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Abstract: Early prognostication in cardiac arrest survivors is challenging for physicians. Unlike other
prognostic modalities, biomarkers are easily accessible and provide an objective assessment method.
We hypothesized that in cardiac arrest patients with targeted temperature management (TTM),
early circulating microRNA (miRNA) levels are associated with the 6-month neurological outcome.
In the discovery phase, we identified candidate miRNAs associated with cardiac arrest patients
who underwent TTM by comparing circulating expression levels in patients and healthy controls.
Next, using a larger cohort, we validated the prognostic values of the identified early miRNAs by
measuring the serum levels of miRNAs, neuron-specific enolase (NSE), and S100 calcium-binding
protein B (S100B) 6 h after cardiac arrest. The validation cohort consisted of 54 patients with
TTM. The areas under the curve (AUCs) for poor outcome were 0.85 (95% CI (confidence interval),
0.72–0.93), 0.82 (95% CI, 0.70–0.91), 0.78 (95% CI, 0.64–0.88), and 0.77 (95% CI, 0.63–0.87) for miR-
6511b-5p, -125b-1-3p, -122-5p, and -124-3p, respectively. When the cut-off was based on miRNA
levels predicting poor outcome with 100% specificity, sensitivities were 67.7% (95% CI, 49.5–82.6),
50.0% (95% CI, 32.4–67.7), 35.3% (95% CI, 19.7–53.5), and 26.5% (95% CI, 12.9–44.4) for the above
miRNAs, respectively. The models combining early miRNAs with protein biomarkers demonstrated
superior prognostic performance to those of protein biomarkers.

Keywords: heart arrest; induced hypothermia; prognostication; biomarker; microRNA

1. Introduction

Since positive results of two landmark studies were reported in 2002 [1,2], targeted
temperature management (TTM) has been accepted as the intervention to improve out-
comes for patients resuscitated from cardiac arrest (CA). Currently, the recommendations
for TTM from the European Resuscitation Council include maintaining a target temperature
for all comatose cardiac arrest survivors at a constant value between 32 ◦C and 36 ◦C for at
least 24 h and avoiding fever for at least 72 h after the return of spontaneous circulation
(ROSC) in patients who remain in a coma [3]. Most deaths in patients with TTM are caused
by irreversible ischemic brain injury [4]. However, approximately one-third of deaths are
due to non-neurological causes, which usually occur in the first 3 days after the return of
spontaneous circulation (ROSC) [5]. Therefore, early detection of whether they already
have hypoxic brain injury or not is important for allowing further advanced treatment
decisions and guiding post-cardiac arrest management strategies. However, early progno-
sis is challenging for physicians. Among commonly used prognostic tools, neurological
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examination is not always accurate due to the use of medications during TTM [6]. The
detection of ischemic changes on neuroimaging tests can be delayed [7], and the results
of electrophysiologic studies such as electroencephalography (EEG) and somatosensory
evoked potential (SSEP) are inconsistent during the first days after CA [8,9]. Further-
more, interrater variability is frequently demonstrated with these tools [10,11]. While EEG
findings are described with a standardized terminology, the skill of EEG interpretation is
learned primarily in a master–apprentice format [12]. In a recent study, full-length EEGs
from 103 comatose cardiac arrest patients were interpreted by four EEG specialists who
were blinded for patient outcome; there was moderate interrater agreement for malignant
EEG patterns [10]. The main source of disagreement in SSEP interpretation was related to
the noise levels [13]. When SSEPs were interpreted independently by experienced clinical
neurophysiologists, moderate interobserver agreement was found [11,13]. In contrast,
serum biomarkers are unlikely to be affected by medications and are easy to assess without
interrater variability.

Neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B) are the
only biomarkers that have been used for the prediction of outcomes after CA [14,15].
However, current guidelines do not recommend a biomarker to predict a poor outcome in
the early phase. MicroRNAs (miRNAs) are noncoding RNA molecules composed of 19–24
nucleotides that regulate gene expression by inhibiting or inactivating target messenger
RNAs [16]. Recently, results of advanced molecular biology techniques have revealed that
miRNAs can be used as candidate biomarkers in CA patients. After CA, neuronal miRNAs
cross the disrupted blood–brain barrier (BBB) and can be measured in the plasma [17–19];
recent studies have reported the prognostic utility of these miRNAs [20–22]. While previous
studies have assessed the prognostic value of circulating brain-enriched miRNAs at 48 h
after CA, cardiac-enriched miRNAs are released early after cardiac injury [23]; Wander et al.
demonstrated that circulating miRNAs during CA are related to resuscitation outcome [24].

Therefore, in the present study, we hypothesized that in CA patients with TTM,
circulating miRNA expression at 6 h after ROSC is associated with 6-month neurological
outcomes. We performed miRNA sequencing technology in a small subset of samples and
then validated the differentially expressed miRNAs in a larger cohort using quantitative
real-time polymerase chain reaction (qRT-PCR).

2. Materials and Methods
2.1. Study Protocol and Subjects

This prospective observational study was conducted in a single tertiary hospital in
Seoul, South Korea. The study consisted of two phases: a discovery phase and a validation
phase. The discovery phase aimed to identify candidate miRNAs for neurological predic-
tion after CA. From June to July 2016, a convenience sample of 11 adult (>18 years of age)
patients with TTM at 6 h after ROSC and 4 healthy controls were examined. We identified
miRNAs with significantly different serum expression between the two groups. For the
validation phase, we measured the expression of candidate miRNAs and the serum levels
of NSE and S100B at 6 h after ROSC in consecutive TTM-treated patients from September
2016 to July 2018 (n = 54). During the study period, all comatose patients with ROSC were
considered eligible for TTM at 33 ◦C or 36 ◦C for 24 h. The exclusion criteria included
unavailable serum samples. This study was approved by our Institutional Review Board,
and written informed consent was obtained from each patient’s next of kin.

2.2. Small RNA Sequencing

Small RNA sequencing libraries were constructed using the NEXTflex Small RNA
sample preparation protocol with 70 ng of total RNA as input. The adapters were di-
rectly ligated to the total RNA as follows. For the first step, NEXTflex 3’ 4N adenylated
adapter (5′ rApp/NNNNTGGAATTCTCGGGTGCCAAGG/3ddC/) and NEXTflex 5’ 4N
adapter (5’ GUUCAGAGUUCUACAGUCCGACGAUCNNNN) were ligated to each end
of the total RNA samples. The 5′ and 3′ NEXTflex adapter-ligated products were re-
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verse transcribed by M-MuLV reverse transcriptase in the presence of RNA RT primer
(5′ GCCTTGGCACCCGAGAATTCCA) to produce single-stranded complementary DNA
(cDNA). The cDNA was then PCR amplified using a universal primer (5’ AATGATACGGC-
GACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA) and a primer containing
barcode sequences for 18 cycles. The PCR cycles consisted of 20 s at 95 ◦C, 30 s at 60 ◦C, and
15 s at 72 ◦C. The amplified cDNA was separated on a 6% TBE gel (Invitrogen, Waltham,
MA, USA), and the 140–160 bp bands were excised. The cDNA was then eluted from
the gel and concentrated by ethanol precipitation. The quality and size distribution of
the adapter-ligated RNAs and amplified libraries were confirmed by electrophoresis on
Agilent Bioanalyzer High Sensitivity DNA microfluidic chips (Agilent, Santa Clara, CA,
USA). Libraries were quantified using the KAPA Library Quantification Kit (KK4824, Kapa
Biosystems, Wilmington, MA, USA).

Subsequently, the library was sequenced using an Illumina HiSeq2500 that was set
to rapid run mode. Cluster generation, followed by 2 × 100 cycle sequencing reads
separated by paired-end turnaround, was performed on the instrument. Image analysis
was performed using HiSeq Control Software version 1.8.4. The high-quality reads were
then mapped onto the human reference genome (ENSEMBL release 72) using bowtie with
the following parameters: only one mismatch (−n 1), max 80 sum of mismatch quals across
alignment, 30 seed length, and the suppression of the reads showing >5 alignments [25,26].
The miRNA reads were counted using HTSeq with the ‘intersection-nonempty’ mode
based on miRBase release 20 [27,28]. Based on the read counts for each miRNA, EdgeR was
applied to analyze the differential expression between regions [29]. Differentially expressed
miRNAs were identified with a significant p-value of < 0.05.

2.3. qRT-PCR

Small RNA was extracted from plasma using the miRNeasy Serum/Plasma Kit (Qi-
agen, Hilden, Germany). Small RNA from three 200 µL-plasma aliquots was extracted
according to the manufacturer’s instructions, and finally, RNA was eluted with RNase-
free water. The purity and quantity of extracted RNA were measured using a NanoDrop
ND-2000 (Thermo Fisher Scientific, Wilmington, DE, USA). Since appropriate endogenous
reference genes are absent in plasma, UniSp6 RNA was added to the extracted RNA sam-
ples before the cDNA synthesis reaction. First-strand cDNA synthesis and qPCR were
performed using a miRCURY LNA miRNA PCR Assay kit (Qiagen, Hilden, Germany).
After first-strand cDNA synthesis was completed, the cDNA was amplified by miRNA-
specific and LNA-enhanced primers using an ABI 7300 Real-Time PCR System (Applied
Biosystems, Carlsbad, CA, USA). Each miRNA level was normalized to the UniSp6 RNA
level in the same sample, and the relative changes across samples were expressed relative
to the spike-in UniSp6 using the ∆∆Ct method [30].

2.4. Laboratory Measurement

NSE and S100B measurements were performed with Roche Elecsys reagents specific
to NSE and S100B (Roche Diagnostics, Mannheim, Germany) in serum at 6 h after ROSC. If
the serum showed significant hemolysis, the results were discarded. The serum levels of
troponin T, N-terminal pro-brain natriuretic peptide, and total bilirubin were measured
at admission.

2.5. Outcome Measurement

The primary endpoint was a 6-month poor neurological outcome defined as a cerebral
performance category (CPC) score of 3–5. A CPC score of 1–2 indicated a good outcome.
Additionally, to evaluate the hemodynamic state, whether the patient had a shock on
admission and needed vasopressor support at 6 h was assessed.
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2.6. Statistical Analysis

All data are summarized and displayed as the number (percentage) of patients in
each group for categorical variables and as the median with interquartile range (IQR)
for continuous variables. Comparisons of categorical variables between groups were
made using Fisher’s exact test. After testing for normal distribution, continuous variables
were compared using Mann–Whitney U tests. The ability of miRNAs and NSE or S100B to
predict poor outcomes was assessed based on their sensitivity and specificity using an exact
binomial 95% confidence interval (CI) and receiver operating characteristic (ROC) curve
analysis. Pairwise area under the curve (AUC) comparisons were also performed between
two predictors using the nonparametric approach [31]. We also created combined models
using several logistic regression models and compared the AUCs of single biomarkers.
The Pearson correlation coefficients between biomarkers were calculated (low, 0.10–0.29;
moderate, 0.30–0.69; strong, 0.70–1.00). All analyses were performed using SPSS 24.0
software (IBM, SPSS Inc., Chicago, IL, USA). A value of p < 0.05 was considered significant
for all analyses.

3. Results
3.1. Discovery Phase

We first performed small RNA sequencing to profile the expression of miRNAs in
4 healthy controls and 11 CA patients (good outcome, 5; poor outcome, 6). Baseline
characteristics were not significantly different between the CA and control groups (Table S1,
Supplementary Materials). A median of 413 (IQR, 371–542) known miRNAs and 179
(IQR, 130–254) novel miRNAs were identified in the 15 samples (Table S2, Supplementary
Materials).

3.2. Validation Phase

From the differentially expressed miRNAs identified by small RNA sequencing, we
selected 10 miRNAs (miR-6511b-5p, -125b-1-3p, -122-5p, -124-3p, -18b-3p, -511-5p, -519a-3p,
-3180-3p, -24-2-5p, and -590-3p) and validated these miRNAs using qRT-PCR. The vali-
dation cohort consisted of 54 CA patients treated with TTM, of whom 20 patients had a
good outcome and 34 had a poor outcome. The patients’ characteristics are summarized
in Table 1. There was no difference between the outcome groups with regard to age, sex,
comorbidities, or bystander cardiopulmonary resuscitation and witnessed arrest. Patients
with poor outcomes had a higher rate of non-cardiac etiology arrest, non-shockable initial
rhythm, and longer time to ROSC than those with good outcomes (all p < 0.05).

The circulating levels of the 10 candidate miRNAs at 6 h after ROSC were measured us-
ing qRT-PCR. All miRNAs showed significant differential expression between the outcome
groups (Table S3, Supplementary Materials). Among these, four miRNAs (miR-6511b-5p,
-125b-1-3p, -122-5p, and -124-3p) for which the expression difference between the groups
was most significant were selected for additional statistical analysis.

To explore the function of these miRNAs, we analyzed gene ontologies using the
PANTHER resource (http://pantherdb.org/) (Figure S1, Supplementary Materials) [32].

The circulating levels of the miRNAs and the serum levels of NSE and S100B accord-
ing to the outcome group are shown in Figures 1 and 2, respectively. ROC analysis of
miR-6511b-5p, -125b-1-3p, -122-5p, and -124-3p showed AUCs of 0.85 (95% CI, 0.72–0.93),
0.82 (95% CI, 0.70–0.91), 0.78 (95% CI, 0.64–0.88), and 0.77 (95% CI, 0.63–0.87), respectively
(Figure 3). When the cutoff was based on miRNA levels predicting poor outcome with
100% specificity, the sensitivities for the above miRNAs were 67.7% (95% CI, 49.5–82.6),
50.0% (95% CI, 32.4–67.7), 35.3% (95% CI, 19.7–53.5), and 26.5% (95% CI, 12.9–44.4), re-
spectively. In addition, the AUCs of NSE and S100B measured at 6 h were 0.72 (95% CI,
0.58–0.86) and 0.85 (95% CI, 0.75–0.96), respectively, and were not significantly different
from the AUCs of the four miRNAs (all p > 0.05). A cutoff of >63.52 ng mL−1 for NSE and
>0.379 ng mL−1 for S100B yielded 100% specificity and 26.5% and 32.6% sensitivities for a
poor outcome, respectively.

http://pantherdb.org/
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Table 1. Characteristics of the included patients.

Good Outcome
(n = 20)

Poor Outcome
(n = 34) p-Value

Male 12 (60.0) 25 (73.5) 0.369
Age, year 48.0 (34.0–65.58) 60.0 (44.8–72.0) 0.142

Comorbidities
Hypertension 5 (25.0) 12 (35.3)) 0.549

Diabetes mellitus 3 (15.0) 13 (38.2) 0.122
Ischemic heart disease 2 (10.0) 4 (11.8) 1.000
Chronic heart failure 1 (5.0) 1 (2.9) 1.000

Stroke 0 (0.0) 1 (2.9) 1.000
Chronic obstructive pulmonary disease 0 (0.0) 2 (5.9) 0.525

Chronic renal disease 1 (5.0) 5 (14.7) 0.395
Liver failure 0 (0.0) 1 (2.9) 1.000
Malignancy 2 (10.0) 1 (2.9) 0.548

OHCA 15 (75.0) 32 (94.1) 0.087
Cardiac cause 16 (80.0) 13 (38.2) 0.004

Shockable rhythm 13 (65.0)) 4 (11.8) <0.001
Witnessed 16 (80.0) 21 (61.8) 0.229

Bystander CPR 15 (75.0)) 18 (52.9) 0.151
Time from arrest to ROSC, min 13.0 (10.0–28.8) 34.5 (16.0–46.8) 0.002

Shock on admission 2 (10.0) 17 (50.0) 0.003
Laboratory measurements

Troponin T, ng/mL 0.1 (0.01–0.34) 0.06 (0.01–0.20) 0.706
NT-proBNP, pmol/L 10.3 (5.2–58.3) 24.2 (7.0–251.2) 0.144

Bilirubin, µmol/L 11.1 (7.4–13.7) 8.6 (5.1–12.0) 0.065
Coronary angiography 14 (70.0) 11 (32.4) 0.011

Percutaneous coronary intervention 7 (35.0) 8 (23.5) 0.530
Target temperature, 33 ◦C 17 (85.0) 32 (94.1) 0.347

Need for vasopressor at 6 h 7 (35.0) 24 (70.6) 0.021
Data are presented as n (%) for categorical variables and as the median with interquartile range (IQR) for
continuous variables. OHCA, out-of-hospital cardiac arrest; CPR, cardiopulmonary resuscitation; ROSC, return
of spontaneous circulation; NT-proBNP, N-terminal pro-brain natriuretic peptide.
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Figure 1. Serum expression levels of various miRNAs at 6 h after return of spontaneous circulation
in patients with good and poor neurological outcomes. (a) Serum expression levels of miR-6511b-5p.
(b) Serum expression levels of miR-125b-1-3p. (c) Serum expression levels of miR-122-5p. (d) Serum
expression levels of miR-124-3p. Horizontal lines represent the median and error bars indicate the
interquartile range. * p < 0.05.
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Figure 2. Serum levels of NSE and S100B at 6 h after return of spontaneous circulation in patients with
good and poor neurological outcomes. (a) Serum levels of NSE. (b) Serum levels of S100B. Horizontal
lines represent the median and error bars indicate the interquartile range. NSE—neuron-specific
enolase; S100B—S100 calcium-binding protein B. * p < 0.05.
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Figure 3. Receiver operating characteristic curves for 6-month poor neurological outcome based on
the expression levels of miRNAs and NSE or S100B. NSE—neuron-specific enolase; S100B—S100
calcium-binding protein B; ROSC—return of spontaneous circulation; AUC—area under the curve;
CI—confidence interval.

According to the hemodynamic state, differences in the expression levels of miR-
6511b-5p, -125b-1-3p, and -122-5p were also observed (Table S4, Supplementary Materials).

3.3. Correlations between Biomarkers

The levels of miR-6511b-5p, -125b-1-3p, and -124-3p moderately correlated with the lev-
els of NSE (r = 0.502, r = 0.479, and r = 0.456, respectively) and S100B (r = 0.344, r = 0.428, and
r = 0.432, respectively) (Figure 4). However, there was no correlation between miR-122-5p
and NSE or S100B (r = 0.076, p = 0.584 and r = 0201, p = 0.144, respectively). Regarding
inter-miRNA expression, the correlation between miR-6511b-5p and miR-125b-1-3p was
the strongest (r = 0.920, p < 0.001), and there was no correlation between miR-122-5p and
miR-124-3p (r = 0.070, p = 0.616). The correlation coefficients between miRNAs and other
laboratory values are presented in Table S5 (Supplementary Materials).
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Figure 4. The correlation between protein and miRNA biomarkers. Log-transformed values of biomarkers and miRNA
expressions are represented. Since the axis is logarithmic, values equal to zero or lower than the lowest marked value on the
axis are not included on the graph. NSE—neuron-specific enolase; S100B—S100 calcium-binding protein B.

3.4. Prognostic Performance of miRNAs Combined with Protein Biomarkers

The AUCs of the different logistic regression models with combinations of various
miRNAs added to either or both NSE and S100B were calculated (Table 2). The AUCs to
predict poor outcomes at 6 months increased when various miRNAs were added to NSE or
S100B. In particular, adding miR-6511b-5p or -125b-1-3p significantly improved the AUC
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of NSE (0.87 (95% CI, 0.78–96) vs. 0.72 (95% CI, 0.58–0.83), p = 0.029 and 0.86 (95% CI,
0.76–0.96) vs. 0.72 (95% CI, 0.58–0.83), p = 0.027, respectively). However, miR-122-5p and
-124-3p did not. This trend was similar to the results of combining miRNAs with S100B or
both NSE and S100B, although the differences were not significant (all p > 0.05).

Table 2. Prognostic performances of the different models predicting 6-month poor neurological outcome.

AUC (95% CI) p-Value

NSE 0.72 (0.58–0.83) N/A
NSE + miR-6511b-5p 0.87 (0.78–0.96) 0.029
NSE + miR-125b-1-3p 0.86 (0.76–0.96) 0.027

NSE + miR-122-5p 0.81 (0.70–0.92) 0.121
NSE + miR-124-3p 0.75 (0.62–0.88) 0.478

S100B 0.85 (0.73–0.94) N/A
S100B + miR-6511b-5p 0.91 (0.83–0.98) 0.281
S100B + miR-125b-1-3p 0.89 (0.80–0.97) 0.448

S100B + miR-122-5p 0.86 (0.76–0.96) 0.867
S100B + miR-124-3p 0.85 (0.74–0.95) 0.742

NSE + S100B 0.84 (0.74–0.95) N/A
NSE + S100B + miR-6511b-5p 0.92 (0.85–0.99) 0.055
NSE + S100B + miR-125b-1-3p 0.91 (0.83–0.98) 0.074

NSE + S100B + miR-122-5p 0.86 (0.76–0.96) 0.455
NSE + S100B + miR-124-3p 0.85 (0.75–0.95) 0.629

p-value indicates difference between protein biomarkers and the combination model with miRNA added. AUC—
area under the curve; CI—confidence interval; N/A—not applicable; NSE—neuron-specific enolase; S100B—S100
calcium-binding protein B.

4. Discussion

Our results indicated that the early expression of several miRNAs in the serum at
6 h after ROSC can predict 6-month neurological outcome in CA patients treated with
TTM. In particular, miR-6511b-5p and -125b-1-3p predicted poor outcomes, with moderate
sensitivity. The models combining early miRNAs with early NSE or S100B demonstrated
superior performance to those of either NSE or S100B alone.

As a biomarker of ischemic stroke, miR-124-3p, a brain-enriched miRNA, has been
well characterized previously [33,34]. In CA, Gilje et al. presented that circulating levels of
miR-124-3p were increased in patients with poor outcome compared to those with good
outcome at 24 h and 48 h after CA [21]. Further large-scale studies conducted in 579 cohorts
confirmed the prognostic value of miR-124-3p at 48 h [35]. We identified miR-124-3p as
a possible predictor even at 6 h after ROSC. This result is supported by several other
studies [17,19,35]. Stefanizzi et al. reported that the circulating levels of brain-enriched
miRNAs at 48 h after CA correlated with NSE levels [36]. Interestingly, according to our
results, the circulating levels of miR-124-3p were also correlated with the serum levels of
NSE and S100B at 6 h after CA.

In one pioneering study, miR-122 was overexpressed in the serum of poor outcome
patients at 48 h after CA [20]; however, the prognostic values of miR-122 are inconsistent
among different studies. Gilje et al. were unable to confirm that miR-122 has prognostic
value after CA and found a decrease in the plasma levels of miR-122 in both outcome
groups [21]. Another large-scale study reported that patients with low levels of miR-122-5p
were at high risk for poor outcomes [37]. miR-122 is generally regarded as a liver-specific
miRNA and is involved in lipid metabolism [38]. Our results indicated that, although
increased miR-122-5p expression predicted poor outcome, it was not correlated with NSE,
S100B, or miR-124-3p expression. Several possibilities might account for these variable
results. First, the characteristics of the included cohorts between studies were different.
Our ratios of non-shockable rhythm arrest and non-cardiac etiology arrest were generally
higher than those in other published reports with opposite results. Post-CA syndrome is a
heterogeneous entity that involves multiple organs as well as the brain and causes death
through a variety of mechanisms. In our study, miR-122-5p expression was associated
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with bilirubin levels and the presence of shock, which induces multiple organ damage,
such as damage to the liver. However, it was observed that these associations were not
specific to miR-122-5p. Second, the temperature at the timing of miRNA sampling could
impact miRNA expression. Hypothermia regulates miRNA expression by enhancing the
processing of pre-miRNAs by Dicer [39–41]. In the porcine cardiogenic shock model, mildly
induced hypothermia decreased the plasma levels of miR-122 [42]. Therefore, miRNA
expression at the early phase of hypothermia could be different from that of other studies.

The miRNAs identified as prognostic candidate biomarkers in our study deserve
further acknowledgement. The prognostic values of miR-6511b-5p and -125b-1-3p were
superior to those of well-known miRNA and protein biomarkers, and their high expressions
had 100% specificity with moderate sensitivity for poor outcomes. miR-125b has been
demonstrated to negatively regulate NR2A-containing N-methyl-D-aspartate receptor [43],
while activation of this glutamate receptor exerts neuroprotective effects and promotes
neuronal survival against excitotoxicity-mediated neuronal damage [44]. Meanwhile, miR-
6511b-5p has been poorly characterized. Since their discovery in 2001, miRNAs have
become potential biomarkers of neurological and cardiovascular disease. However, they
have rarely been studied in CA. Further studies are warranted to confirm that miR-6511b-5p
has good prognostic performance for these patients.

Early detection and stratification of brain injury can help clinicians optimize the dose
of in-hospital treatment [45]. When combined with protein biomarkers, the miRNAs
showed higher prognostic value. The combination of NSE, S100B, and miR-6511b-5p has
the best AUC value, and interestingly, models adding a miRNA to NSE are slightly better
than the S100B model. This might be due to the kinetics of S100b, which is an “earlier”
biomarker than NSE, with a tendency to decrease over time, compared to NSE [46,47].

Strengths of this study include the various protein biomarkers available and systematic
approach to discover various miRNA candidates. Because patients with non-neurological
death could be categorized into the poor outcome group, we used NSE and S100B as surro-
gate markers of brain injury. We also performed miRNA sequencing and then validated the
differentially expressed miRNAs. Through this approach, we identified several miRNAs
for early prediction.

Our study should be interpreted in the context of the following limitations. First,
this study included a relatively small number of patients. Therefore, we could not adjust
variables to evaluate the mechanisms underlying these observed differences in miRNA
expression. Second, although the aim of the present study was to investigate miRNA
candidates as early biomarkers, we did not conduct serial measurements of miRNAs. The
kinetics of release of brain-derived miRNAs after CA could not be accurately characterized.
Finally, although miRNAs have been reported to have some potential to attenuate ischemic
brain injury [48], we only focused on the prognostic value of miRNA with increased
expression as a poor outcome predictor. Thus, further studies using a larger sample size
are necessary to confirm our findings and determine the precise reasons for the observed
differences in miRNA expression.

5. Conclusions

In this small sample study, we identified several miRNAs for the early prediction of
6-month neurological outcomes in TTM-treated CA patients. In particular, high expressions
of miR-6511b-5p and -125b-1-3p at 6 h after ROSC predicted poor outcomes, with moderate
sensitivities, and may complement other biomarkers. Our results need to be validated in
larger cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11101905/s1. Figure S1: Gene ontology analysis of miR-6511b-5p, -125b-1-3p,
-122-5p, and -124-3p; Table S1: Baseline characteristics of the discovery cohort; Table S2: Summary
of small RNA sequencing in a small cohort; Table S3: Comparisons of miRNA expression levels
between patients with good outcome and poor outcome; Table S4: miRNA expression levels ac-
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