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Abstract

Background: DNA methylation has important roles in the regulation of gene expression and cellular specification.
Reduced representation bisulfite sequencing (RRBS) has prevailed in methylation studies due to its cost-
effectiveness and single-base resolution. The rapid accumulation of RRBS data demands well designed analytical
tools.

Findings: To streamline the data processing of DNA methylation from multiple RRBS samples, we present a flexible
pipeline named SMAP, whose features include: (i) handling of single—and/or paired-end diverse bisulfite sequencing
data with reduced false-positive rates in differentially methylated regions; (ii) detection of allele-specific methylation
events with improved algorithms; (iii) a built-in pipeline for detection of novel single nucleotide polymorphisms (SNPs);
(iv) support of multiple user-defined restriction enzymes; (v) conduction of all methylation analyses in a single-step
operation when well configured.

Conclusions: Simulation and experimental data validated the high accuracy of SMAP for SNP detection and
methylation identification. Most analyses required in methylation studies (such as estimation of methylation levels,
differentially methylated cytosine groups, and allele-specific methylation regions) can be executed readily with SMAP.
All raw data from diverse samples could be processed in parallel and ‘packetized’ streams. A simple user guide to the
methylation applications is also provided.

Keyword: Reduced representation bisulfite sequencing (RRBS), Differentially methylated region (DMR), Allele-specific
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Introduction
As an epigenetic marker in mammalian cells, DNA
methylation (methylation of the DNA base cytosine, C, to
form 5-methylcytosine) affects genetic imprinting and cel-
lular specification without altering DNA sequences [1, 2].
In mammalian cells, most methylation occurs at CpG
dinucleotides. Most of the CpG dinucleotides are methyl-
ated, but non-CpG methylation frequently occurs in the
brain cells and embryonic stem cells of mammals [3, 4].
DNA methylation also regulates gene expression. In
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promoter regions, unmethylated CpGs usually activate
transcription by binding of specific transcription factors,
whereas methylated CpGs can ‘silence’ transcription by
preventing binding [5]. Furthermore, dysregulation of
DNA methylation is a hallmark of cancer. Genomic de-
methylation and gene-specific hypermethylation occur
most notably in oncogenes and tumor-suppressor genes,
respectively [6]. DNA methylation has also been used as a
biochemical predictor for cancer recurrence [7].
Whole-genome bisulfite sequencing (Bis-seq) has been

developed to detect methylation [8–10]. Treatment of
DNA with sodium bisulfite converts cytosine residues
into uracil, but 5-methylcytosine residues are unaffected.
Thus, methylated and unmethylated CpG sites can be
discriminated [11]. Although the price of next-generation
sequencing has been decreasing, ensuring that Bis-seq is
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affordable for most laboratories will take some time. Fur-
thermore, uneven distribution of methylated cytosine resi-
dues in double strands in the genome makes it difficult for
Bis-seq to detect differentially methylated regions and sin-
gle nucleotide polymorphisms (SNPs), especially in low-
coverage regions [12]. Reduced representation bisulfite se-
quencing (RRBS) is a cost-efficient and high-throughput
method to analyze methylation profiles with the resolution
of a single nucleotide [8]. By increasing sequencing depth
in target regions, RRBS also easily tackles the problem of
uneven distribution. Development of RRBS technology
has increased the demand for well designed bioinformatics
tools to facilitate subsequent data analyses.
Various tools have been developed for methylation call-

ing and/or further analyses of RRBS data [13] (Additional
file 1: Table S1). Differential methylation analysis package
(DMAP), Methylkit and methylSig perform differential
methylation analyses, with the latter using a beta-binomial
approach to account for read coverage and biological vari-
ation [14–16]. Bis-SNP [12] is the only widely used pack-
age capable of RRBS data-based SNP detection, which is
important for identification of allele-specific epigenetic
events such as allele-specific methylation (ASM) and im-
printing [17–19]. Amrfinder (now a part of the MethPipe
package) presents a statistical model to describe ASM
[20, 21]. Several mapping applications have also been de-
veloped and used in Bis-seq or RRBS data processing, and
will be discussed below.
Despite the existence of these tools, many questions

remain. First and foremost, paired-end (PE) reads with
overlapping regions represent duplicated information.
Without removing such redundancy, estimation of the
methylation rate could be biased considerably. Counting
sites in overlapping regions for PE sequencing only once
Fig. 1 Brief workflow of SMAP. SMAP filters sequenced raw data and produ
reference genome. Finally, SNPs, ASM, DMRs and DMCs are detected and r
would fully recover the correct methylation rate and
hence greatly reduce errors in the subsequent calcula-
tion of differentially methylated regions (DMRs) and
differentially methylated C sites (DMCs). However,
few currently available RRBS analysis applications ac-
count for such duplication. Amrfinder includes a novel
statistical model to detect ASM [21]; however, its pre-
requisite of equal allele frequency is not suitable for
more complex cancer cases.
Here, we present a streamlined package called SMAP

to meet the need of extracting multiple types of informa-
tion (such as DMCs, DMRs, SNPs and ASM) from vari-
ous types of RRBS and Bis-seq data.

Pipeline
SMAP is a modular pipeline implemented in Perl that
calls software components written in C/C++, Perl, R and
Java. Required input files for SMAP include Bis-seq or
RRBS data in FASTQ format, and a user-defined con-
figuration file that includes all settings of the pipeline
(a pipeline document and full example is given in
Additional file 2). SMAP can resume broken runs and
aims at comprehensive and convenient processing of
Bis-seq and RRBS data (Fig. 1, Additional file 1: Table S1).
The pipeline consists of seven operational stages: (i) refer-
ence preparation, (ii) read preparation, (iii) alignment, (iv)
calculation of methylation rate, (v) DMR detection, (vi)
SNP and ASM calling and (vii) summarization (Fig. 1).
Details of workflow are described below.

Step 1. Reference preparation All Cs in the reference
genome sequence are converted into Ts for both strands.
Original and converted double-strand reference sequences
are then indexed by Bowtie2. User-defined RRBS
ces ‘clean data’. Clean data is then mapped onto the pretreated
eports created. Existing tools are in green
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restriction enzymes (multiple restriction enzymes are sup-
ported) are used to digest the references into 40–220 bp
segments (subsequently called ‘target regions’).

Step 2. Read preparation A script was developed to re-
move adaptors and low-quality regions in raw RRBS
reads. Different from other popular pipelines for filtering
of raw reads, this script does not simply remove the
whole reads including adaptors. Instead, it ‘trims’ the
ends with adaptors off the reads, which maximizes the
amount of clean data.

Step 3. Alignment One of the three representative
mapping tools, Bowtie2, Bismark or BSMAP, is used for
mapping reads onto reference genomes in SMAP. Users
decide which to use. BSMAP is a wildcard-based appli-
cation, whereas Bowtie2 and Bismark are often used to
map reads onto the three-base references prepared in
step 1.

Step 4. Calculation of methylation rate Taking ac-
count of PE read overlap (see below), the rate of methy-
lation is calculated for each C in target regions. Rates
are used for later analyses.

Step 5. Detection of DMCs and DMRs A core region
with a certain number (default 5) of CpG dinucleotides
is used as the seed to call differentially methylated re-
gions between two samples, such as ‘cancer’ and ‘normal’
samples. Then, the seed is prolonged by checking CpG
dinucleotides one-by-one according to the results of the
t-test and chi-square test of the difference in methylation
rates between samples. When the number of reads is <5,
the chi-square test is replaced by Fisher’s test automatic-
ally. A change in the trend of the methylation rate stops
the elongation. Fully elongated regions are defined as
DMRs. Similar tests are applied to each C to detect
DMCs.

Step 6. Detection of SNPs and ASM The current ver-
sion of SMAP uses Bis-SNP or Bcftools to call SNPs, de-
pending on the mapping tool selected by the user. That
is, when BSMAP or Bismark is selected, Bis-SNP is
called, whereas if Bowtie2 is selected Bcftools is called.
We are also developing a novel SNP calling algorithm
that shows a 100-fold faster speed and comparable ac-
curacy (unpublished data) and which will be integrated
into SMAP to replace the Bcftools pipeline. Heterozy-
gous SNPs are chosen to detect ASM events (see below).

Step 7. Summarization Mapping and coverage infor-
mation is tabulated in a final report. See Section 4.1 in
Additional file 2 for an example that includes one para-
normal sample (normal tissue adjacent to cancer tissue
at ≥5 cm; called ‘normal’ later) and three cancer samples
(primary renal cell carcinomas (pRCCs), local invasion
of the vena cava (IVC) and distant metastasis to the
brain (MB) tissues from a patient with metastatic renal
cell carcinoma [22]). In addition, this dataset also in-
cludes exome sequencing data used for validation of the
performance of the pipeline (see below).
As a part of quality control (QC), the coverage of CpG

islands by target regions is also plotted to assess the
quality of sequencing data. RRBS sequencing regions
covers about ≈ 57 % of CpG islands when the length of
target regions is 40–220 bp. The number of sites covered
by RRBS data decreases with increasing number of sup-
porting reads. If the amount of sequenced data is suffi-
cient and the quality of data is good, the decrease slows
with increasing number of supporting reads. In the ex-
ample given above, as the coverage of 1X, 4X, 10X and
20X supporting reads decreases slowly, this QC is passed.
In particular, 10X sequenced reads in CpG islands covered
about ≈ 80 % (44/57) of target regions for normal tissue
(see Additional file 1 Figure S1, S2, S3 and S4). This find-
ing demonstrates a high-quality sequencing dataset. An
example with a configuration file and main output is
shown in Additional file 2.

Comparison of the performance of alignment tools
To determine the locations of methylated sites and
SNPs, sequencing reads must first be mapped onto the
corresponding reference genome. Several types of align-
ment software have been developed to map bisulfite
converted reads [23]. These types of software can be
classified into two groups. The first group (e.g., BSMAP
[24] and RRBSMAP [25]) is based on mapping of raw
data and uses wildcard alignment. The second group
(e.g., Bowtie2 [26], SOAP [27, 28], MAQ [29], Bismark
[30], BRAT-bw [31] and BS Seeker [32]) needs additional
C→T conversion preprocessing and complex post-
processing but leads to higher accuracy. Bismark and BS
Seeker are based largely on Bowtie. As representatives of
these methods, BSMAP, Bismark and Bowtie2 are cur-
rently used in SMAP. Bowtie2 and Bcftools are not spe-
cially designed for Bis-seq data, so we developed programs
to integrate them seamlessly into SMAP.
Simulated data were used to evaluate the performance

of alignment in various conditions. First, we created (in
silico) enzyme MspI-cleaved DNA segments with a length
of 90–220 bp distributed randomly on chromosome 18
(chr18) in the GRCh37 assembly (hg19) of the human
genome. Around 0.05 % of sites were selected randomly
as SNPs on the segments. Paired-end reads with length of
50, 60, 70, 80 and 90 bp were then simulated on both
Watson and Crick strands of these segments with even
distribution and 10X coverage for cancer tissue and nor-
mal tissue. BSMAP and Bismark were used to map the
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reads onto the reference genome. Unsurprisingly, with in-
creasing read length, mapping rate and accuracy increased
and false-positive rates decreased. The mapping rate of
Bismark is lower than that of BSMAP, which was also
shown in its higher false-negative rate. False-negative rates
of BSMAP are zero for all types of reads. Most reads that
failed to map onto the reference were present in repeated
regions. Despite the lower mapping rate, the accuracy of
Bismark was higher, especially for 50 bp and 60 bp reads,
though its absolute number of accurately mapped reads
was less than that of BSMAP for longer reads (those with
length of 80 bp and 90 bp; Additional file 1: Table S2).

Overlap treatment for PE data and detection of
methylation
In RRBS analyses, no currently available software takes
into account the overlap of PE reads, which can cause
considerable bias in DMR detection. As a simple ex-
ample, three CpG sites exist in a target fragment and
two PE reads are overlapping. One methylated CpG site
is located in the region where the reads overlap. The
other two CpG sites are not methylated and exist in
non-overlapping regions. Thus, the ‘true’ methylation
rate of this fragment is 33 % (Fig. 2a). However, if over-
lapping treatment is not taken into account, the methy-
lation rate of this region becomes 50 %. In another
example, we assume the same proportion of methylated
and unmethylated reads (i.e., methylation rate is 50 %
(Fig. 2b)). If unmethylated sequences are sequenced by
Fig. 2 Effects of bias correction in overlapping regions of PE reads (schema
reads. The C bases in position a and c are not in overlapping regions. How
reads. b A case assuming methylated reads have the same proportion as u
shows a case assuming that unmethylated samples were sequenced by PE
sequencing. The lower panel shows a case in which unmethylated sample
were sequenced by PE sequencing
PE sequencing and methylated samples are sequenced
by SE sequencing, and if overlapped PE sites are counted
twice, then the methylation rate becomes 33 %, smaller
than the true value (left panel of Fig. 2c). If unmethy-
lated samples are subject to SE sequencing whereas
methylated samples are subject to PE sequencing, the
methylation rate becomes 66 %, larger than the true rate
(right panel of Fig. 2c). Thus, lack of bias correction
could increase or decrease estimation of methylation
rates.
To correct such bias, we count sites in overlapping re-

gions for PE sequencing only once. This treatment fully
recovers correct methylation rates and hence greatly re-
duces errors in subsequent calculation of DMRs. For ex-
ample, in a certain genomic region, actual methylation
rates in normal tissue and cancer tissues are 50 % (i.e.,
this region is not a DMR if our redundancy-removing
strategy is used). However, if overlapping PE sites are
counted twice, the region might be falsely annotated as a
DMR. Our strategy decreases the false-positive rate.
To assess the performance of methylation detection,

10 large segments (length range, 1.5–13.6 Mbp) on
chr18 with various methylation rates were selected from
the simulation described above, and methylated sites
were also simulated. To simulate methylated sites, the
methylation rate for each segment was assigned ran-
domly. Based on these theoretical rates, methylated sites
were designed to be distributed randomly on segments.
Methylated sites were then estimated based on the
tic). Me: Methylated site. a The overlapping region of a pair of PE
ever, the C base in position b is in an overlapping region of the pair of
nmethylated reads (i.e., methylation rate is 50 %). c The upper panel
sequencing and methylated samples were sequenced by SE
s were sequenced by SE sequencing whereas methylated samples
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alignments mentioned above for each segment using
SMAP. Estimated methylation rates were highly consist-
ent with simulated (theoretical) values regardless of read
length, tissue type or mapping method (Additional file 1:
Table S3). Considering the high mapping rate shown
above, methylation detection was shown to perform well
in SMAP.

DMR detection and SMAP performance
Detection of differentially methylated regions has a
critical part in study of the mechanism, recurrence,
diagnosis and treatment of cancer [7, 33–36]. Based on
single-C methylation information of patient and con-
trol samples, Pearson’s chi-square test is used to ascer-
tain whether methylation rates of concerned regions in
different samples are sufficiently different to be identified
as DMRs. The region is defined as a DMR if p < 0.05
(chi-square test) and the difference in methylation rates
between cancer tissue and normal tissue is >0.1. We
randomly selected 12 DMRs detected by bisulfite-
sequencing PCR [22]. All of them were confirmed by
SMAP, which illustrates the high accuracy of our
method (Additional file 1: Table S4).

Comparison of SNP detection pipelines
Bis-SNP is the most popular SNP-detection software for
RRBS data. In SMAP, it is used with mapping tools
BSMAP and Bismark. Bowtie2 output is not compatible
with Bis-SNP. Bismark undertakes format conversion
and makes it compatible. To make SMAP more flexible,
a pipeline using conventional tools was also developed.
Bcftools is used to call SNPs using Bowtie2 alignments.
Here, the performance of SNP-calling pipelines was eval-
uated by comparison of estimated SNPs using data from
exome sequencing or RRBS from the four samples men-
tioned above. BSMAP and Bowtie2 pipelines illustrated
a higher SNP call rate (≈70 %) than the Bismark pipeline
(≈40 %). However, the Bismark pipeline showed much
lower false-positive rates in all tissues (Additional file 1:
Table S5). The overlap of correctly estimated SNPs was
high between samples (Additional file 1: Figure S5a) as well
as between BSMAP and other pipelines (Additional file 1:
Figure S5b). However, some SNPs by the Bowtie2 pipeline
were shared only by the BSMAP pipeline (Additional file 1:
Figure S5b). SNP-calling performance was assessed further
by the simulated PE data with 50 and 90 bp reads men-
tioned above. BSMAP and Bismark pipelines showed con-
siderable overlap in terms of correctly estimated SNPs. The
Bowtie2 pipeline again shared fewer estimated SNPs with
other pipelines, probably because the Bowtie2 pipeline
called more homozygous SNPs whereas the other two pipe-
lines were good at calling heterozygous SNPs (Additional
file 1: Figure S6). For 50 bp read PE data, the Bismark pipe-
line was better than the other pipelines with regard to the
number of SNPs called, whereas the BSMAP pipeline per-
formed best for 90 bp reads (Additional file 1: Figure S6).

A novel pipeline for ASM detection
Amrfinder is a popular ASM detect tool in which a stat-
istical model is implemented to detect ASM [21]. How-
ever, the model applies only to the simple case of
monoclonal cells with equal allele frequencies, which is
not suitable for more complex cancer cases. In SMAP,
heterozygous SNPs are used to determine alleles in two
strands. To clarify this concept, an example is shown in
Fig. 3. We assume there are no SNPs in normal cells
(Fig. 3a). In the second situation, the monoclonal tumor
(Fig. 3b), one T→G somatic SNP is present in allele I.
In the third situation, the first type of polyclonal tumor
(Fig. 3c), not only the T→G SNP (subclone 1) but also
the original reference allele (subclone 2) is present. This
SNP is the marker used to define the allele in the second
and third cases. In the fourth situation, the second type
of polyclonal tumor (Fig. 3d), the T/G heterozygous SNP
in subclone 1 is changed to the homozygous G allele,
whereas the reference allele T in subclone 2 is still
present. The change is the result of loss of heterozygos-
ity. The SNP G/T is also the marker of the allele. Once
the allele is defined, the chi-square test is used to examine
the significance of the difference of methylation rates in
the two alleles. An ASM event is defined if (i) a heterozy-
gous SNP locates on the same read as the relevant CpG
(linked SNP-CpG pair), (2) p < 0.05 (chi-square test) in the
read, and (iii) difference in methylation rates is >0.1.
Performance of ASM detection was assessed by simu-

lated data. Ten segments were selected on chr18. Methy-
lation rates of 0 to 1 were assigned to segments. Three
segments were assigned a methylation rate of 0.5. All
heterozygous SNPs with CpGs on same reads (with
length of 50 bp or 90 bp) in these three segments were
linked at least one ASM event. SMAP then estimated
ASM events using Bowtie2, BSMAP and Bismark pipe-
lines from simulated data. For 50 bp read PE data,
BSMAP and Bismark pipelines performed similarly,
whereas the Bowtie2 pipeline showed a high false-
negative rate due to its disadvantage of calling heterozy-
gous SNPs. For 90 bp read PE data, Bismark and Bow-
tie2 pipelines showed higher accuracy whereas BSMAP
pipelines illustrated better sensitivity (Table 1). Interest-
ingly, all SNPs not validated for ASM events were real
SNPs but located in the seven segments without simula-
tion of ASM events.

Discussion
Methylation studies have entered the era of single-base
resolution since the advent of Bis-seq. RRBS technology
allows targeting of CpG-rich regions and greatly reduces
the cost of sequencing. It also promotes the creation and



Fig. 3 ASM detection. Purple Cs are methylated, whereas red Ts are not methylated. Me: Methylated site. a Basic case in which two C bases are
methylated. b An example of an ASM region in a monoclonal tumor marked by a heterozygous G/T SNP. c An example of a polyclonal tumor in
which the heterozygous SNP and reference allele are present. d An example of another type of polyclonal tumor in which the heterozygous SNP
was changed to a homozygous G allele due to loss of heterozygosity
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improvement of related bioinformatic analyses. Computa-
tional identification of DMRs, SNPs and ASM from RRBS
data is a rapidly developing field, as illustrated by two
DMR analytical applications published this year [14, 15].
At present, Bis-SNP [12] is the first and most widely used
SNP-identification algorithm for RRBS data. None of the
currently available methylation-analysis tools correct for
PE overlap bias, and no suitable ASM pipeline is
available for complex cancer data. Furthermore, some
of the methylation tools are not convenient to use. To
address these problems, we developed SMAP, which is
designed to be an easy-to-use, one-stop and sophisti-
cated package for methylation analyses. Some features
of SMAP and comparisons with other types of software
are shown in Additional file 1: Table S1. SMAP showed
good performance in most cases.



Table 1 Assessment of the performance of ASM

PE90 PE50

BSMAP Bismark Bowtie2 BSMAP Bismark Bowtie2

Number of simulated ASM SNPs 158 108

Number of simulated ASM events 1022 473

Number of estimated ASM SNPs 136 93 55 72 79 30

Number of estimated ASM events 995 726 254 355 386 74

Number of validated estimated ASM SNPs 125 89 51 64 72 29

Number of validated estimated ASM events 843 719 239 338 372 73

FPR (ASM events) 0.15 0.01 0.06 0.05 0.04 0.01

FNR (ASM events) 0.18 0.3 0.77 0.29 0.21 0.85

Abbreviations: ASM allele-specific, DNA methylation, FNR false negative rate, FPR false positive rate, PE50 50 bp read PE data, PE90 90 bp read PE data, SNP single
nucleotide polymorphism
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In our previous work on a case of metastatic renal cell
carcinoma [22], we undertook exome sequencing and
RRBS sequencing for the normal, pRCC, IVC and MB
tissues of a single patient. As shown above, using exome
data as the control, we found the accuracy of SNP detec-
tion in real data to be lower than that in simulated data
for Bowtie2, BSMAP and Bismark pipelines. This finding
could be due to the greater complexity of real data. We
also noticed that the Bismark pipeline performed best in
our real data test in terms of the accuracy of SNP calling
(Additional file 1: Table S5). When testing with simu-
lated data, BSMAP illustrated a higher mapping rate
whereas Bismark performed more accurately. When read
length increased from 50 bp to 90 bp, the accuracy of
BSMAP increased considerably, whereas Bismark showed
an improved mapping rate (Additional file 1: Table S2).
ASM detection has critical roles in analyses of methylation
data. In our in silico experiments, BSMAP and Bismark
pipelines performed similarly for 50 bp read PE data. For
90 bp read PE data, the Bismark pipeline showed higher
accuracy whereas BSMAP showed better sensitivity. The
Bowtie2 pipeline showed lower power to detect heterozy-
gous SNPs using in silico data (Table 1). Thus, we kept
both the pipelines and let users decide which to choose.
To obtain higher accuracy, the Bismark pipeline is recom-
mended. However, if one wants to cover as many SNPs as
possible, the BSMAP pipeline should be chosen. For short
reads (e.g., 50 bp), the Bismark pipeline could be a better
choice, whereas the BSMAP pipeline works well for longer
reads (e.g., 90 bp). Future work should be focused on com-
bining their advantages and avoiding their disadvantages,
thus improving sensitivity and accuracy. All pipelines per-
formed well and did not show significant differences in
methylation detection (Table S3 in Additional file 1).
SMAP runs in a UNIX/Linux shell. A graphical user

interface has been implemented. SMAP is optimized for
parallel computing platforms, including single multi-core
computing nodes and clusters. For cluster computing
environments, the current version of SMAP supports only
job-management systems based on Sun Grid Engine. Fu-
ture versions will add support for other job-management
systems such as Simple Linux Utility for Resource
Management.

Availability and requirements
Project Name: SMAP: a streamlined methylation ana-
lysis pipeline for bisulfite sequencing
Project home page: https://github.com/gaosjlucky/
SMAPdigger
Operating system: Linux
Programming language: Perl, R and Java
Other requirements: See documentation for a compre-
hensive list of optional dependencies.
License: GPL v3

Availability of supporting data
SRA accession of data used in this paper is SRP058673.
Example data for the pipeline testing are available from
the GigaScience GigaDB database [37]. Source code of
the pipeline is freely available at https://github.com/
gaosjlucky/SMAPdigger.
Additional files

Additional file 1: Figure S1. Coverage of CpG islands in the normal
tissue of a patient with metastatic renal cell carcinoma. Figure S2. Coverage
of CpG islands in primary renal cell carcinoma (pRCC) tissue of a patient
with metastatic renal cell carcinoma. Figure S3. Coverage of CpG islands in
local invasion of the vena cava (IVC) tissue of a patient with metastatic renal
cell carcinoma. Figure S4. Coverage of CpG islands in distant metastasis
to the brain (MB) tissue of a patient with metastatic renal cell carcinoma.
Figure S5. Venn diagram showing how SNPs are shared in four real
datasets. Figure S6. Venn diagram showing how SNPs are shared in
BSMAP and Bismark pipelines in silico. Table S1. Comparison of analytical
features of programs for evaluation of genome-wide methylation data.
Table S2. Comparison of mapping performance between BSMAP and
Bismark pipelines in silico. Table S3. Performance of methylation detection in
silico. Table S4. Validation of DMR in primary renal cell carcinomas (pRCC)
and normal tissues. Table S5. Comparison of the performance of BSMAP,
Bismark and Bowtie2 pipelines with real data.

Additional file 2: Documentation for SMAP with a full example.

http://www.gigasciencejournal.com/content/supplementary/s13742-015-0070-9-s1.docx
http://www.gigasciencejournal.com/content/supplementary/s13742-015-0070-9-s2.docx


Gao et al. GigaScience  (2015) 4:29 Page 8 of 9
Abbreviations
ASM: Allele-specific DNA methylation; DMC: Differentially methylated C sites;
DMR: Differentially methylated regions; IVC: Local invasion of the vena cava;
MB: Distant metastasis to brain tissues; pRCC: Primary renal cell carcinomas;
RRBS: Reduced representation bisulfite sequencing; PE: Paired end; SE: Single
end.
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