be regulated with different ratios of toluene and ethanol depending on solvent polarity, which not
only obtains NCs with different sizes and morphologies, but also controls phase transition between
orthorhombic CsPbBr3 and tetragonal CsPb2Br5. The photoluminescence (PL) and defect density
calculated exhibit considerable solvent polarity dependence, which is ascribed to solvent polarity
affecting the ability of CTAB to passivate surface defects and improve stoichiometry in the system.
This new synthetic method of perovskite material will be helpful for further studies in the field of
lighting and detectors.
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1. Introduction

Cesium lead halide perovskite (CsPbX3 X = Cl, Br, I) nanocrystals (NCs) have attracted enormous
attention, having emerged as promising materials in the field of displays, lighting, lasing and
photodetection [1,2]. A large number of studies on the thin-film, micro-structure and single crystals of
these materials have been devoted to technological explorations for diverse applications [3,4], based
on their outstanding optoelectronic performance, including ultrahigh photoluminescence quantum
yield, narrow-band emission, flexible wavelength, high charge carrier mobilities and facile synthetic
process [5,6]. In addition, other phases of cesium lead halide perovskite derivatives such as hexagonal
Cs4PbBr6 and tetragonal CsPb2Br5 are observed in the form of quantum dots and so on [7,8], which
possess structure-dependent physical properties and greatly expands the potential applications in
sensing, catalysis, electro-chemistry and optoelectronics [9,10].

Recently, some reports indicated that CsPb2Br5 played an important role in improving the emission
lifetime and stability of CsPbBr3 and enhancing solar cell efficiency [11]. Even so, studies on controllable
syntheses of CsPb2Br5 and the mechanism of photoluminescence are still not abundant, especially in
the area of theoretical simulation that cannot match the experimental results [12]. Some studies insisted
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on the pure CsPb2Br5 microplates with a bandgap of 2.44 eV exhibited lasing emission under both one-
and two-photon excitation [13]. Jiang’s group indicated that the strong green emission is originated
from coexisting phase CsPbBr3 rather than CsPb2Br5 and concluded that CsPb2Br5 is an indirect
bandgap semiconductor with a bandgap of 3.1 eV and has high nonradiative Auger recombination,
indicating that no luminescence will be generated from the CsPb2Br5 [12]. Some investigations have
reported that the emissive CsPb2Br5 is associated to the sub-bandgap defects such as Br vacancy or
Pb and Cs vacancies [14–16], while other researchers have proposed that the lead bromide complex
in CsPb2Br5 is the reason for the luminescence [17,18]. Therefore, the research of the luminescence
mechanism on CsPb2Br5 cannot be neglected.

Cesium lead halide perovskite NCs can rapidly nucleate and grow during synthesis, which is
assigned to its low formation energy and fast crystallization rate [19]. What’s more, the crystalline
phases are extremely sensitive to the ratios of the elements in the precursors, the post-processing and
the film-formation [20]. Therefore, several strategies have been developed to control the composition,
morphology and size of NCs in this rapid reaction by changing the experimental parameters. Jiang
et al. found a phase transition from orthorhombic CsPbBr3 to tetragonal CsPb2Br5 and a shape
evolution from octagonal to square by controlling the reaction time [12]. Deng et al. prepared uniform
CsPb2Br5 nanowires and nanosheets with superior stability and high yield by mediating the ligands
at room temperature [21]. Sun et al. synthesized dual-phase CsPbBr3-CsPb2Br5 composites at lower
temperature and employed them as an emitting layer in LEDs, which exhibits a distinct improvement
of about 21- and 18-fold in CE and EQE compared with reported CsPbBr3 LEDs [11]. However, little
work has been devoted to the investigation of solvent polarity. The major role of the solvent is affecting
the charge transfer rates between NCs and the surface bonding structure [22]. This is the first report
where a systematic study that the morphology, phase structure and PL of NCs have a regular change
under variable polar conditions. Such a study would trigger a deeper consideration of solvent effects
and provide a new direction for improving optoelectronic device performance.

In this work, we demonstrate a new approach to synthesize NCs with cetyltrimethyl ammonium
bromide (CTAB) instead of oleylamine under variable polar conditions. The role of CTAB in the system is
discussed and NCs synthesized with it show enhanced stability against ethanol. Subsequently, we have
revealed the phase structure of NCs transit from orthorhombic CsPbBr3 to tetragonal CsPb2Br5 with the
solvent polarity increase and solvent polarity dependence of PL and defect density. Furthermore, the
possible mechanism for NCs by combining ligand CTAB with mixed-solvent polarity is investigated.
This would provide new guidance to modify the reprecipitation method.

2. Materials and Methods

2.1. Materials

PbBr2 (Macklin, 99.0%, Shanghai, China), CsBr (Macklin, 99.5%), PbI2 (Macklin, 98.0%), CsI
(Macklin, 99.9%), PbCl2 (Macklin, 99.5%), CsCl (Macklin, AR), cetyltrimethyl ammonium bromide
(CTAB, Macklin, 99.0%), oleic acid (OA, Aladdin, AR, Shanghai, China), oleylamine (OAm, Aladdin,
AR), dimethylformamide, (DMF, Aladdin, 99.8%), ethanol and toluene were purchased from Guangzhou
Chemical Reagent Co. Ltd (Guangzhou, China) and were used directly without further purification.

2.2. Methods

2.2.1. Synthesis of CsPbBr3/CsPb2Br5 NCs

In the typical synthesis of CsPbBr3/CsPb2Br5 QDs, PbBr2 (0.2 mmol) and CsBr (0.2 mmol) were
dissolved in DMF (5 mL) at room temperature, OA (0.3 mL) and CTAB (0.05 g) were added to the
constantly vigorous stirred DMF solution for 1h. Finally, 1 mL of mixed precursor solution was mixed
in a new beaker with toluene (20 mL) under vigorous stirring for 20 min. The as-synthesized QDs
were dispersed in toluene for further characterization.
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2.2.2. Synthesis of CsPbBr3/CsPb2Br5 NCs with Ethanol

Similar as the above CsPbBr3/CsPb2Br5 NCs approach, 1 mL of mixed precursor solution was
injected into a new beaker with a mixture (20 mL) of ethanol (E) and toluene (T) (E:T = 0.2, 0.3, 0.4, 0.5,
0.6, 0.7) under vigorous stirring for 20 min.

2.2.3. Synthesis of CsPbX3/CsPb2X5 NCs

Similar as the above CsPbBr3/CsPb2Br5 NCs approach, CsPb(Cl/Br)3/CsPb2(Cl/Br)5 NCs were
prepared by PbCl2 (0.07 mmol), CsCl (0.07 mmol), PbBr2 (0.10 mmol), CsBr (0.10 mmol), OA (0.30 mL)
and CTAB (0.02 g); CsPb(Br/I)3/CsPb2(Br/I)5 NCs were prepared by PbBr2 (0.10 mmol), CsBr (0.10 mmol),
PbI2 (0.10 mmol), CsI (0.10 mmol), OA (0.30 mL) and CTAB (0.02 g).

2.2.4. Synthesis of CsPbBr3/CsPb2Br5 NCs with OAm

Similar as the above CsPbBr3/CsPb2Br5 NCs approach, the CTAB were replaced with OAm
(0.5 mL). 1 mL of mixed precursor solution was mixed in a new beaker with a mixture (20 mL) of
ethanol (E) and toluene (T) (E:T = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) under vigorous stirring for 20 min.

2.3. Characterization

Photoluminescence (PL) spectra were acquired on a fluorescence spectrophotometer (F-7000,
Hitachi, Tokyo, Japan). Ultraviolet and visible absorption (UV-vis) spectra were measured with a
UV-3600 plus spectrophotometer (Shimadzu, Kyoto, Japan). The absolute PLQYs were obtained on
a integration sphere (mod. 2100, Otsuka Electronics, Tokyo, Japan). Fluorescence lifetimes were
gained using a FM-4P time-corrected single-photon-counting (TCSPC) system (Horiba, Kyoto, Japan)
at an excitation wavelength of 325 nm. FTIR spectra were measured on a Nicolet instrument (iS5,
Madison, WI, United States) in the region of 3200–900 cm−1. X-ray diffractometry (XRD) patterns
were collected with a D8 Advanced X-ray diffractometer (Bruker, Karlsruhe, Germany) using Cu Kα

radiation (wavelength 1.55406 Å). Transmission electron microscopy (TEM) was performed on a JEM
electron microscope (2100F, Tokyo, Japan) operating at 200 kV and energy dispersive spectra (EDS)
were obtained with EDAX Genesis XM2 spectrometry. X-ray photoelectron spectroscopy (XPS) were
recorded with an Escalab 250Xi X-ray photoelectron spectrometer (Thermo Fisher, Waltham, MA,
United States) in the 3900–750 eV region.

3. Results

It is well known that surface ligands have a major impact on the shape, size and composition
of NCs, and the size and morphology can be correlated with the performance of NCs in optics and
electricity due to changes in band structure [23]. CTAB is one of the most common surfactants in
the synthesis of gold nanorods, which is attributed to its electrostatic interaction with NCs [24,25].
Moreover, it’s generally accepted that the negative exciton trapping effect of Br vacancies (VBr)
generated before nucleation cannot compensate for missing Br ions due to the fast nucleation rate,
leading to a large amount of VBr and some researchers have suggested the reduced VBr density by
passivation would lead to a higher QY [26,27]. The CTAB-modified NCs exhibit enhanced stability
against polar solvents due to avoiding the ligand loss and low stability caused by the interligand
proton transfer between oleylamine (OLA) and oleic acid (OA) [28]. Therefore, we explore a new
synthetic method to trigger a deeper consideration of the nucleation and growth mechanism of NCs.

Furthermore, the effect of the solvent environment on the dispersibility, stability and photoelectric
properties of the NCs has been widely investigated [29]. The strategy for the synthesis of
CsPbBr3/CsPb2Br5 NCs are carried out by tuning solvent polarity, that is to change the faction
of ethanol and toluene in the system. The main reason why ethanol was chosen as a solvent polarity
regulator is that CTAB has a higher solubility in ethanol, leading to the concentration of Br only slightly
changing [30]. The crystallized phases with different morphology are obtained by mixing a precursor
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in good solvent (N,N-dimethylformamide, DMF) into a poor mixture under ambient conditions at
room temperature. The details for synthesis can be found in the Methods section and Table S1.

Figure 1 shows the transmission electron microscopy (TEM) images and high-resolution TEM
(HRTEM) images of the representative samples a and d, which were synthesized with a poor mixture at
VE: VT = 0 and 0.4, respectively. It is observed that the NCs of 8–22 nm are uniform and monodispersed
in sample a (Figure 1a,b), while Figure 1c,d show spherical nanoparticles (NPs) of 3–4 nm uniformly
embedded in NCs with a similar size distribution (Figure S2b) and the yellow circles indicate the
position of the embedded NPs. With an increase of the solvent polarity, a significant difference in
shape is presented in Figure S3, from which we can see that the NCs around 13.5 nm are sharply
reduced to be spherical quantum dots of 1-4 nm after adding ethanol (Figure 1b). The size of the
NCs grows dramatically to about 24.3 nm (Figure S3d) and then reduce slightly to about 14.7 nm
(Figure S2a). Subsequently, the embedded NPs vanish and the dispersion of NCs becomes worse after
slight adjustment of the ratio between E and T (Figure S3g). The length of NCs continues to increase
and reaches a maximum of approximately 120 nm (Figure S3j). Finally, agglomerated NCs of about
30 nm in size are obtained when VE:VT = 0.7. (Figure S3m). This reveals that the solvent polarity has
an important role in the final morphology of products [31] and implies changes in the structural phase.
It is worth noting that the overall size of NCs shows a gradual increase during the process and the
dispersion becomes worse as the solvent polarity increases, which could be related to the decrease of
ligand efficiency caused by excessive ethanol [32].
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Figure 1. (a) Typical TEM overview image of sample a; (b) HRTEM image of selected lager sample a;
(c) Typical TEM overview image of sample d; (d) HRTEM image of selected lager sample d.

The HRTEM images reveal the CsPb2Br5 structure with the lattice fringe spacing of 0.3 nm and
0.42 nm as shown in Figure S1a. Furthermore, the selected area electron diffraction (SAED) patterns of
sample a, where the lattice fringe spacings of 0.59 nm, 0.24 nm and 0.21 nm correspond to the (2,2,2),
(1,3,2) and (4,0,0) crystal planes of CsPbBr3 and the lattice fringe spacing of 0.43 nm and 0.30 nm are
associated with the (2,0,0) and (2,2,0) crystal planes of CsPb2Br5, respectively. These results suggest
that CsPbBr3 and CsPb2Br5 phases coexist in these regions. What is more, the NPs (Figure S2a) with
the lattice fringe spacing of 0.228 nm assigned to CsPbBr3 and the NCs corresponds to CsPb2Br5. It is
confirmed that the CsPbBr3 NPs are uniformly embedded in the CsPb2Br5 NCs.

In order to investigate the effect of solvent on the composition of NCs, XRD measurements for
the above seven samples were performed as shown in Figure 2, where the diffraction patterns from
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NCs are matched well with the main diffraction peaks at 15.21, 21.64, 30.70◦ corresponding to (110),
(200), (220) plane of the orthorhombic CsPbBr3 (JCPDS No. 01-072-7929) in the yellow area and 11.67,
23.39, 35.44, 37.90, 47.86◦ corresponding to (002), (210), (312), (313) and (420) plane of the tetragonal
CsPb2Br5 (JCPDS No. 00-025-0211) in the blue area, respectively. It is easy to see that the peaks in the
blue region, especially at 15.21◦ and 30.70◦, are gradually weakened until VE:VT = 0.6 and then almost
disappear. However, the sharp and intense peaks in 11.67◦ are obviously enhanced when VE:VT > 0.2.
Furthermore, the percentage of CsPbBr3 and CsPb2Br5 in a mixture can be roughly estimated by the
ratio of their strongest XRD peaks. It’s obvious that the percentage of CsPbBr3 decreased from about
66% to 7% corresponding to samples a-g, while the content of CsPb2Br5 increased from around 34% to
nearly pure phase. The above observations demonstrate that the solvent polarity controls the molar
ratio of CsPbBr3/CsPb2Br5 in the composite NCs and ethanol has a positive effect on phase transition.
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Figure 2. (a) X-ray diffraction (XRD) patterns of sample a-g; (b) Schematic representation of
mixed-solvent polarity assisted the transition of orthorhombic CsPbBr3 to tetragonal CsPb2Br5.

The absorption spectra (Figure 3a) were measured to gain more insight into the degree of electronic
disorder in the crystals, which is attributed to the fact that the absorption edge is known as the Urbach
tail. The Urbach energy (EU) reflects the cumulative effect of impurities, defects and electron-phonon
interactions on NCs, which could be obtained by fitting the Urbach tails in the logarithmic absorption
spectra according to the Urbach’s rule [33]:

α(E)= α0 exp
[
(E− E0)

EU

]
(1)
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Figure 3. (a) Logarithmic absorption coefficient of sample a-g as a function of photon energy;
(b) Relationship between VE/VT and Urbach energy; (c) Emission spectra of samples a-g excited by
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decay for samples a and d with a 325 nm pulse laser; (f) The fitted average lifetime of samples a and d.

We obtain EU = kBT/σ(T), where kB is the Boltzmann constant, T is the absolute temperature and
σ is the steepness parameter [34]. Figure 3b displays the EU value of NCs synthesized in a mixture,
which was obtained by fitting curves. It’s observed that the EU gradually reduces to a minimum
(9.54 meV) and the maximum value reached is approximately 26.38 meV, which reveals the solvent
polarity dependence upon the EU. The NCs with lower EU means that they possess a lower degree of
structurual disorder and/or defect density than other NCs [35]. This indicates that the solvent polarity
is a key factor to control internal defect density or structural disorder of NCs during the reprecipitation
process. Furthermore, some investigations proved that the Br— concentration in the octahedron can be
characterized by the red-shift of the absorption spectra [36]. Therefore, we can conclude that solvent
polarity may be useful to control the CTAB passivation effect on NCs.

Figure 3c shows photoluminescence (PL) spectra of the CsPbBr3/CsPb2Br5 NCs synthesized
in different mixtures with a strong green emission, which varies slightly in PL intensity, central
wavelength and full width at half-maximum (FWHM). The specific relationship between VE/VT and
three parameters are shown in Figure 3d. It can be seen that the PL intensity increases first and reaches
its maximum when the ratio between CsPb2Br5 and CsPbBr3 phase is around 4.6 (Figure 2), and then
the decrease of PL intensity when this ratio excess 4.6. The significant improvement in PL intensity of
samples c-e is associated with the suitable volume fraction ratio of both structures [37]. Figure S4 shows
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the NCs synthesized with oleic acid and oleylamine quench after adding ethanol, which demonstrates
that the NCs synthesized with CTAB have solvent-resistant ability as described in previous reports.
Another solvent effect on NCs is the Stokes’ shift of 8 nm, and the small Stokes’ shift originates from
band edge radiative recombination [38]. It’s worth noting that the FWHM of the emission peak in
sample a-g is between 21 nm to 29 nm, which roughly agrees with the narrow size distribution of the
NCs (Figure S5).

The PL decays and lifetime obtained by triexponential decay functions are shown in Figure 3e.
The triexponential functions (Equations (S1) and (S2)) and specific data obtained are recorded in
Table S2. It’s observed that the sample d has a longer lifetime (18.20 ns) than sample a (9.68 ns). Some
reports have mentioned that the lifetime is decreased with the increase in hydrogen solvent polarity
and inferred that solvent polarity plays an important role in changing the NCs trap states [39].

To further investigate the composition and phase transitions process, the film formed by samples
a and d on the glass were characterized by X-ray photoelectron spectroscopy (XPS). All XPS spectra
were calibrated with C 1s peak at 284.6 eV. Figure 4 shows the XPS survey spectra and high-resolution
XPS spectra of sample a and d at Cs, Pb, Br. It can be seen that the peaks of Cs 3d, Pb 4f and Br 3d
all are shifted to lower binding energy (BE) after adding ethanol. Pb2+ into NCs is in two chemical
environments. The BE curves of Pb 4f5/2 and Pb 4f7/2 located at approximate 143 eV and 138 eV. It
is noteworthy that the peaks marked as pink and orange after fitting are ascribed to the surface Pb
ions and their areas occupied are smaller compared to sample a, implying the VBr defects in sample
d being reduced under higher polar condition [40]. Similarly, Br in NCs also exists in two chemical
environments, and the BE curves of Br 3d3/2 and Br 3d5/2 appearing at approximately 68.5 eV and 67 eV
are assigned to Pb-Br and Cs-Br. The significant differences of phases with different proportions are
ascribed to their bond and structure [41]. Furthermore, the element ratio of Cs to Pb obtained by XPS
(Table S3) is about 1:1 (sample a) and 1:2 (sample d), which is in good agreement with EDS results
(Figure S6), while the excessive Br is originated from CTAB.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 13 
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Moreover, the Fourier transform infrared (FTIR) spectra show the surface groups of NCs
synthesized in different polar condition, as shown in Figure 5a. The peaks located at 2980 cm−1

and 2895 cm−1 are due to ν(C-H) in the -CH2 group [29]. The intense peaks at 1679, 1394 cm−1 and
1265 cm−1 are assigned to ν(C=O). It’s worth noting that the C=O bond is obviously shifted to a lower
frequency with the increase of the solvent polarity, as shown in Figure 5b, which could be attributed to
one dimensional structures formed by the coordination between one DMF molecule and Pb [42]. The
peaks appearing at 1095 cm−1 and 1053 cm−1 are originated from C-N stretching vibrations in CTAB
molecules [43]. Figure 5b shows highly magnified FTIR spectra in the 1000–1200 cm−1 region, in which
the 1053 cm−1 peak of sample a isn’t obvious, while the 1053 cm−1 peak exists in samples with ethanol.
These four samples have similar peaks positions and no significant change in transmittance value. It
is shown that the change in PL intensity is mainly associated with its defect density, rather than the
charge transfer rates between NCs and the surface bonds.
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The sharp emission peak of NCs can be tuned from 458 nm to 600 nm by changing the halogen
ratio and UV/Vis spectra exhibit intense absorption, as shown in Figure 6a. Besides, the PL spectra of
CsPbBr3/CsPb2Br5 NCs synthesized with ethanol, isopropyl alcohol, cyclohexane, hexane, ether, ethyl
acetate, methanol, acetone and toluene in a ratio of 0.4 were measured and are presented in Figure 6b.
The PL of initially NCs is quenched after the addition of polar or non-polar solvent, which could be
attributed to several reasons: the introduction of some functional groups causes a decrease in carrier
mobility [44] and even the crystal structure is destroyed due to the nature of the ionic lattice and highly
dynamic ligands process [45].

Sehrawat et al. indicated that the variation in PL properties could be demonstrated by geminate
recombination and an associated variation in Onsager length related to the dielectric constant [46].
However, a significant improvement in the PL of NCs formed in toluene and ethanol (Table S4) is due
to CTAB dissolved in ethanol will ionize into CTA+ and Br— [30] and the higher Br— concentration
in the system could improve the internal defect of NCs and stoichiometry. Hyun et al. proposed
that solvent molecules can affect the charge transfer process by intervening the dielectric layer or the
rearrangement of solvent molecules on the surface of NCs [47]. Majima et al. revealed that a strong
solvent-polarity dependence on the electron-transfer process [48]. Therefore, it can be inferred that the
solvent effects on NCs can’t be neglected from the variable performance of NCs synthesized under
different polar conditions.
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4. Conclusions

In conclusion, the solvent polarity-assisted transition from dual-phase to CsPb2Br5 phase offers a
technique to alter the morphology of NCs. Such a phase transition could be related to two reasons: the
degree of CTAB dissolution and growth of NCs under different polar conditions. The obtained NCs
show enhanced stability and solvent polarity dependence of PL intensity, which could be assigned
to the fact that CTAB molecules are highly soluble in ethanol and the produced Br— can effectively
passivate defects and improve the stoichiometry in the system. These guesses can be proved by defect
density calculated in absorption spectra. Therefore, we can conclude that solvent polarity affects the
ability of CTAB to passivate surface defects and it’s a key factor for the final performance of the resulting
NCs. This work provides new insights for deeper understanding in the field of perovskite NCs.
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