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The role of organ-deposited
IgG in the pathogenesis of
multi-organ and tissue damage
in systemic lupus erythematosus

Wenlin Qiu †, Tong Yu † and Guo-Min Deng*

Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
Systemic lupus erythematosus (SLE), often known simply as lupus, is a severe

chronic autoimmune disease that is characterized by multi-organ and tissue

damage and high levels of autoantibodies in serum. We have recently

investigated, using animal models, the role of organ-deposited IgG

autoantibodies in the pathogenesis of organ and tissue damage in SLE. We

found that intra-organ injection of serum frommice with lupus (i.e., lupusmice)

into healthy mice triggered inflammation in tissue and organs but that serum

from other healthy mice did not, and that the severity of inflammation was

related to the dose of serum injected. Immunohistochemistry showed that a

large number of IgG molecules are deposited at the site of organ and tissue

damage in lupus mice, and that IgG is a major contributor to the development

of tissue inflammation triggered by serum from lupus mice or patients. The

development of tissue inflammation induced by IgG in serum from lupus mice

requires the presence of monocytes/macrophages, but not of lymphocytes or

neutrophils; tumor necrosis factor (TNF)/tumor necrosis factor receptor 1

(TNFR1) and interleukin 1 (IL-1) also play essential roles in the development of

tissue inflammation triggered by IgG. In addition, it has been found that TNFR1

inhibitors can suppress skin injury in lupus mice and that spleen tyrosine kinase

(Syk) inhibitors, which can block the signaling transduction of IgG/Fc gamma

receptors (FcgRs), can prevent and treat skin injury and kidney damage in lupus

mice. We have also observed that lupus IgG might protect against bone

erosion. Based on these results, we conclude that IgG plays a crucial role in

the development of organ and tissue damage in SLE and in protecting bone

erosion and arthritis, and we suggest that the IgG/FcgR signaling pathway is an

important therapeutic target in SLE.
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Introduction

Systemic lupus erythematosus (SLE), which affects mostly

women of childbearing age, is a chronic severe autoimmune

disease characterized by damage to multiple organs and tissues

and a high level of autoantibodies in serum (1–3). The incidence

and prevalence of SLE vary considerably between different

regions of the world (1, 4). In adults, the prevalence of SLE

worldwide ranges from 30 to 150 per 100,000, and the incidence

ranges from 2.2 to 23.1 per 100,000 per year (4). The typical

initial symptoms of lupus are fever, erythema, and arthritis (5).

Renal involvement is the most common manifestation: the

prevalence of nephritis among lupus patients is 29–82% (6).

Skin injury is the second most common symptom, and occurs in

70–85% of all lupus patients (7). Arthralgia is also common, and

lupus patients with arthralgia often suffer from varying degrees

of synovitis, but without bone erosion (8). Only 2.8–4.3% of

patients have Jaccoud’s arthropathy, which may result in joint

deformities (8). With advancements in therapies, 5-, 10-, 15-,

and 20-year survival rates have risen to 95%, 91%, 85%, and 78%,

respectively (4). The main causes of death in SLE patients are

infection, cardiovascular events, and active disease (4, 9).

Glucocorticoids and antimalarial agents (especial ly

hydroxychloroquine) are the most important and most

common first-line agents for the treatment of SLE, but B-cell-

targeting drugs have shown promising results (4, 5). Belimumab,

a humanized monoclonal antibody targeting soluble B-cell

activating factor (BAFF), a B-cell stimulator, can significantly

and sustainedly reduce the level of IgG autoantibodies, including

anti-double-stranded DNA (anti-dsDNA), anti-Smith (anti-

Sm), anti-cardiolipin, and anti-ribosomal P autoantibodies

(10). In addition, the immature dendritic cell (iDC) vaccine,

an underdeveloped therapy, has been shown to have a protective

effect in lupus-like nephritis induced by pathogenic

autoantibodies (11). These indicates that SLE IgG is involved

in the therapy of SLE.

The organ and tissue damage that occurs in the region of IgG

deposition, is due to infiltration by inflammatory cells, leading to

the destruction of tissue organization. Severe damage to multiple

organs is one of the leading causes of death in patients with SLE

(3, 12). Commonly damaged organs include the kidneys, skin,

joints, liver, spleen, lungs, and brain (1–3).

The immune system is damaged in SLE patients, and B cells

are abnormally over activated and produce multiple types of

autoantibodies. Patients with SLE produce IgA, IgE, IgG, and

IgM autoantibodies (12), but IgG autoantibodies predominate.

Inflammation is the pathological basis of organ and tissue

damage caused by the local deposition of IgG and immune

complexes (ICs) (12–17). The pathogenesis of SLE is closely

associated with a high level of autoreactive IgG (2, 3, 18, 19).

However, the mechanism by which IgG causes organ and tissue

damage is still unclear.
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Tissue-deposited ICs formed by autoantibodies and

autoantigens activate immune cells to produce inflammatory

cytokines by binding to Fc gamma receptors (FcgRs) (20–24).
Recently, we have demonstrated that organ-deposited IgG

induces local inflammation by binding to FcgRs on the surface

of monocytes/macrophages, resulting in multi-organ and tissue

damage (20–28).

In this review, we summarize recent studies of the role of organ-

deposited IgG in the pathogenesis of inflammation and organ and

tissue damage in SLE, and potential therapeutic targets in the IgG/

FcgRs signaling pathways, including studies investigating animal

models, immune cells, cytokines (Figure 1).
IgG deposited in tissues and organs

IgG and ICs have been found in the kidneys of SLE patients,

and the most common autoantibodies identified are anti-dsDNA

antibodies (18). IgM and IgG autoantibodies are deposited at the

dermis–epidermis junction (29), forming so-called “lupus bands,”

which can be detected using direct immunofluorescence (30, 31).

Some autoantibodies, including anti-galectin 3 antibody, anti-

acidic ribosomal protein P0 antibody (anti-RPLP0), and anti-

Ro52 antibody, have been reported to be deposited in the skin and

to be involved in the development of skin damage (32–34). We

have demonstrated that IgG is deposited in the skin, liver, spleen,

and joints of MRL/lpr mice (17, 23, 27, 28), and shown that the

level of IgG deposited is correlated with the severity of tissue

damage (17, 23, 27, 28). These findings suggest that tissue-

deposited IgG may have an essential role in the pathogenesis of

multi-organ and tissue damage in SLE.
Serum-induced inflammation in
organs and tissue

We investigated whether or not serum containing a high level

of IgG induces tissue inflammation in order to determine the role of

tissue-deposited IgG in the multi-organ and tissue damage that

occurs in SLE. Through intra-organ injection of serum from lupus

mice and SLE patients (lupus serum), we have established an

animal model of SLE organ and tissue damage (17, 20–22, 24, 27,

28). We found that intra-organ injection of serum from SLE

patients and lupus mice, but not from healthy humans and mice,

induced tissue inflammation in the skin, liver, spleen, and joints,

and that the severity of the inflammation was dose-dependent (17,

23, 27, 28). Using toll-like receptor 4 (TLR4)-deficient mice that

were lipopolysaccharide (LPS) resistant, we established that organ

and tissue inflammation could be induced by serum from SLE

patients and lupus-prone mice, but not by LPS contamination (17,

27). We found that tissue inflammation caused by SLE serum

appeared in the skin, liver, spleen, and joints a few hours after intra-
frontiersin.org
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organ injection, reached its peak after 3 days, and lasted for up to 14

days (17, 23, 27, 28).

Inflammatory skin reactions were induced by injecting

serum from SLE patients into six different mouse strains:

C57BL/6, SWISS, BALB/c, C3H/HeN, C3H/HeJ, and B-17

mice (23). Skin inflammation was induced by injection of

serum only if the patients from which the serum was derived

also exhibited skin inflammation and the severity of skin

inflammation was not correlated with the severity of systemic

disease (23); lupus serum had a synergistic effect with CpG DNA

in inducing skin inflammation (23, 35).

Other studies have also shown that intracerebroventricular

injection of lupus serum induces an inflammatory response (36–

38). These studies suggest that lupus serum can cause organ and

tissue inflammation.
IgG plays a key role in inflammation
induced by lupus serum

SLE is characterized by a high level of autoantibodies,

particularly IgG. Many studies have shown that IgG is involved

in the pathogenesis of organ and tissue inflammation and organ
Frontiers in Immunology 03
damage (17, 20–22, 24, 27, 28, 39, 40).We removed IgG from lupus

serum to evaluate the role of IgG in the development of tissue

inflammation. We found that the inflammation was significantly

less severe in mice that received intra-organ injection of IgG-

depleted lupus serum than in those injected with IgG-containing

lupus serum (17, 23, 27, 28). The skin, liver, spleen, and joints could

be directly inflamed by IgG isolated from lupus serum (17, 23, 27,

28). Furthermore, IgG extracted from lupus serum caused more

severe inflammation than the same dose of IgG extracted from

healthy serum (17, 23, 27, 28). The severity of inflammation was

also related to the dose of lupus IgG (17, 23, 27, 28).

Recently, antibody glycosylation in autoimmune diseases has

attracted attention, and the importance of Fc regions for

inflammation development has been demonstrated (41, 42). In

addition to the antigen-binding site, the level of antibody

glycosylation may differ in serum from healthy individuals and

SLE patients. In vitro experiments have revealed that microglia

are activated by phagocytosis of IgG (36). In a study in which

mice received intrasplenic injection of lupus serum or of IgG-

depleted lupus serum, the numbers of germinal centers(GCs)

and IgG-secreting plasmacytes incresased after 8 days in the

whole lupus serum group. (28). IgG has also been shown to

induce monocyte differentiation into dendritic cells (DCs) (24).
FIGURE 1

The role of IgG in organ and tissue damage in systemic lupus erythematosus (SLE). Lupus IgG and immune complexes (ICs) deposited in several
organs and tissues cause multi-organ and tissue damage. IgG and ICs binding to Fc gamma receptors (FcgRs) activate monocytes/macrophages
to secret cytokines. IgG inhibits osteoclastogenesis induced by the receptor activator of nuclear factor kappa B ligand (RANKL) to protect
against bone erosion by binding to FcgRI and induces inflammation by activating the spleen tyrosine kinase (Syk)/nuclear factor kappa B (NF-kB)
signal pathway to upregulate the transcription of inflammatory genes in monocytes/macrophages.
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In addition, intrahepatic injection of IgG has also been shown to

increase levels of ALT alanine transaminase (ALT) and aspartate

aminotransferase (AST) in serum and to cause accumulation of

apoptotic hepatocytes around the region of inflammation (17).

In another study, the severity of IgG-induced skin

inflammation was found not to be related to the titer of the

anti-dsDNA antibody and anti-Ro antibody (23). In addition, it

has been reported that injection of anti-DNA antibodies causes

proteinuria and promotes lupus nephritis in mice only when the

antibodies were bound to the basement membrane (43). These

findings demonstrate that IgG plays a key role in tissue

inflammation induced by lupus serum.
FcgRI is important for the
development of inflammation
induced by SLE IgG

The effect of IgG is mediated by FcgR (44). FcgRI and

FcgRIII are activating receptors, and FcgRII is the inhibitory

receptor. The only inhibitory receptor, FcgRIIB, transmits its

inhibitory signal through the immunoreceptor tyrosine-based

inhibitory motif (ITIM) (45). Polymorphism of the genes

encoding FcgRs has been reported and confirmed to be a

heritable susceptibility factor for SLE (2, 3, 46). It has been

reported that the FCGR2B-I232T genotype suppresses ligand

binding, leading to low affinity for IgG (47). Because FcgRIIB is

an inhibitory receptor, the low affinity for IgG contributes to a

reduction in inhibitory signals, thus reducing inflammation, and

alters the balance between inhibitory and activatory signals,

which is associated with susceptibility to SLE (45, 47).

Similarly, polymorphism of the genes encoding activating

receptors also influences susceptibility to SLE (2, 3, 47). FcgRI is
the only high-affinity FcgR for IgG, and is usually expressed

on the surface of monocytes/macrophages (48). The

immunoreceptor tyrosine-based activation motif (ITAM)

embedded in the intracellular structure of FcgR is responsible

for signal transduction of IgG and ICs (44, 48). The expression of

FcgRI, but not of FcgRII and FcgRIII, has been found to be

increased in monocytes from SLE patients, and the level of FcgRI
expression was found to be related to the SLE disease activity

index (SLEDAI) (49).

We used FcgRI-deficient mice with IgG-induced

inflammation to investigate the role of FcgRI in the

inflammation induced by SLE (49). The inflammation induced

by IgG was reduced in FcgRI-deficient mice compared with wild-

type mice (49). In addition, the expression level of FcgRI was
associated with IgG deposition and skin inflammation in MRL/

lpr mice (37). Activation of the inflammatory signal pathway in

monocytes/macrophages required FcgR expression (49).
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However, in vitro experiments have shown that IgG reduces

the surface expression of FcgRI, but not of FcgRII and FcgRIII,
on monocytes/macrophages (27). N-glycosylation of antibodies

and IgG subclasses affects the binding affinity of antibodies to

different Fc receptors (50). Abnormal glycosylation of

autoreactive IgG may have a higher affinity to FcgRI,
suggesting that the molecular modification of autoreactive IgG

may influence its pathogenicity. Further work is required to

identify the Fc region provided by which state of the SLE IgG.
Monocytes/macrophages are
required for inflammation induced
by SLE IgG

Using various strains of cell-deficient and cell-depleted mice,

we investigated the role of different types of immune cells in

inflammation induced by IgG. Immunohistochemistry

demonstrated that regions of tissue inflammation in the skin,

kidneys, liver, and spleen are characterized by infiltration of a

large number of monocytes/macrophages (17, 23, 27, 28, 51).

For example, F4/80+ macrophages were identified in the red pulp

of the spleen (28), liver macrophages (Kupffer cells) were seen in

areas of hepatitis induced by SLE IgG (17), and large numbers of

CD11b+ monocytes/macrophage and CD11c+ DCs were

detected in sites of skin inflammation; however, CD3+ T cells

and CD20+ B cells were absent (23, 52). The injection of lupus

serum and IgG significantly reduced the inflammation caused by

the depletion of monocytes/macrophages (17, 23, 27, 28).

Furthermore, skin inflammation induced by lupus IgG did

not develop in Csf1-deficient mice lacking mature monocytes

(21). Rag 1-deficient mice (which lack mature T and B cells but

whose monocytes/macrophages are intact) were used to identify

the role of T and B cells in IgG-induced inflammation (17, 24,

27). The lack of mature T and B cells did not affect the

development of organ tissue inflammation induced by IgG (17,

24, 27). Neutrophil depletion by anti-Ly6G antibody injection

did not affect the development of IgG-induced arthritis and

dermatitis (20, 27). Another study showed that IgG induced

lupus nephritis by activating macrophages (51).

In yet another study, IgG activated microglia to produce

proinflammatory cytokines (53). In addition, polymorphism of

the ITGAM (integrin subunit alpha M) gene (a gene associated

with the activation of monocytes/macrophages) is associated

with SLE susceptibility (11), and inflammation and organ

damage in lupus-prone mice were suppressed, and splenic

macrophages decreased, after treatment with the agonist of

ITGAM (54). These findings indicated that monocytes/

macrophages but not T cells, B cells, or neutrophils, play a

crucial role in IgG-induced inflammation.
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TNF-a/TNFR1 plays a major role in
the development of inflammation
induced by SLE IgG

Many cytokines are involved in inflammation induced by

IgG. Tumor necrosis factor alpha (TNF-a) is an important

proinflammatory cytokine that is mainly secreted by

macrophages and associated with SLE activity (55, 56). TNF-a
has been found to be highly expressed in the kidneys and skin of

SLE patients (57), and in the joints, skin, and kidneys of MRL/lpr

mice (21, 27, 58). In vitro stimulation of macrophages with IgG

has been found to cause IC to produce TNF-a (17, 28, 51),, and

the severity of inflammation induced by IgG in skin, liver,

spleen, and joints has been shown to be significantly reduced

in mice with a TNF-a deficiency (17, 22, 27, 28). TNF exerts its

effect through its receptors, such as TNFR1 and TNFR2. The

skin inflammation induced by IgG was found to be reduced in

mice with a TNFR1 deficiency, but not in those mice with a

TNFR2 deficiency (24). Furthermore, we found that a deficiency

of interleukin (IL) 1 (IL1) relieved inflammation induced by IgG

by reducing the production of TNF-a (22). These results suggest

that TNF-a/TNFR1 is crucial for inflammation induced by IgG

in lupus serum. In addition, BAFF, produced by activated

macrophages, was found in the region of inflammation to

prolong the survival of macrophages in lupus nephritis (59,

60). In addition, IL-10, interferon alpha (IFN-a), and interferon

gamma (IFN-g) have been shown to increase CD64 expression

in monocytes/macrophages (49, 61). In one study, a lack of

macrophage migration inhibitory factor (MIF) attenuated

infiltration of macrophages and alleviated lupus nephritis (62).
Inhibitor of/FcgRs signaling pathway
suppressed organ and tissue
damage in lupus mice

Based on the findings from animal models of tissue

inflammation induced by lupus IgG, the IgG/FcgRs signaling

pathway is an important therapeutic target. Thus, we

investigated whether an IgG/FcgRs signaling molecule inhibitor

prevents and alleviates multi-organ and tissue damage in SLE.

Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase of the

Src family, plays a fundamental role in IgG/FcgRs signaling

pathway conduction in autoimmune diseases (27, 63–65). FcgRI
was required to activate Syk induced by SLE serum inmacrophages

(49). Syk inhibitors were used to treat lupus MRL/lpr mice, and

have been found to prevent and treat damaged skin, kidneys, and

spleen in MRL/lpr mice (28, 63). In addition, Syk inhibitors

reduced inflammation and damage in the spleen, liver, and skin

induced by injection of IgG from lupus serum (17, 23, 28).

Intravenous immunoglobin (IVIG) is an anti-inflammation
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therapy used to treat various acute and chronic autoimmune

diseases (66). Its anti-inflammation effect is due to the blocking

of Fc receptors, which cannot bind with pathological

autoantibodies (66). Glycosylation of the Fc region of IgG affects

its function of inflammation modulation. The sialic acid-rich IgG

fraction of IVIG has an improved anti-inflammatory activity (66).

These results suggest that IgG/FcgRs signaling molecules may be a

potential therapeutic target in multi-organ tissue damage of SLE.
IgG protects against bone erosion in
SLE arthritis

Bone erosion is an important feature in inflammatory

arthritis, such as rheumatoid arthritis; however, it does not

occur in SLE arthritis. The receptor activator of nuclear factor

kappa B ligand (RANKL) induces monocytes/macrophages to

separate into osteoclasts thatmitigate bone erosion (26). FcgRI is a
costimulatory molecule of RANK, the receptor for RANKL that

activates macrophage differentiation into osteoclasts (14). We

investigated the role of IgG in macrophage differentiation to

understand the mechanism by which IgG from lupus serum

induces arthritis without bone erosion (27). We found that IgG

inhibited osteoclastogenesis induced by RANKL in a dose-

dependent manner, and deficiency of FcgRII and FcgRIII did

not influence the inhibitory effect of IgG in the formation of

osteoclasts; both IgG from lupus serum and RANKL reduced the

level of FcgRI (27). The inhibitory effect on osteoclastogenesis was
greater at high doses than in at doses of IgG, and increasing doses

of RANKL gradually blocked the inhibitory effects of lupus IgG.

The stronger inhibitory effects of lupus IgG on RANKL-mediated

osteoclastogenesis were presented in cells pre-treated for 24 hours

when compared with cells treated with both RANKL and lupus

IgG at the same time; at 24 hours after RANKL stimulation, the

inhibitory effect of lupus IgG on osteoclastogenesis was

eliminated (27). Based on these data, it appears that the

relationship between IgG and RANKL is competition for FcgRI.
IgG inhibits RANKL-induced osteoclastogenesis through

competition for FcgRI binding. The binding of IgG to FcgRI
may lead to a functional deficiency of FcgRI on the cellular

membrane, which is required for RANKL-induced

osteoclastogenesis. The competitive occupation of FcgRI by IgG

may be exploited to develop therapeutic approaches to prevent

bone destruction in autoimmune/inflammatory arthritis.
Conclusion

Based on these results, we conclude that IgG plays a crucial role

in developing organ and tissue damage in SLE and in protecting

against bone erosion in SLE arthritis, and that the IgG/FcgRs
signaling pathway is an important therapeutic target in SLE.
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