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Abstract: Chronic pain is one of the most common causes of the need for clinical evaluation, acquiring
more importance in the elderly with cognitive impairment. Reduced self-reporting capabilities cause
unrelieved pain contributing to the development of agitation. Safe and effective pain treatment can
afford the management of agitation without the serious increase in death risk associated with neu-
roleptics. To this aim, the essential oil of bergamot (BEO), proven by rigorous evidence to have strong
preclinical anti-nociceptive and anti-allodynic properties, has been engineered (NanoBEO, patent EP
4003294) to allow randomized, double-blind, placebo-controlled trials (BRAINAID, NCT04321889).
The present study: (1) assesses the analgesic effects of a single therapeutic dose of NanoBEO, as
supplied by an airless dispenser for clinical translation, in models of inflammatory, neuropathic, and
sensitization types of pain relevant to clinic; (2) provides a dose–response analysis of the efficacy of
NanoBEO on scratching behavior, a typical behavioral disturbance occurring in dementia. A single
therapeutic dose of NanoBEO confirms efficacy following thirty minutes pre-treatment with capsaicin
and on the central sensitization phase induced by formalin. Moreover, it has an ID50 of 0.6312 mg
and it is efficacious on static and dynamic mechanical allodynia. Altogether, the gathered results
strengthen the potential of NanoBEO for clinical management of pain and agitation.

Keywords: essential oil of bergamot; nanotechnology delivery system; NanoBEO; dementia; pain;
NPS; agitation

1. Introduction

Patients often come to clinical observation because of chronic pain [1], among which
low back pain [2] is one of the most disabling conditions, with a global lifetime prevalence
of about 39% [3]. Chronic pain acquires more importance in the elderly [4,5] for several
reasons. This fragile population most often experiences chronic pain due to age-related
comorbidities, such as diabetes [6] and shingles due to herpes zoster infection [7], but
also injury [8], stroke [9], and rheumatic conditions, usually including neuropathic fea-
tures [10–12]. Aging influences pain and sensitization processes as well as the effectiveness
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of commonly used pharmacological agents [13]. Aged people are often unjustifiably ex-
cluded from clinical trials [14], particularly in migraine research [15–17], thus preventing
the accurate knowledge of the efficacy and safety of painkillers in these patients accounting
for pathophysiological variability [18] and polypharmacy [19]. People aged over 65 are
often affected by dementia and the pain conditions that they experience are usually under-
diagnosed due to their reduced and insufficient self-report skills [20]. This unrelieved pain
contributes to the development of the most challenging neuropsychiatric symptoms (NPS),
i.e., agitation [21]. Patients suffering from cognitive impairment receive a significantly
smaller amount of analgesic drugs and with reduced dosage [22], even in the community
setting causing an increase in potentially harmful psychotropic treatments [23]. Agitation
and pain control with essential oils endowed with a sound rationale for clinical trans-
lation [24] have never been investigated so far. The essential oil of bergamot (BEO, s)
has proven strong preclinical evidence of anti-nociceptive and anti-allodynic effects and
has undergone a pharmacotechnological process to allow its delivery in known amounts
through α-tocopheryl stearate solid lipid nanoparticles (α-TFS-SLN), with physicochem-
ical stability and without smell [25] to permit the masking of clinical trials [26]. In fact,
phytonanotechnology presents a new scenario, allowing several applications in medi-
cal fields, e.g., the development of a new class of nanoantibiotics to manage multi-drug
resistance [27]. In particular, several plant secondary biomolecules absent in bacteria re-
duce metals, causing the production of differently sized nanoparticles with applications
ranging from medicine, biology, material science, physics, and chemistry to agriculture;
moreover, metal oxides synthesized through different parts/extracts of the plants confer
biofunctionalization ranging from antibacterial, antioxidant, anticancer, antifungal to cyto-
toxic activity [27]. Nanoantibiotics can cause DNA damage, oxidative damage, and cell
wall and membrane damage through oxidative stress. The properties of the novel metal
nanoparticles are greatly influenced by their size, shape, composition, crystallinity, and
structure [27]. Within the exploding field of research about nanoparticles, the present study
intends to: (1) verify that a single therapeutic dose of the nanotechnology-based delivery
system NanoBEO (patent EP 4003294), as supplied by the airless dispenser for clinical
translation, confirms the anti-nociceptive and anti-allodynic properties of BEO in models
of inflammatory, neuropathic, and sensitization type of pain relevant to chronic pain in the
elderly; (2) provide a dose–response analysis of NanoBEO efficacy on scratching behavior,
a typical NPS occurring in dementia.

2. Results
2.1. Confirmation of Composition of NanoBEO Cream in the Dispenser

After dilution of a volume of 1 mL of the α-TFS-SLN formulation with methanol and
analysis by spectrophotometric detection at wavelengths of 281 nm for linalool, 208 nm for
linalyl acetate, and 247 nm for limonene, the following composition of 44.227 g of cream is
confirmed: 37.604 g of purified water suspension of α-TFS-SLN containing the whole BEO
(α-Pinene 0.7–2.0; Sabinene 0.5–2.0; β-Pinene 5.0–10.0; Limonene 30.0–50.0; γ-Terpinene
6.0–18.5; Linalool 6.0–15.0; Linalyl acetate 23.0–35.0; Geranial < 0.5; Geranyl acetate 0.1–0.7;
Cariophyllene 0.2–0.5), defurocumarinized to avoid phototoxicity; 4.42 g of sweet almond
oil; 0.885 g of polyacrylamide; 0.442 g of isoparaffin C13–14; 0.111 g of 7-laurate; 0.774 g
of purified water Ph.Eur.; 0.028 g of methyl paraben; 0.009 g of propylparaben. The pH
regulation due to levels of CO2 is fundamental for the correct function of the human
proteome [28]. The pH of NanoBEO cream is 5.72, thus very similar to that of the skin,
i.e., 5.5 [29]. This is noteworthy because SLN could undergo aggregation in the presence
of electrolytes at neutral or lower pH and the topical environment for administration is
simulated with pH 5.5 [30]. Therefore, once in the airless dispenser (Figure 1A,B), one dose
from the dispenser contains 4.4 g of cream for the clinical trial. An equal dose of empty
cream was used as a control.
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Figure 2. Effect of transdermal administration of a single therapeutic dose of NanoBEO on capsaicin-
induced licking/biting behavior. (A) The duration of licking/biting induced by intraplantar injection 
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Figure 1. (A) Airless dispensers containing NanoBEO and control cream, (B) covered with cap.

2.2. Effect of Single Therapeutic Dose of NanoBEO on Capsaicin-Induced Nociceptive Behavior

The efficacy of one supply of NanoBEO as distributed by the dispenser on the number
of seconds (sec) of licking/biting behavior after 5 min (min) and 30 min after capsaicin
administration confirms the anti-nociceptive effect of NanoBEO. Empty cream, used as a
control, fails to affect capsaicin-induced nociceptive response (Figure 2A,B).
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Figure 2. Effect of transdermal administration of a single therapeutic dose of NanoBEO on capsaicin-
induced licking/biting behavior. (A) The duration of licking/biting induced by intraplantar injection
of capsaicin (1.6 µg/20 µL) is determined using the 5-min period starting immediately after injection
of capsaicin. (B) NanoBEO reduces significantly capsaicin-induced licking/biting behavior after
30 min. Empty cream is used as a control and it fails to affect capsaicin-induced nociceptive response.
The data presented are expressed as mean ±S.E.M. (n = 6). The value of * p < 0.05 is considered
statistically significant.
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2.3. Effect of Single Therapeutic Dose of NanoBEO on Formalin-Induced Biphasic Behavior

The efficacy of one supply of NanoBEO as distributed by the dispenser on the number
of seconds (sec) of licking/biting biphasic behavior induced by formalin confirms the
significant effectiveness of BEO in the central sensitization phase occurring 30 min after
the injection of formalin. Empty cream, used as a control, does not prove efficacy in the
formalin test (Figure 3A,B).

Molecules 2021, 26, x FOR PEER REVIEW 4 of 11 
 

 

The data presented are expressed as mean ±S.E.M. (n = 6). The value of * p < 0.05 is considered 
statistically significant. 

2.3. Effect of Single Therapeutic Dose of NanoBEO on Formalin-Induced Biphasic Behavior 
The efficacy of one supply of NanoBEO as distributed by the dispenser on the num-

ber of seconds (sec) of licking/biting biphasic behavior induced by formalin confirms the 
significant effectiveness of BEO in the central sensitization phase occurring 30 min after 
the injection of formalin. Empty cream, used as a control, does not prove efficacy in the 
formalin test (Figure 3A,B). 

  
(A) (B) 

Figure 3. Effect of transdermal administration of a single therapeutic dose of NanoBEO on 0.5% 
formalin-induced biphasic licking/biting behavior. (A) The duration of licking/biting induced by 
intraplantar injection of 0.5% formalin is determined using the 5-min period beginning immediately 
after the administration of formalin. (B) NanoBEO reduces significantly formalin-induced central 
sensitization after 30 min. Empty cream is used as a control and it fails to affect formalin-induced 
nociceptive response. The data presented are expressed as mean ±S.E.M. (n = 6). The value of * p < 
0.05 is considered statistically significant. 

2.4. Effect of Single Therapeutic Dose of NanoBEO on PSNL-Induced Static and Dynamic Allo-
dynia 

On the 7th post-operative day after induction of neuropathic pain through PSNL, 
static mechanic allodynia is assessed through Von Frey’s hairs, while dynamic allodynia 
is evaluated by light stroking of the plantar surface of the hind paw from the toe of the 
hind paw with an art paint-brush, ranking responses as follows: 0, no response; 2, lifting 
of the stimulated hind paw; 3, flinching or licking of the stimulated hind paw. Baseline 
response scores are determined before PSNL and on post-operative day 7. The efficacy of 
a single therapeutic dose of NanoBEO as supplied by the dispenser to increase the paw 
withdrawal threshold is statistically significant on static and dynamic mechanical allo-
dynia occurring 30 min after the beginning of the test. Empty cream, used as a control, 
does not prove efficacy on both types of allodynia (Figure 4A–D). 

Figure 3. Effect of transdermal administration of a single therapeutic dose of NanoBEO on 0.5%
formalin-induced biphasic licking/biting behavior. (A) The duration of licking/biting induced by
intraplantar injection of 0.5% formalin is determined using the 5-min period beginning immediately
after the administration of formalin. (B) NanoBEO reduces significantly formalin-induced central
sensitization after 30 min. Empty cream is used as a control and it fails to affect formalin-induced
nociceptive response. The data presented are expressed as mean ±S.E.M. (n = 6). The value of
* p < 0.05 is considered statistically significant.

2.4. Effect of Single Therapeutic Dose of NanoBEO on PSNL-Induced Static and
Dynamic Allodynia

On the 7th post-operative day after induction of neuropathic pain through PSNL,
static mechanic allodynia is assessed through Von Frey’s hairs, while dynamic allodynia
is evaluated by light stroking of the plantar surface of the hind paw from the toe of the
hind paw with an art paint-brush, ranking responses as follows: 0, no response; 2, lifting
of the stimulated hind paw; 3, flinching or licking of the stimulated hind paw. Baseline
response scores are determined before PSNL and on post-operative day 7. The efficacy of
a single therapeutic dose of NanoBEO as supplied by the dispenser to increase the paw
withdrawal threshold is statistically significant on static and dynamic mechanical allodynia
occurring 30 min after the beginning of the test. Empty cream, used as a control, does not
prove efficacy on both types of allodynia (Figure 4A–D).

2.5. Dose–Response of NanoBEO on 4-Methyl Histamine-Induced Scratching Behavior

Mice are pre-treated thirty min before the intradermal administration of 4-methyl
histamine with NanoBEO 0.25, 0.50, and 1 mg (Figure 5A), proving enhanced efficacy with
the increase of the dose, statistically significant at 0.50 and 1 mg (Figure 5B). The inhibition
dose (ID)50 is 0.6312 mg. The effect is not statistically significant when pre-treatment is
performed at the following time points: 15 min, 60 min, 120 min, 240 min, and 360 min
(Figure 5C–G).
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Figure 4. Effect of transdermal administration of a single therapeutic dose of NanoBEO on static
(A,B) and dynamic (C,D) mechanical allodynia induced by partial sciatic nerve ligation (PSNL).
NanoBEO reduces significantly static and dynamic mechanical allodynia occurring 30 min after
the beginning of the test. Empty cream, used as a control, does not prove efficacy on both types
of allodynia. The data presented are expressed as mean ±S.E.M. (n = 6). The value of * p < 0.05 is
considered statistically significant.
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Figure 5. Dose–response (A,B) and time course (C–G) of the efficacy of NanoBEO on 4-methyl
histamine-induced scratching behavior. The effectiveness of NanoBEO increases with the dose,
reaching statistical significance at 0.5 and 1 mg. The effect is not statistically significant when pre-
treatment is performed at the following time points: 15 min, 60 min, 120 min, 240 min, and 360 min.
Each value represents the mean ± S.E.M. of n = 6 mice. The value of p < 0.05 is considered statistically
significant. ** p < 0.01.

3. Discussion

Of the various essential oils investigated for analgesic effectiveness, BEO provides the
strongest preclinical evidence to justify clinical investigation according to the guidelines for
Animal Research: Reporting In Vivo Experiments (ARRIVE) [31], the Systematic Review
Center for Laboratory Animal Experimentation (SYRCLE’s) risk of bias (RoB) tool [32], and
the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimen-
tal Studies (CAMARADES) checklist for study quality [33]. The present study provides an
exact single therapeutic dose for clinical trial supplied from an airless dispenser containing
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4.4 g of cream. Moreover, it allows us to know the ID50 of NanoBEO which is 0.6312 mg.
In fact, the effect of the nanotechnological formulation on 4-methyl histamine-induced
scratching behavior increases with the dose, reaching statistical significance at 0.50 and
1 mg. Interestingly, the effect needs at least 30 min to occur, after which it starts to decrease,
in agreement with preclinical findings on the different fractions of BEO [34,35]. The single
therapeutic dose of NanoBEO confirms its efficacy in the acute phases of nociceptive models
in the capsaicin test and the first phase of the formalin test [36], but also in the sensitization
of the formalin test. This test is of the utmost importance as a model for chronic pain
in the elderly, since its pattern is influenced by aging [37,38] and it is characterized by
mechanisms of central sensitization occurring at the level of the dorsal horn [39] and impli-
cated in the late phase and long-term mechanical allodynia induced by formalin [40,41].
Furthermore, the nocifensive reaction associated with formalin injection has been found
to include neuropathic features [42]: it induces concentration-dependent hypersensitivity
with an increase of voltage-gated L-type calcium channel α2δ − 1 subunits in dorsal root
ganglia, i.e., a marker of neuropathic pain; mechanical allodynia produced by formalin
responds to gabapentin, targeting α2δ − 1 subunit, paralleling spinal nerve injury-caused
allodynia. NanoBEO proves efficacy not only on static allodynia induced by PSNL, but also
on dynamic allodynia, that is evoked by tangential movement across the skin [43]. This
characteristic, together with the anxiolytic-like activity on a serotonergic basis, is funda-
mental for the control of agitation [44,45], and devoid of the sedation that could aggravate
cognitive impairment [44] making NanoBEO a very suitable candidate tool for the safe
and effective management of NPS in dementia. In order to allow the accurate assessment
of pain in patients suffering from severe dementia in the clinical trial to investigate the
clinical efficacy of NanoBEO, the Italian version of the Mobilization-Observation-Behavior-
Intensity–Dementia, the I-MOBID2, has been recently validated in the Italian setting [46]
and any herbal drug interactions deserve future evaluation [47].

4. Materials and Methods
4.1. Reagents

Solvents were bought from Sigma-Aldrich (Sigma Chemical Co., St. Louis, MO, USA):
tetrahydrofuran (THF), chloroform (CHCl3), n-hexane, ethyl acetate, dimethyl sulfox-
ide (DMSO), isooctane, 1-butanol, α-linolenic acid (PM = 278.43 g/mol), α-tocopherol
(PM = 430.72 g/mol), biliary salt of taurodeoxycholic acid, Tween 20, and dicyclohexylcar-
bodiimide (DCC).

4.2. Essential Oil and NanoBEO

BEO, furocoumarin-free to prevent phototoxicity [48], was kindly provided by “Ca-
pua Company 1880 s.r.l.”, Campo Calabro, Reggio Calabria (Italy). The certificate of
analysis confirms its composition in percentage (%): α-Pinene 0.7–2.0; Sabinene 0.5–2.0;
β-Pinene 5.0–10.0; Limonene 30.0–50.0; γ-Terpinene 6.0–18.5; Linalool 6.0–15.0; Linalyl
acetate 23.0–35.0; Geranial < 0.5; Geranyl acetate 0.1–0.7; Cariophyllene 0.2–0.5. The es-
sential oil was encapsulated in α-TFS-SLN synthesized as previously described, using a
microemulsion technique at a moderate temperature [49,50]. In particular, α-TFS (142 mg,
0.201 mmol) was mixed with BEO furocoumarin-free by heating at a temperature in the
range of 60–65 ◦C to avoid BEO degradation. Sodium taurodeoxycholate and Tween 20
were used as emulsifiers and butanol as a co-emulsifier and microemulsion underwent
immediate dispersion in cold water (1:20; 2 ◦C) under high-speed homogenization (Model
SL2, Silverson, Chesham Bucks, UK) at 8000 rpm for 30 min (240.000 g in 30 min). Disper-
sions were washed twice using an Amicon TCF2A ultrafiltration system (Amicon Grace,
Beverley, MA, USA; membrane Amicon Diaflo YM 100). The nanotechnology delivery sys-
tem consists of an airless dispenser delivering a fixed amount of a cream incorporating the
α-TFS-SLN containing BEO devoid of furocoumarins. BEO was encapsulated in SLN with
anti-oxidant components in order to: afford stability and titration of the active components;
allow reproducibility of data; obtain an odorless cream indistinguishable from the placebo,
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and perform double-blind clinical trials [25]. One supply from the dispenser contained
4.4 g of cream. An equal dose of empty cream was used as a control. The transdermal
administration of the cream occurred through a cotton swab followed by massage up to
complete absorption in the inter-shoulder region, after measuring that the mouse could
not reach the site with the hind paw in any projection to prevent its licking. The complete
airless dispenser containing NanoBEO and empty control cream was produced by the
spin-off of the University of Calabria “Macropharm s.r.l.”, Via P. Bucci, Rende (Italy).

4.3. Animals

The experiments were conducted using male ddY (SD) mice (Shizuoka Laboratory
Center, Japan; Japan SLC, Hamamatsu, Japan; Kyudo Industries, Kumamoto, Japan) weigh-
ing 22–26 g. The mice were individually housed and subjected to 12 h light/dark cycle,
room temperature 23 ◦C, 50–60% relative humidity with food and water ad libitum. To
prevent behavioral changes due to circadian rhythm, all the experiments were carried
out between 10:00 and 17:00 h in a quiet room, randomizing the order of tests. The study
follows the approval of the Ethics Committee for Animal Experiments of the Daiichi Univer-
sity of Pharmacy and Tohoku Pharmaceutical University (Examination number of Daiichi
University of Pharmacy: H29-005, approval number: 17003), and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals [51]. In agreement with the 3R
approach to refine, reduce, and, at least in part, replace, a statistical power analysis was
calculated on similar studies in the literature finding n = 5 for obtaining a 30% reduction
in nociceptive reaction. To prevent variability due to the different experimental condi-
tions, before every behavioral test, each mouse was acclimatized to an acrylic observation
chamber (22.0 × 15.0 × 12.5 cm) for approximately 1 h. All the tests were performed by a
blind observer.

4.4. Capsaicin and Formalin Test

Mice were subjected to the capsaicin test [52,53] and to the formalin test [54], to
observe the effect of one dose of NanoBEO on the acute and biphasic responses with
sensitization, respectively. The right hind paw was i.pl. administered 20 µL of a solution of
capsaicin (1.6 µg/20 µL) and 20 µL of formalin (0.5% in saline) through a 50 µL Hamilton
microsyringe with a 26-gauge needle, with strictly necessary animal restraint, in each test
respectively. Thirty min before capsaicin/formalin injection, one supply of NanoBEO
was transdermally administered through a cotton swab. Mice were placed in the test box
for a period of observation of the number of seconds of licking/biting with a hand-held
stopwatch 5 and 30 min after the administration of capsaicin/formalin.

4.5. PSNL

Mice were anesthetized using isoflurane (2.0%, FUJIFILM Wako Pure Chemical Cor-
poration, Osaka, Japan). The sciatic nerve of the right hindlimb was exposed at high thigh
level through a small incision and the distal one-third to one-half of the dorsal portion of the
sciatic nerve was tied with non-absorbable silk thread. A supply of NanoBEO and control
from an airless dispenser was transdermally applied on the 7th post-operative day, thirty
min before the evaluation of mechanical allodynia. The presence of mechanical allodynia
was assessed by the Von Frey’s test after 1 h of acclimation in a plexiglass observation
chamber (9.0 × 9.0 × 14.0 cm, length × width × height, Ugo Basile, Gemonio, Italy) with a
wire mesh floor, using calibrated Von Frey’s filaments (pressure stimulus 0.40 g, Natsume
Seisakusho Co., Ltd., Tokyo, Japan). In fact, these hairs are characterized by logarithmically
incremental stiffness (0.41, 0.70, 1.20, 2.00, 3.63, 5.50, 8.50, and 15.10 g). The paw withdrawal
threshold was measured using the up-down method [55].

4.6. Scratching Behavior

Scratching is one of the neuropsychiatric symptoms affecting patients suffering from
dementia. NanoBEO and control from the airless dispenser were transdermally applied
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thirty min prior to the intradermal administration of 4 methyl-histamine (200 µg/50 µL)
and the scratching behavior was filmed for 30 min and measured offline by an independent
observer to provide a dose–response curve (0.25–0.5–1 mg of NanoBEO) with a calculation
of inhibition dose (ID)50. 4-methyl-histamine is a pharmacological tool used to induce
itching behavior in mice. Pre-treatment was performed at the following time points: 15 min,
60 min, 120 min, 240 min, and 360 min, to assess the duration of the effect of a single
therapeutic dose.

4.7. Statistical Analysis

The nociceptive response is expressed as the mean± S.E.M. of the seconds of lick-
ing/biting in the capsaicin and formalin tests, of the scratching time in the itch test, and
of the paw withdrawal threshold for the Von Frey’s test after PSNL (for the error bars
calculation n = 6 is used). Standard error of the mean has been used for inferential statistics,
hence representing a measure of how variable the mean will be if the whole study was
repeated six times [56]. The results were subjected to statistical analysis using Student’s
t-test (GraphPad Prism; GraphPad Software, Inc., San Diego, CA, USA) and considering
values of p < 0.05 statistically significant.
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