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Abstract: In this study, we report the synthesis of a new organic–inorganic molecular salt of the
clinically used antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O. By detailed investigation
and analysis of its structural properties, we show that the structure represents a 0D structure built of
alternating organic and inorganic zig-zag layers along the crystallographic c-axis and the primary
supramolecular synthons in this salt are hydrogen bonding, F···π and halogen bonding interactions.
Magnetic measurements reveal the co-existence of weak ferromagnetic behavior at low magnetic
field and large diamagnetic contributions, indicating that the synthesized material behaves mainly as
a diamagnetic material, with very low magnetic susceptibility and with a band gap energy of 3.6 eV,
and the salt is suitable for semiconducting applications. Extensive theoretical study is performed to
explain the acceptor donor reactivity of this compound and to predict the Cl-substitution effect by F,
Br and I. The energy gap, frontier molecular orbitals (FMOs) and the different chemical reactivity
descriptors were evaluated at a high theoretical level. Calculations show that Cl substitution by Br
and I generates compounds with more important antioxidant ability and the intramolecular charge
transfer linked to the inorganic anion.

Keywords: crystal structure; fluconazole drug; salt; spectroscopy; optical and magnetic studies; DFT;
TD-DFT; chemical reactivity descriptors; ICT

1. Introduction

The great technological potential of hybrid organic–inorganic materials as low-cost
solar-cell absorbers, phosphors, and light-emitting diodes [1–4] has renewed interest in
this large and well-known family of materials. The synthetic versatility and structural
definition of these crystalline solids, which are typically formed through solution-state
self-assembly, drive research in this field. Many possible combinations of organic amine
(A), metal (B = Sn or Pb) and halides (X) within the AaBbX3b+a hybrid material framework
provide access to a diverse set of compositions. These material structures are formed
from MX6 octahedra sharing corners, edges, or faces to form three-dimensional struc-
tures, two-dimensional systems, one-dimensional chains, or zero-dimensional clusters
that are separated by organic cations [5–8]. Among these materials, the halogenostan-
nate hybrid compounds containing protonated amine cations draw considerable attention,
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because of their interesting physical and chemical properties such as magnetic, electrolumi-
nescence, photoluminescence, and conductivity, which potentially lead to technological
advances [9–12]. Apart from that, these compounds have gained attention due to their
interesting antibacterial and antifungal properties against a wide range of bacterial and
fungal species [13–19]. Several studies with fascinating results on antitumor activities
against a diverse panel of human tumor cell lines have been reported [20–22]. In general,
the structure of these compounds and the type of organic cations have a significant impact
on their biochemical activity.

To date, many halogenostannate hybrid materials have been successfully assembled.
However, there is a dearth of research on the interactions between organic and inorganic
units. In comparison with other organic–inorganic coordination compounds, the rational
design and assembly of organic halogenostannate, especially non-covalent connection,
remains a difficult task for halogenostannate chemists. Several factors must be considered
to achieve this goal, including the coordination geometry of the metal ions, the nature of
the organic ligands, the solvent, pH, and reaction temperature. Ligand selection is the most
crucial of these factors.

Fluconazole (1-(2,4-difluorophenyl)-1, 1-bis [(1H-1,2,4-triazol-1-yl) methyl] ethanol)
(Scheme 1) is a 1,2,4-triazole derivative that is a commonly used as antifungal medicine
but also a good flexible ligand to build metal–organic materials with optical properties
and medical applications [23,24]. This ligand has several donor/acceptor groups (difluoro
phenyl, triazole, and hydroxyl groups) that can form non-covalent interactions to stabilize
the supramolecular architecture. A search in the Cambridge Structural Database (CSD
version 5.42, November 2020) revealed 128 entries relating to metal complexes including
fluconazole, compared to 112 entries relating to fluconazole molecules directly linked to
the metal, with one structure reported by our group as the first organic–inorganic (linked
by non-covalent interactions) salt base on bismuth-fluconazole [25].
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In the context of this current study, we report the synthesis, detailed crystallographic
analysis, vibrational study, and the optical and magnetic properties of a new hybrid
organic–inorganic salt, (C13H14F2N6O).SnCl6.2H2O. In addition, this study is supported
by an extensive computational investigation using the density functional theory (DFT)
and time dependent density functional theory (TD-DFT). In the first step, we performed a
theoretical benchmark that is more complete than any previously published data of this
kind of systems, from the point of view of the number of functionals evaluated. Then, we
retained the most suitable one to investigate the optical and electronic properties, as well
as the frontier molecular orbitals (FMOs) and the energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Then, we
tried, to study the Cl-substitution effect to predict the gap energy and chemical descriptor.
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2. Results and Discussion
2.1. Crystal Structure of (H2Fluconazole).SnCl6.2H2O

The single-crystal data and the refinement results are presented in Table 1. Atomic
coordinates and equivalent isotropic displacement parameters are provided in Table S1
in the Supporting Information (SI). Selected interatomic distances and bond angles are
presented in Table S2 in the Supporting Information (SI).

Table 1. Crystallographic data and structure refinement parameters of (H2Fluconazole).SnCl6.2H2O.

Empirical Formula (C13H14F2N6O).SnCl6.2H2O

Formula weight (g/mol) 675.72
Crystal system, space group monoclinic, P21/n

a (Å) 8.0328 (5)
b (Å) 29.4011 (13)
c (Å) 10.3323 (7)
β (◦) 100.901 (5)

V (Å3) 2396.2 (2)
Z 4

µ (mm−1) 1.78
Dx (Mg m−3) 1.873

F(000) 1328
Crystal size (mm) 0.72 × 0.64 × 0.58

Crystal habit Colorless, Prism
θmin/θmax (deg) 1.4/26.8

Measured reflections 13,858
Independent reflections 5043

Observed refl. with I > 2σ(I) 4495
Rint 0.046

Data/restraints/parameters 5043/0/289
R[F2 > 2σ(F2)] 0.037

wR (F2) 0.088
GooF = S 1.12

∆ρmax/∆ρmin (e.Å−3) 0.53/−0.95

The (H2Fluconazole).SnCl6.2H2O salt crystallizes in the monoclinic system P21/n
space group with one anion [SnCl6]2−, one (H2Fluconazole)2+ cation and two water
molecules in the asymmetric unit (Figure 1). Table S1 lists some selected bond lengths
and angles of this structure. These bond lengths and angles are in good agreement with
those observed in similar compounds based on fluconazole cation and hexachlorostannate
(IV) [23,26–29]. The (H2Fluconazole)2+ cations interact with [SnCl6]2− anions and the water
molecules through strong intermolecular O-H···O (cyan dashed lines), N-H···O (orange
dashed lines) and N-H···Cl (purple dashed lines) hydrogen bonds as shown in Figure 2a
(Table 2). Additionally, the water molecule is bonded to the adjacent [SnCl6]2− anions
through O-H···Cl (Green dashed lines) hydrogen bonds (Table 2, Figure 2a). In addition to
these strong hydrogen bonds, the cations are connected to the adjacent anions and water
molecules via weak C-H···X (X = Cl and O) contacts (green dashed lines in Figure 2b).
In this structure, H2Fluconazole randomly adopts anti-gauche (A-G) conformations [30].
The existence of intramolecular C-H···X (X = F, O and N) hydrogen bonds causes this
conformation (Table 2, Figure 2b). Figure 3a shows how [SnCl6]2− anions interact with
H2Fluconazole cations via Cl1/5···Cg1/2/3 interactions. The d(Cl···Cg) distances are
dCl1···Cg2 = 3.468 (2) Å, dCl5···Cg1 = 3.613 (2) Å and dCl5···Cg3 = 3.712 (2) Å, where Cg1
and Cg2 are the centroids of the triazole rings and Cg3 is the centroid of difluophenyl ring
(purple dashed lines). Moreover, due to the inversion center, the H2Fluconazole cations
are related to each other by halogen bonding, F···π, and π-stacking interactions. However,
weak π-stacking interactions (Cg3···Cg3 = 4.325 (2) Å) were observed between the centroids
of the difluorophenyl rings of the (H2Fluconazole) cations (red dashed lines in Figure 3b).
In addition, the fluorine atom forms weak halogen bonds. From a geometric point of
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view, these F···F contacts can be classified as type I (d(F2···F2 = 2.961 (3) Å, Ang(C-F···F) =
100.80(16)◦) purple dashed lines in Figure 3b) [31–36]. Additionally, the F atoms engage in
a non-covalent interaction with the nitrogen atoms of the nearby. H2Fluconazole cations
(d(F2···N2 = 3.134 (4) Å; blue dashed lines in Figure 3b). Furthermore, through C-F···π
interactions, the fluorine atom interacts with adjacent triazole and difluorophenyl rings
(dF1···Cg1 = 3.283 (3) Å, and dF1···Cg3 = 3.552 (3) Å, green dashed lines in Figure 3b).
According to the geometry, the C-F bond is perpendicular or parallel to the aromatic ring,
or, as in this instance, the C-F···π interaction take the form of T-shaped halogen bonding
with Cg1 (C-F1···Cg1 = 171.31◦) and π···π (lone-pair···π) with Cg3 (C-F1···Cg3 = 85.3◦).
Calculation on the electrostatic map was performed at the HSE theoretical level (Figure S1).
This figure confirms the below Hirshfeld surface analysis and enrichment ratio calculation.
indeed, we can see that the red region is the negative extreme which is mainly located in
the inorganic part and the blue is the positive extreme and located in the organic part with
slightly positive region located in the center of the difluorphenyl group interacting with
the negative equatorial region of F. Finally, the interplay between hydrogen and halogen
bonding as well as F···π and π-stacking interactions results in the formation of endless
zig-zag chains in the [100] direction (Figure 4).
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Table 2. Intermolecular interactions in (H2Fluconazole).SnCl6.2H2O.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A(◦)

O1-H1···O2 0.82 1.94 2.750 (3) 169
O2-H2A···O3 ii 0.85 2.01 2.820(4) 160
O2-H2A···Cl1 ii 0.85 2.81 3.522(3) 142
O2-H2B···Cl3 i 0.85 2.77 3.395(3) 132
O3-H3A···Cl5 0.85 2.37 3.214(3) 177

C12-H12···Cl2 i 0.93 2.72 3.359 (4) 127
C12-H12···O2 0.93 2.52 3.284 (4) 140

C11-H11A···F2 0.97 2.29 2.921 (4) 122
C11-H11B···Cl3 ii 0.97 2.93 3.546 (3) 122

C8-H8A···F2 0.97 2.40 3.038 (4) 123
C8-H8B···Cl6 iii 0.97 2.86 3.471 (3) 122
C8-H8B···Cl1 iii 0.97 2.90 3.704 (3) 141

C8-H8B···N5 0.97 2.57 3.221 (5) 124
C9-H9···Cl2 iv 0.93 2.70 3.566 (3) 155

C9-H9···O1 0.93 2.34 2.813 (4) 111
C10-H10···Cl6 v 0.93 2.93 3.855 (4) 175

N6-H6···O3 0.85 (5) 1.91 (5) 2.736 (4) 162 (6)
N3-H3···Cl4 iv 0.85 (5) 2.44 (5) 3.240 (3) 157 (4)

Symmetry codes: (i) x − 1, y, z; (ii) x − 1/2, −y + 1/2, z + 1/2; (iii) x − 1/2, −y + 1/2, z − 1/2; (iv) x − 3/2,
−y + 1/2, z − 1/2; (v) −x + 3/2, y + 1/2, −z + 1/2.
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2.2. Hirshfeld Surface Analysis and Contact Enrichment Ratio

The Hirshfeld surfaces mapped over dnorm as well as the 2D fingerprint plots of
the abundant contacts in the structure are presented in Figure 5. It should be noted that
regions of intense red color are located over the oxygen, carbon, and nitrogen atoms of
organic cations and water molecules (Figure 5a). Hirshfeld surface (HFs) maps (Figure 5b)
show that the most abundant contacts are the O/N/C-H···Cl hydrogen interactions, which
account for 44.5% of the total HFs maps. The non-covalent H···H interactions occupy 16.6%
of the total HFs maps indicating high contribution of triazole and difluorophenyl rings in
the stabilization of the crystal packing (Figure 5c). The relative contributions of all contacts
governing the structure are summarized in Figure 6.

Figure 5. Two-dimensional fingerprint plots order with a dnorm view of (a) All (100%),
(b) Cl· · ·H/H· · ·Cl (44.5%) and (c) H· · ·H (16.6%) contacts in (H2Fluconazole).SnCl6.2H2O.
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The enrichment ratios (E), which are the ratios of actual contacts in the crystal to
random contacts (theoretical proportion), were calculated using surface contact data from
the Hirshfeld surface analysis, with E greater than one indicating a favored contact between
pairs of elements and E less than one indicating a disfavored contact. The enrichment
ratios of (H2Fluconazole).SnCl6.2H2O (Table 3) shows that the F· · ·N halogen bonding and
F· · ·π interactions (EFN = 3.33 and EFC = 3.16) are the most favoured contact in the crystal
packing followed by the H· · ·Cl hydrogen bond contacts (EHCl = 1.55), C· · ·C π-stacking
interactions (ECC = 1.55), C· · ·Cl contacts (ECCl = 1.45), O· · ·Cl (EOCl = 1.18) and N· · ·Cl
contacts (ENCl = 1.09), respectively. Theoretical and experimental equilibrium geometry of
the (H2Fluconazole).SnCl6.2H2O listed in Table S4.

Table 3. Analysis of contacts on the Hirshfeld surface. The % of contact types (SX) between chemical
species is given followed by random contacts (%) and their enrichment ratio (E). The major contacts
as well as the major enriched ones are highlighted in bold characters.

Atoms Cl H C N O F

(%) Contacts from fingerprint plots

Cl 1.2 - - - - -

H 44.5 16.6 - - - -

C 6 2.9 0.7 - - -

N 4.4 5.5 0 0 - -

O 1.6 2.8 0 0 0 -

F 2.7 4.1 3.1 3.2 0 0.8

Surface
(%) 30.8 46.5 6.7 6.54 2.2 7.35

Random contacts % (RXX and RXY)

Cl 9.84 - - - - -

H 28.64 21.6 - - - –

C 4.13 6.32 0.45 - - -

N 4.03 6.09 0.88 0.043 - -

O 1.35 2.05 0.29 0.28 0.048 -

F 4.52 6.84 0.98 0.96 0.32 0.54

Enrichment ratio E (EXX and EXY)

Cl 0.13 - - - - -

H 1.55 0.77 - - - -

C 1.45 0.46 1.55 - - -

N 1.09 0.9 0 0 - -

O 1.18 1.36 0 0 0 -

F 0.59 0.6 3.16 3.33 0

2.3. FT-IR and Raman Spectral Analysis

The solid-state IR and Raman spectra for (H2Fluconazole).SnCl6.2H2O (Figure 7 and
Figure S2, respectively) are consistent with their crystal structure. Table 4 shows the
band assignments in the IR and Raman spectra, which are based on the spectra from
earlier studies of fluconazole cation and SnCl6 cluster [23–25,37–39] as well as quantum
chemical computations.
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Figure 7. Experimental IR absorption spectrum of (H2Fluconazole).SnCl6.2H2O recorded at room temperature.

Table 4. Attribution of the experimental and calculated IR frequencies (cm−1) of
(H2Fluconazole).SnCl6.2H2O.

Experimental HSEH1PBE Attribution

495-547 450-572 skeletal deformation

613 611 C-H out of plane

677 695 O-H out of plane

749 755 N-H out of plane of triazole group

837 818 C-H bending of triazole

904 897 C-H bending of benzene

948 965 C-C bending

1004 1001 C-N bending

1071 1085 C-O stretch mode

1103 1115 C-H and N-H bending of triazole

1257 1278 C-F bending mode

1408 1415 C-N stretch of triazole ring

1479 1490 C = C stretch 2,4-difluorobenzyl
group

1530 1554 C = N stretch of triazole ring

1620 1607 C = N stretch of triazole ring

1631 1740 Benzene ring deformation

2411 2850 N-H stretch of triazole ring

2989 2928 C-H stretch of propane backbone

3156 3120 C-H stretch of propane backbone

3339 3150 C-H stretch (antisymmetric) of
propane backbone

3412 3190 N-H stretch of triazole

3497 3274 O-H stretch mode

3603 3390 νs(OH) of crystallization water

3607 3560 νas(OH) of crystallization water
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Internal Modes of H2Fluconazole Cation

The stretching vibrations of the different functional groups interconnected by a series
of hydrogen bonds in the crystal are represented in the high frequency region, which ranges
from 3560 to 2600 cm−1. However, the presence of crystallization water in the structure is
indicated by the strong signals centered at roughly 3560 and 3390 cm−1, which are assigned
to the O-H stretching vibrations. The O-H stretching modes of the tertiary alcohol and N-H
groups appeared as a weak band centered at 3274 and 3190 cm−1, respectively. In addition,
the spectrum shows strong intensity bands in the 3150–3120 cm−1 spectral range which
are attributed to C-H stretching modes of the triazole ring. These individual frequencies
are slightly shifted because of the presence of intermolecular C-H/π interactions, as was
discussed in the analysis of the crystal structure. The absorption bands of the νa(CH2) and
νs(CH2) group in the complexes are observed in the frequency range 2928–2850 cm−1.

Asymmetric and symmetric bending vibrations of δ(N-H) and δ(C-H), as well as
valence vibrations of ν(C-O), ν(C = C), ν(C-N), ν(C = N) and ν(C-F) generally appear
coupled and can be observed in the 1607–1085 cm−1 range. Finally, N-H, O-H and C-H
out-of-plane bending modes are attributed to the bands in the 1000–500 cm−1 range.

The scaled IR spectrum using HSEH1PBE functional associated to LANL2DZ pseu-
dopotential and 6-311++G** basis in the considered region is in good agreement with the
experimental data (Table 4).

2.4. UV–Visible Spectroscopic Study

The optical absorption spectrum (300–700 nm) of (H2Fluconazole).SnCl6.2H2O (Figure 8a)
reveals a broad absorption band across the ultraviolet region up to the absorption edge onset
at 408 nm (3.03 eV). Two less pronounced bands can be seen in the range of 200–300 nm at
216 nm (5.74 eV) and 266 nm (4.66 eV). These two bands are produces by the charge transfer
between the conjugated rings in H2Fluconazole [38,40].
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The material’s diffuse reflectance was measured in order to estimate its optical band
gap by changing the absorption spectrum into a Tauc plot Figure 8b, according to the
Kubelka–Munk function: F(R) = (1 − R)2/2R, in which R is the experimentally observed
reflectance. In a F(R)2 vs. photon energy plot, the energy band gap is determined as
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the point where the energy axis intersects with the extrapolated linear component of the
absorption edge. The direct band gap value measured is 3.60 eV, which is typical with the
compound’s semiconductor characteristics.

2.5. Magnetic Study

The magnetic hysteresis loops measured at 10 and 300 K are shown in Figure 9. The
magnetization curves indicate the co-existence of two components: weak ferromagnetic
and large diamagnetic behavior. The M-H curve at room temperature shows mainly a
diamagnetic contribution with small magnetic susceptibility. The diamagnetic contributions
(i.e., the linear part) at high magnetic field and the ferromagnetic behavior as shown in the
inset of Figure 9. The temperature dependence of the magnetic susceptibility measured
at H = 50 kOe is shown in Figure 10. The diamagnetic behavior is confirmed again by
the negative magnetic susceptibility at high field. It can be concluded from the magnetic
measurement that the synthesized 0D organic–inorganic hybrid material behaves as a
diamagnetic material, with very low magnetic susceptibility. Previous reports showed a
ferromagnetic behavior for two-dimensional organic–inorganic hybrids [41,42].
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To reveal the origin of the ferromagnetism in this sample, the magnetization as a
function of temperature measured in the field-cooled (FC) and zero-field-cooled (ZFC)
configurations at an applied magnetic field of 100 Oe was measured as shown in Figure 11.
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The FC and ZFC curves show obvious bifurcation, which indicate the existing of
magnetic nano clusters with blocking temperature of 160 K. Furthermore, the magneti-
zation is not inversely proportional to T in the ZFC plot, indicating the non-existence of
superparamagnetic nanoparticles. Therefore, the overall magnetization contributed to
this system is originated from two sources. The first source of magnetization is the free
carriers located in defect states where the density of magnetic contribution increases with
the increase in localized carriers at low temperature. The second source of magnetiza-
tion is the contribution of the magnetic nanoparticle exist in this sample as shown in the
ZFC/FC measurements.

2.6. TD-DFT Study

Despite the difficult performance of benchmarks for this kind of systems, especially
due to the requested resources, TD-DFT methods have become useful tools used by theorists
and experiments to examine, understand, and predict the optical and chemical behavior of
different types of organic and inorganic compounds [43–46] due to the remarkable ratio of
accuracy and computational time.

As mentioned above, we have used nine density functionals to investigate the optical
and chemical behavior of the studied compound.

In the first step, we focused on the evaluation of different functional performance by
the comparison of calculated energy gap (Eg) with the experimental value (3.6 eV).

As we see in Figure 12, the B3LYP, CAM-B3LYP, LC-wHPBE and wB97XD functionals
fail to recover the correct Eg. This is mainly due to the weak bonds of water molecules.

For the five functionals employing PBE correlation, PBE1PBE underestimates the Eg
by 0.8 eV while PBEh1PBE overestimates it by 1.2 eV. However, the OHSE1PBE, OHSE2PBE
and HSE1PBE functionals effectively reproduce the energy gap with error at approximately
8% (3.9 vs. 3.6 eV).

Since the HSE1PBE functional is the recommended one for the study of this type
of systems, it will be retained in the next step for the description of the electron excited
state transitions, the examination of the different chemical reactivity descriptors and the
prediction of the halogen-substitution effect on the chemical behavior of studied compound.
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Figure 12. Absolute error between calculated energy gap (Eg) using different functionals and
experimental value (3.6 eV).

To investigate the electronic and optical properties, as well as the UV-visible spectra
and the way that any molecule interacts with other species, is related to the inspection
of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO). The higher energy of LUMO as an electron acceptor represents the higher
resistance to accept an electron. While the low energy of the HOMO indicates the lower
ability to donate an electron. The UV–visible spectra were calculated using the HSE1PBE
functional and listed in Table S3. Close inspection of the properties of the electronic
transitions shows that the first transition is mainly the promotion of a single electron
from the HOMO to the LUMO with a predicted oscillator strength of 0.0012. The second
transition occurs in UV, with a relatively high oscillator strength calculated to be 0.0265.
Finally, a transition in the UV region calculated to occurs at 219 nm. This latter is a
combination from a promotion of one electron from HOMO−10 to LUMO+2 and a second
transition from HOMO−8 to LUMO+2. It should be noted that theoretical calculations
are in good agreement with those measured experimentally in UV the region, whereas we
note a low accuracy in the near UV-visible region. This may be due to the multireference
character of the transition.

To better understand and predict the chemical behavior of molecules, several chem-
ical reactivity descriptors, which been have detailed in our previous works [25,47], are
widely used.

These descriptors are related to frontier molecular orbitals (FMOs) and evaluated
using HOMO and LUMO energy values according to the following equations [48,49]:

Energy gap (Eg), Eg = E(LUMO) − E(HOMO) (1)

First Ionization energy (I), I = −E(HOMO) (2)

Affinity (A), A = −E(LUMO) (3)

Chemical hardness (η), η =
(ELUMO − EHOMO)

2
(4)

Chemical potential (µ), µ =
(EHOMO + ELUMO)

2
(5)

Electrophilicity (ω), ω =
µ2

2η
(6)

Electronegativity (χ), χ =
(I + A)

2
(7)

Softness (S), S =
1

2η
(8)
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The energy gap (Eg) between the HOMO and the LUMO is a critical parameter to
demonstrate the bioactivity and the intermolecular charge transfer [50]. A molecule with
a small Eg is more polarizable and is generally associated with high chemical reactivity
and low kinetic stability due to ease of charge transfer. It is also a soft molecule, which is
confirmed by the low softness (S) value.

The low Eg of (H2Fluconazole).SnCl6.2H2O (Eg = 3.6 eV) is a proof of the intramolecu-
lar charge transfer (ICT), which supports the antioxidant ability of the studied compound.

We will now examine the Cl-substitution effect on the electronic properties, that is, the ex-
change of Cl by F, Br or I. The main electronic data for the different. (H2Fluconazole).SnCl6.2H2O
compounds are reported in Table 5. At first glance, it can be seen that Eg decreases with the
atomic number of halogens.

Table 5. Global reactivity descriptor values (in eV) of (H2Fluconazole).SnX6.2H2O; (X = F, Cl, Br,
and I).

F
(Z = 9)

Cl
(Z = 17)

Br
(Z = 35)

I
(Z = 53)

ELUMO −1.9 −3.2 −3.4 −4.3

EHOMO −7.4 −7.2 −6.5 −6.0

Eg 5.5 3.9 3.1 1.6

Ionis 7.4 7.2 6.5 6.0

Elec. Aff 1.9 3.2 3.4 4.3

Hardness 2.7 2.0 1.6 0.8

Softness 0.2 0.3 0.3 0.6

Chem. Pot −4.7 −5.2 −5.0 −5.2

Electrophilicity 4.0 6.9 7.8 16.5

Electronegativity 4.7 5.2 5.0 5.2

As a large Eg is preferred for higher stability, we can conclude that the compound
resulting from the Cl substitution by F is more stable and thus less reactive. The Cl substi-
tution by I leads to a less stable compound and eventually more important intramolecular
charge transfer within the molecule and so a significant antioxidant ability.

This trend was is consistent with those of other chemical reactivity descriptors.
The contour surfaces of the FMOs are depicted in Figure 13. Differently to Br and

I, in the case of the compound resulting from the Cl substitution by F, the HOMO and
the LUMO are localized on the organic cation. More precisely, the electron concentration
of HOMO is on the 2,4-difluorophenyl ring of the H2Fluconazolium molecule, while the
LUMO is localized on one of the triazolium rings without any electron concentration on
inorganic anion.

In the case of (H2Fluconazole).SnX6.2H2O; (X = Cl, Br, I) compounds, the HOMO
and the LUMO are localized only in the inorganic anion. Hence, Eg and other chemical
reactivity descriptors are primarily linked to the inorganic anion due its importance in the
activity of the molecule.
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3. Materials and Methods
3.1. Salt Preparation

All the starting reagents were acquired commercially and were used without further
purification. All the synthesis processes were carried out in the open air. A mixture of tin
chloride (1 mmol, 0.074 g) and fluconazole (2 mmol, 0.1 g) was dissolved in concentrated
hydrochloric acid (10 mL) and stirred for 2 h at 60 ◦C. The saturated colorless solution was
slowly cooled and evaporated at ambient temperature. Colorless crystals suitable for X-ray
diffraction analysis were obtained after 1 day.

3.2. X-ray Structure Determination

Single-crystal X-ray diffraction experiments were carried out on a STOE IPDS 2
diffractometer equipped with a graphite monochromator. Data collection and unit cell
refinement for the datasets were performed using the X-AREA, data reduction and inte-
gration were performed by X-RED32 [51]. The crystal structures were solved by using
Olex2 [52] software and the model obtained was refined by full-matrix least-squares on F2
(SHELXL2018/3) [53].

Anisotropic displacement parameters were used to refine all non-hydrogen atoms.
A riding model was used to place hydrogen atoms at calculated positions. The new salt
structure’s crystallographic information was deposited in the CSD [54] with the code
CCDC 2012995.

3.3. Physicochemical Characterization

The solid-state infrared spectrum was recorded using a Bruker Tensor 27 FT-IR spec-
trometer with scanning range set from 400 to 4000 cm−1. The room temperature Raman
spectrum was recorded in the region of 500–100 cm−1 with a RENISHAW RAMAN in Via
Microscope with an excitation wavelength of 532 nm. The room-temperature UV–visible
absorption spectrum of the polycrystalline powder of (H2Fluconazole).SnCl6.H2O was
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measured using a PerkinElmer Lambda 750 spectrophotometer in the wavelength range
300–700 nm, and the BaSO4 plate was used as reference. Magnetic characterizations were
performed in a Quantum Design MPMS-5S SQUID magnetometer. Zero-field-cooled and
field-cooled (ZFC-FC) curves were recorded at a magnetic field of 100 Oe.

3.4. Hirshfeld Surface Analysis (HS)

Hirshfeld surface analysis is a useful approach for evaluating weaker intermolecular
interactions such as hydrogen and halogen bonds and other weak contacts. The Hirsh-
feld surface [55] and the decomposed two-dimensional (2D) fingerprint plots [55] were
computed with CrystalExplorer17 [56]. Furthermore, the enrichment ratios (E) [57] of
the intermolecular contacts were calculated to estimate the likelihood of two chemical
species interacting.

3.5. Theoretical Calculations

Computations have been carried out with the Gaussian 16 program [58]. The asymmet-
ric unit of (H2Fluconazole).SnCl6.2H2O crystal (Figure 1) was used to start the geometry
optimization and frequency calculations. To perform our benchmark, we have employed
several hybrid functionals. We started by using the famous Becke Three-Parameter Hybrid
functional (B3LYP) [59,60], then we tested two long-range corrected functionals-CAM-
B3LYP [61] and LC-wHPBE [62,63]. We also employed the wB97XD [64] functional in-
cluding the dispersion correction (Grimme’s D2 dispersion model). In addition, we tested
five functionals employing PBE correlation-PBE1PBE [65] and PBEH1PBE [66]; the HSE
functionals OHSE1PBE and OHSE2PBE; and the recommended version of the full Heyd-
Scuseria-Erzerhof functional HSE1PBE given by Scuseria and coworkers [67–71], which
have been proved as suitable functionals for solid-state calculations. In these calculations,
the LANL2DZ pseudopotential [72] was used to describe the Sn and I atoms and the
6-311++G** basis set was used to describe F, O, N, C, H, Cl and Br atoms.

To treat all the elements on an equal footing, additional calculations with the 6-31+G*
basis set for the light atoms and LANL2DZ for the Sn atom were performed. The quality of
the basis set does not affect the UV-visible spectrum and the different chemical reactivity
descriptors studied. All geometries were fully optimized in the C1 symmetry group. All
structures present a real minimum in their potential energy surface, and this was confirmed
by the lack of imaginary frequencies.

TD-DFT calculations were performed at the optimized geometries using the same
levels of theory. These extensive calculations were performed to examine the optical
behavior, the chemical reactivity descriptors and the reliability of various functionals.

4. Conclusions

In this work, a new salt of the antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O,
was synthesized and characterized by single-crystal XRD, Hirshfeld surface analysis, Raman,
FT-IR and UV-visible spectroscopies. This new compound crystallizes with a monoclinic crystal
structure in the P21/n space group and represents an 0D structure built of alternating organic
and inorganic zig-zag layers along the crystallographic c-axis. The nature of intermolecular
interactions in the title compound was also confirmed and quantified using HS analysis and
enrichment ratio calculations. IR and Raman techniques confirm all vibrational modes of
molecular groups. The optical properties of (H2Fluconazole).SnCl6.2H2O at the absorption
edge revealed less pronounced bands at 216 and 266 nm, respectively. The direct band gap
energy measured was 3.6 eV. The magnetic studies show that at low magnetic fields, weak
ferromagnetic contributions coexist with large diamagnetic contributions, implying that the
synthesized material behaves primarily as a diamagnetic material, with very low magnetic
susceptibility. Despite the extensive DFT calculations in conjunction with large basis sets, only
the HSE functionals, i.e., OHSE1PBE, OHSE2PBE and HSE1PBE, reproduce the Eg effectively.
From a comparative point of view, HSE1PBE agrees better with the measured experimental
values, where the largest error is approximately 16% in the H-O bond. According to our study,



Int. J. Mol. Sci. 2022, 23, 8765 16 of 19

we recommend the HSE1PBE functional to study similar systems. HSE1PBE provides accurate
data about the antioxidant ability of the synthetized crystal and predicts the Cl-substitution
effect on the chemical behavior. A significant intermolecular charge transfer (ICT) was found
in the case of Cl, Br and I. Finally, FMOs show that the ICT process is mainly linked to the
inorganic anion part.
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